] o c n m p [Open Communications in Nonlinear Mathematical Physics |
This work is a first step towards a theory of "$q$-deformed complex numbers". Assuming the invariance of the $q$-deformation under the action of the modular group I prove the existence and uniqueness of the operator of translations by~$i$ compatible with this action. Obtained in such a way $q$-deformed Gaussian integers have interesting properties and are related to the Chebyshev polynomials.