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Abstract

This work is a first step towards a theory of “q-deformed complex numbers”. Assuming
the invariance of the q-deformation under the action of the modular group I prove
the existence and uniqueness of the operator of translations by i compatible with
this action. Obtained in such a way q-deformed Gaussian integers have interesting
properties and are related to the Chebyshev polynomials.

1 Introduction

The notion of q-deformed rational numbers was introduced in [11]. It was further extended
to arbitrary real numbers in [12]. Several properties of q-numbers were studied in [13, 8, 9].
The unimodality conjecture formulated in [11] was tackled in [10].

The goal of this paper is to extend the q-deformation to complex numbers. We show
that this can be done in a unique way. Already for the simplest case of Gaussian integers,
i.e., complex numbers with integer real and imaginary parts, the obtained q-deformation
has quite nontrivial properties. In particular, we observe an unexpected relation with the
Chebyshev polynomials.

We start the introduction by explaining in Sections 1.1–1.3 the approach that was used
to define the notion of q-rationals. The role of the modular group PSL(2,Z) is crucial.
Section 1.6 explains the main idea of this work.

1.1 Euler’s q-integers and the matrices Tq and Sq

The notion of q-deformed integers

[n]q :=
1− qn

1− q
, (1)
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where n ∈ Z, goes back to Euler. The expression (1) reads for n ≥ 0

[n]q = 1 + q + q2 + · · · + qn−1, [−n]q = −q−1 − q−2 − · · · − q−n.

Definition (1) was used by Gauss to define q-binomial coefficients that now play an
important role in combinatorics (see [18]), quantum algebra and quantum calculus (see [6]).

Euler’s q-integers (1) can be characterized by the recurrence

[n+ 1]q = q [n]q + 1 (2)

and the initial condition [0]q = 0.
Consider the standard action of the modular group PSL(2,Z) on the space of ratio-

nal functions in q defined by linear-fractional transformations. More precisely, elements
of PSL(2,Z) are represented by 2× 2 matrices acting on the rational function X = X(q)
via

(

a b

c d

)

X =
aX + b

cX + d
. (3)

Recurrence (2) describes an action of the subgroup of integer translations; this group is
isomorphic to Z and generated by the matrix

Tq =

(

q 1

0 1

)

. (4)

The matrix Tq acts on the function X(q) via Tq X = q X + 1, and recurrence (2) can be
understood as the equivariance property [T (n)]q = Tq([n]q), where T is the translation
operator T (x) = x+ 1, (see formula (6) below).

Furthermore,

Sq =

(

0 −1

q 0

)

(5)

is the unique matrix that interchanges the “smallest” q-integers [−1]q and [1]q. Therefore,
the matrices Tq and Sq appear already at the level of q-integers. They play a crucial role
in our approach.

Remark 1.1. Note that the matrix Sq is widely known in the physics literature under the
name of “spinor metric”; see, e.g., [20]. It can be used to characterize the usual quantum
group SLq(2) as the group of symmetry of this metric. However, I did not find in the
literature a simultaneous use of the matrices Tq and Sq that generate a PSL(2,Z)-action.

1.2 The modular group action

The modular group PSL(2,Z) has the standard generators

T =

(

1 1

0 1

)

, S =

(

0 −1

1 0

)

, (6)
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satisfying the relations S2 = (TS)3 = Id. It transitively acts on Q, via linear-fractional
transformations.

The q-deformation (4)-(5) preserves the relations between the generators:

S2
q = Id, (TqSq)

3 = Id. (7)

as elements of PSL(2,Z[q]). Moreover, if Tq is chosen to be as in (4), then the matrix Sq

can be characterized as the unique matrix satisfying (7). Therefore, Tq and Sq generate an
action of the same, “undeformed”, group PSL(2,Z) by linear-fractional transformations
on the space Z(q) of rational functions X = X(q):

Tq X = q X + 1, Sq X = − 1

qX
. (8)

It follows that, replacing T by Tq and S by Sq, then every A ∈ PSL(2,Z) correctly defines
a unique matrix Aq with coefficients polynomially depending on q.

1.3 Modular invariance characterizes q-rationals

The notion of q-rationals was defined in [11] in a combinatorial way. It became clear later
(see [8, 13, 9]) that the simplest, and perhaps most conceptual, way to define q-deformed
rationals is to assume the modular invariance.

There exists a unique map

Q −→ Z(q), x 7→ [x]q ,

that commutes with the PSL(2,Z)-action and sends 0 to 0.
Equivalently, the q-deformation [x]q of every x ∈ Q satisfies the following two linear

recurrences

[x+ 1]q = q [x]q + 1,

[

−1

x

]

q

= − 1

q [x]q
.

They express the invariance of the q-deformation under the action of the generators
of PSL(2,Z).

Since PSL(2,Z) acts transitively on Q, the requirement of PSL(2,Z)-invariance implies
the uniqueness of the rational function [x]q. However, the existence of such a q-deformation
(and its extension to R; see [12]) is a non-trivial and quite remarkable fact.

1.4 The starting point: elliptic points of PSL(2,Z)

Despite the fact that PSL(2,Z) consists of real matrices, the assumption of PSL(2,Z)-
invariance provides us with an infinite set of q-deformed complex numbers.

Let x ∈ C be a fixed point of some element A ∈ PSL(2,Z). Such points are called
elliptic and their classification is well-known; see, e.g., [17]. The invariance condition then
reads

[A(x)]q = Aq([x]q) = [x]q ,

so that [x]q is a fixed point of Aq. For instance, ±i are fixed points of S, therefore [±i]q
are fixed points of Sq. One then obtains

[i]q :=
i

q
1

2

, [−i]q := − i

q
1

2

. (9)
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1.5 The space of rational functions in q
1

2

It follows from (9) that, in order to consider q-deformed complex numbers, one needs to

extend the space of rational functions in q to the space C(q
1

2 ) of rational functions in q
1

2 .
This is the space we will work with, the action of all of the operators and groups that we
consider will be defined on C(q

1

2 ).

Usually, we deal with operators of linear-fractional transformations, as in (3), but
sometimes we will have to add the parameter inversion

τ : q 7−→ q−1, (10)

acting on the functions via (τ X)(q) = X(q−1).

1.6 The operator of imaginary translations

The main idea of the present paper is to consider the matrix U ∈ PSL(2,Z[i]) and its
square

U =

(

1 i

0 1

)

, U2 =

(

1 2i

0 1

)

(11)

acting on the complex plane C by imaginary translations, and find a q-deformation Uq,
compatible with the PSL(2,Z)-action. We will show the existence of such a deformation
and prove its uniqueness in a natural class of linear-fractional operators.

The compatibility with the q-deformed PSL(2,Z)-action consists of two properties.

(a) The operator Uq must commute with Tq;

(b) Uq must send [−i]q to 0, and 0 to [i]q, where [−i]q and [i]q are as in (9).

Surprisingly, it is much easier to work with the square of the operator U . We will prove
(in Section 3.1) the following.

Theorem 1.2. There exists a unique element of the group of linear-fractional transfor-
mations of C(q

1

2 ), commuting with Tq and sending [−i]q to [i]q:

(U2)q =





1 + i (q
1

2 − q−
1

2 ) 2i q−
1

2

0 1− i (q
1

2 − q−
1

2 )



 . (12)

It turns out that the “square root” of (12) has a different nature in the following sense.
There is no matrix with coefficients depending on q that commutes with Tq and sends [−i]q
to 0, and 0 to [i]q. In fact, the operator Uq inverses the parameter q in the argument.

Definition. The operator Uq acts on C(q
1

2 ) by the formula

Uq X :=
X(q−1) + iq

1

2

(1− q)X(q−1) + q
. (13)
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It is easy to check that Uq commutes with Tq and that it squares to (12) and satisfies
(b). Note also that Uq can be written in the matrix form

Uq =

(

1 iq
1

2

1− q q

)

◦ τ,

where τ is the parameter inversion (10).

1.7 q-deformed Gaussian integers

Gaussian integers are complex numbers m + ni, with m,n ∈ Z. It is natural to define
q-deformed Gaussian integers as the orbit of [0]q = 0 in C(q

1

2 ) under the action of the

abelian group Z2 generated by the translation operators Tq and Uq.
These q-deformed Gaussian integers have quite interesting and nontrivial properties.

Their explicit formula (Theorem 4.1) is obtained thanks to a new choice of the parameter:

Q :=
2i q

1

2 (q − 1)

q2 − q + 1
− q2 − 3q + 1

q2 − q + 1
.

The function q 7→ Q(q) is quite remarkable. When q is real, Q belongs to the unit circle,
i.e., QQ = 1.

I will also show that q-deformed Gaussian integers are related to the Chebyshev poly-
nomials of second kind (Theorem 5.1) in a somewhat unexpected way.

1.8 The q-deformed Picard group and q-continued fractions

The group PSL(2,Z[i]) of unimodular 2 × 2 matrices with Gaussian integer coefficients,
usually called the Picard group. This group naturally acts on Q[i], and we obtain a

q-deformation of this action defined on C(q
1

2 ). It turns out that all of the relations be-
tween the generators remain unchanged in the q-deformed situation, except for one re-
lation that has no q-analog. The “missing” relation makes the complex situation much
more complicated than in the real case and leads to an extension of PSL(2,Z[i]). The
q-deformation of complex numbers cannot be determined assuming invariance under the
full group PSL(2,Z[i]).

2 Elliptic points of PSL(2,Z)

In this short section, we obtain the first information about q-deformed complex numbers
from the modular invariance. It is due to the fact that some of the (quadratic, i.e., solutions
of quadratic equations with integer coefficients) complex numbers, for instance, i, are fixed
points of real matrices.

2.1 Modular invariance and fixed points

I always assume that the q-deformation is PSL(2,Z)-invariant.
Since the q-deformed generators Tq and Sq given by (4) and (5) satisfy the same rela-

tions (7), the embedding
PSL(2,Z) →֒ PSL(2,Z[q])
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is well defined and to every A ∈ PSL(2,Z) it assigns a matrix whose elements are polyno-
mial in q.

For every x ∈ Q, the PSL(2,Z)-invariance implies

[A(x)]q = Aq

(

[x]q

)

. (14)

If x is a fixed point of A, then [x]q has to be a fixed point of Aq, and can be determined
in this way.

2.2 Elliptic points of PSL(2,Z)

The standard action of PSL(2,Z) on C ∪ {∞} has a discrete set of points with nontrivial
stabilizer. Such points are called elliptic.

Proposition 2.1. The set of elliptic points of PSL(2,Z) in the upper half-plane is the
PSL(2,Z)-orbit of i and the cube root of 1:

{

i,
−1 +

√
3i

2

}

. (15)

This statement is classical (see, e.g., [16], Chapter VII), let us outline its proof.

Proof. First, one checks that the points (15) are elliptic. Indeed, the imaginary unit i is

a fixed point of S, while −1+
√
3i

2 is fixed by ST .
To prove that any other elliptic point in the upper half-plane is an image of one of the

points (15) by an element of PSL(2,Z), note that A ∈ PSL(2,Z) has a fixed point in the
upper half-plane if and only if A is an elliptic element of PSL(2,Z), that is, tr(A) = 0
or 1. In this case, A belongs to the conjugacy class of S, or ST , respectively. �

Remark 2.2. Choose (the standard) fundamental domain of PSL(2,Z)

D =

{

z ∈ C; |z| > 1, −1

2
< Re(z) <

1

2

}

.

There are no elliptic points points inside any fundamental domain, since D has the empty
intersection with its image under an element of PSL(2,Z). Therefore, there are exactly
three elliptic points on the border of D:

• ••
−1+

√
3i

2
1+

√
3i

2

i

0

The complex conjugate of the elliptic points are also fixed points (of the same element
of PSL(2,Z)). In the sequel, two points, i and −i, will play a crucial role.
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2.3 The first examples of q-deformed complex numbers

The fixed point of Sq, of SqTq, and of TqSq are easily calculated, they are

[±i]q := ± i

q
1

2

,

[

−1±
√
3i

2

]

q

=
−1±

√
3i

2q
,

[

1±
√
3i

2

]

q

=
1±

√
3i

2
,

respectively. These are our first examples of q-deformed complex numbers.

Remark 2.3. Note that, since the matrix TqSq does not depend of q, the points 1±
√
3i

2
remain undeformed. Besides 0 and 1, these are the only numbers with this property.

This indicates that the Eisenstein integers (i.e., the numbers of the form n + m −1+
√
3i

2 ,
with n,m ∈ Z) should play some role in our approach. However, in this paper, the
considerations are restricted to the Gaussian integers. The only elliptic points of PSL(2,Z)
which are Gaussian integers are ±i+ n, where n ∈ Z.

3 Imaginary translations

In this section, we define the operator Uq acting on the field C(q
1

2 ), we will interpret
this Uq as the q-deformation of the operator U of translations by i. It turns out that there
is no such operator Uq in the group of linear-fractional transformation, only its square U2

q ,
while Uq is more sophisticated.

3.1 The operator of double imaginary translation

In this section, we prove Theorem 1.2. Let us start with the general form of the matrix of
an operator commuting with the operator Tq.

Lemma 3.1. The matrix of a linear-fractional operator A on C(q
1

2 ), commuting with the
operator Tq given by (4), is of one of the following two forms

(i) A two-parameter family of triangular matrices

A =

(

a b

0 d

)

,

where a and b are arbitrary functions in q
1

2 and d = a− (q − 1)b.
(ii) A one-parameter family of matrices proportional to

A =

(

1 (q − 1)−1

1− q −1

)

.

Proof. For an arbitrary matrix A =

(

a b

c d

)

, one has

TqA =

(

qa+ c qb+ d

c d

)

, ATq =

(

qa a+ b

qc c+ d

)
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If c = 0, the condition that TqA and ATq are proportional implies qb+ d = a+ b. If c 6= 0,
then

qa+ c = a, qb+ d = q−1(a+ b), d = q−1(c+ d).

The first and the third equations give c = (1− q)a = (q−1)d, so that d = −a. The second
equation then leads to a = (q − 1)b.

The lemma follows. �

Suppose now that a triangular matrix A from Lemma 3.1 sends [−i]q to [i]q (where
[−i]q and [i]q are as in (9)). One has the following condition

−a i+ b q
1

2

d q
1

2

=
i

q
1

2

,

so that (a + d)i = b q
1

2 . Substituting d as in Lemma 3.1, one has 2a = (q − 1 − i q
1

2 )b.
A matrix A of a linear-fractional transformation is defined modulo a scalar multiple, i.e.,
the coefficient b thus can be chosen in an arbitrary way.

It follows that a matrix A from Lemma 3.1, Part (i), satisfying the conditions of The-
orem 1.2, is unique up to a scalar multiple. It is now easy to check that the matrix (12)
does satisfy them.

The matrix A from Lemma 3.1, part (ii) does not send [−i]q to [i]q.
Theorem 1.2 is proved.

Remark 3.2. Taking b = 2i q−
1

2 , which is natural since we think of A as a q-analog

of

(

1 2i

0 1

)

, we obtain the unique matrix satisfying both conditions (commuting with Tq

and sending [−i]q to [i]q), namely





1 + i (q
1

2 − q−
1

2 ) 2i q−
1

2

0 1− i (q
1

2 − q−
1

2 )



 ,

that we denote by (U2)q.

3.2 The operator Uq

A straightforward attempt to calculate a square root of the operator (U2)q given by (12)
fails. There is no such operator inside the group of linear-fractional transformations.

Lemma 3.3. There is no linear-fractional operator A on C(q
1

2 ) commuting with the
operator Tq and sending [−i]q to 0, and 0 to [i]q.

Proof. Let A be as in Lemma 3.1. The second condition implies two equations

−a i+ b q
1

2 = 0,
b

d
=

i

q
1

2

.

Substituting d = a − (q − 1)b, leads to (q − 1)b = 0, ad so b = 0, since q is a parameter.
But then A has to be zero, which is a contradiction. �
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An alternative way to look for a square root of (U2)q is to adopt the assumption that Uq

inverses the parameter q, as in (10). Let us consider the linear-fractional transformations
composed with τ :

AX :=
aX(q−1) + b

cX(q−1) + d
, (16)

where a, b, c, d are some functions in q.

Proposition 3.4. The operator (13) is the unique operator on C(q
1

2 ) of the form (16)
commuting with Tq and sending [−i]q to 0, and 0 to [i]q.

Proof. The composition of A with Tq is represented by the matrices

TqA =

(

qa+ c qb+ d

c d

)

, ATq =

(

q−1a a+ b

q−1c c+ d

)

that are then to be applied to X(q−1). The operators A and Tq commute means that the
matrices are proportional. This gives:

c = (1− q)a, d = qa,

with arbitrary a and b.

The condition that A sends [−i]q to 0, and 0 to [i]q reads

b = iq
1

2 a, b = iq−
1

2 d.

The obtained system of four equation has a one-parameter family of solutions, namely the
coefficients of the matrix

(

a iq
1

2a

(1− q)a qa

)

.

Proposition 3.4 is proved. �

Let us finally check that the operator (U2)q given by (12) is, indeed, the square of Uq.

Proposition 3.5. The composition of Uq with itself is the operator (12).

Proof. One checks that

(

1 iq
1

2

1− q q

)

◦ τ ◦
(

1 iq
1

2

1− q q

)

◦ τ =

(

1 iq
1

2

1− q q

)(

1 iq−
1

2

1− 1
q

1
q

)

= (U2)q.

This means that the operator (12) is the composition of the operator Uq with itself. �
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4 Introducing q-deformed Gaussian integers

Our goal in this section is to calculate explicit formulas and linear recurrences for q-
deformed Gaussian integers, defined as the orbit of 0 in C(q

1

2 ) under the Z2-action gener-
ated by Tq and Uq:

[ni+m]q := Tm
q Un

q (0) .

Since the action of T is given by a simple expression

Tm(X(q)) = qmX(q) + [m]q ,

where [m]q is the Euler q-integer (1), it suffices to calculate q-deformed purely imaginary
Gaussian integers [ni]q.

To simplify the exposition and immediately explain the nature of these q-numbers, let
us start with examples, the general formulas and recurrences will be calculated after that.

4.1 A list of small Gaussian integers

The first examples are

[i]q = i q−
1

2 ,

[2i]q =
2q [i]q

q2 − q + 1
− 2(q − 1)

q2 − q + 1
,

[3i]q = − [i]q +
4q [i]q

q2 − q + 1
− 4(q − 1)

q2 − q + 1
,

[4i]q = −
4q [i]q

q2 − q + 1
+

8q2 [i]q
(q2 − q + 1)2

− 8q(q − 1)

(q2 − q + 1)2
,

[5i]q = [i]q −
12q [i]q

q2 − q + 1
+

16q2 [i]q
(q2 − q + 1)2

+
4(q − 1)

(q2 − q + 1)
− 16q(q − 1)

(q2 − q + 1)2
,

[6i]q =
6q [i]q

q2 − q + 1
−

32q2 [i]q
(q2 − q + 1)2

+
32q3 [i]q

(q2 − q + 1)3

− 2(q − 1)

(q2 − q + 1)
+

16q(q − 1)

(q2 − q + 1)2
− 32q2(q − 1)

(q2 − q + 1)3
,

[7i]q = − [i]q +
24q [i]q

q2 − q + 1
−

80q2 [i]q
(q2 − q + 1)2

+
64q3 [i]q

(q2 − q + 1)3

− 8(q − 1)

(q2 − q + 1)
+

48q(q − 1)

(q2 − q + 1)2
− 64q2(q − 1)

(q2 − q + 1)3
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[8i]q = −
8q [i]q

q2 − q + 1
+

80q2 [i]q
(q2 − q + 1)2

−
192q3 [i]q

(q2 − q + 1)3
+

128q4 [i]q
(q2 − q + 1)4

− 32q(q − 1)

(q2 − q + 1)2
+

128q2(q − 1)

(q2 − q + 1)3
− 128q3(q − 1)

(q2 − q + 1)4

[9i]q = [i]q −
40q [i]q

q2 − q + 1
+

240q2 [i]q
(q2 − q + 1)2

−
448q3 [i]q

(q2 − q + 1)3
+

256q4 [i]q
(q2 − q + 1)4

+
8(q − 1)

(q2 − q + 1)
− 112q(q − 1)

(q2 − q + 1)2
+

320q2(q − 1)

(q2 − q + 1)3
− 256q3(q − 1)

(q2 − q + 1)4
.

One observes that the coefficients of the imaginary parts Im([ni]q) form a triangle that
starts as follows

1
2

−1 4
−4 8
1 −12 16
6 −32 32

−1 24 −80 64
· · ·

Quite remarkably, this triangle coincides with the triangle of coefficients of Chebyshev
polynomials of second type; see Sequences A008312, A053117 of OEIS [14]. The coefficients
of the real part are also connected to the Chebyshev polynomials. The precise connection
to Chebyshev polynomials will be explained in Section 5.

4.2 The new parameter Q

Let us describe a new choice of the parameter of deformation. Instead of the parameter q,
we will use the parameter

Q :=
2i q

1

2 (q − 1)

q2 − q + 1
− q2 − 3q + 1

q2 − q + 1
. (17)

One can understand Q as a formal parameter, but it will also be useful to think of it as a
(two-valued) function in q.

The parameter Q has several nice properties.

(a) If the initial parameter of deformation q is real, then

Q−1 = Q, (18)

(b) The two-valued function q → Q(q) sends the interval [0, 1] to two unit half-circles,

depending on the choice of the sign of q
1

2 = ±√
q. Below is the positive branch.
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•

Q(0) = −1 Q(1) = 1

Q(3−
√
5

2 ) = i

4.3 The explicit formula and linear recurrence

Let us give an explicit formula for the q-deformed Gaussian integers [ni]q.
If n ∈ Z, we use the standard notation

[n]Q :=
1−Qn

1−Q

for Euler’s Q-integers. As before, the q-deformed imaginary unit is [i]q = iq−
1

2 .
The main result of this section is the following.

Theorem 4.1. For every n ∈ Z, one has

[2ni]q = [2]Q [n]Q [i]q , (19)

[(2n− 1) i]q =
(

[2]Q [n]Q −Qn
)

[i]q . (20)

Recall also that the general expression for the q-deformed Gaussian integers read

[m+ ni]q = qm [ni]q + [m]q .

Remark 4.2. More explicitly, the coefficients in (19) and (20) can be rewritten in the
form

[2]Q [n]Q =
1−Qn

1−Q
+

Q−Qn+1

1−Q
, [2]Q [n]Q −Qn =

1−Qn

1−Q
+

Q−Qn

1−Q
,

respectively. These are complex rational functions in q that can be calculated substitut-
ing (17). Below are some examples of q-integers [ni]q rewritten in terms of the parameterQ.

n -3 -2 -1 0 1 2 3

[ni]q −
(

1 + 2Q−1
)

[i]q −
(

1 +Q−1
)

[i]q − [i]q 0 [i]q (1 +Q) [i]q (1 + 2Q) [i]q

Proof. One will need the following.

Lemma 4.3. For every n ∈ Z, the sequence
(

[ni]q

)

n∈Z
satisfies the following linear

recurrence with constant coefficients

[(n+ 2) i]q = (Q+ 1) [ni]q −Q [(n− 2) i]q . (21)
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Proof of the lemma. This is a direct consequence of the definition of Gaussian q-integers.
Indeed, one has [(n+ 2) i]q = U2([ni]q), where the operator U2 is given by (12). One
therefore has an affine recurrence

[(n+ 2) i]q =
1 + i(q

1

2 − q−
1

2 )

1− i(q
1

2 − q−
1

2 )
[ni]q +

2 [i]q

1− i(q
1

2 − q−
1

2 )
,

that readily implies (21), with Q as in (17). �

Recurrence (21) determines [ni]q from the values ([0]q , [2i]q) and ([−i]q , [i]q), for n even
and odd, respectively.

Lemma 4.4. The general solution of (21) is of the form

[2n i]q = λ(q)Qn + µ(q), [(2n− 1) i]q = λ̃(q)Qn + µ̃(q) (22)

where λ(q), µ(q), λ̃(q), µ̃(q) are arbitrary functions in q.

Proof of the lemma. The characteristic polynomial of the linear recurrence (21) is x2 −
(Q+ 1) x+Q. It has has the solutions: x = Q and x = 1. Hence (22). �

Since [0]q = 0, and [2i]q = (Q+ 1) [i]q (cf. the examples of Section 4.1), we obtain

λ(q) =
Q+ 1

Q− 1
[i]q , µ(q) = −Q+ 1

Q− 1
[i]q ,

for n even. Substituting these functions to (22) implies (19).
Similarly, since [−i]q = − [i]q, we obtain

λ̃(q) =
2

Q− 1
[i]q , µ̃(q) = −Q+ 1

Q− 1
[i]q ,

for n odd, and this entails (20).
Theorem 4.1 is proved. �

4.4 A property of complex conjugation

Here, again, we assume that q is a real parameter.

Proposition 4.5. The q-numbers [−ni]q and [ni]q are complex conjugate of each other:

[−ni]q = [ni]q.

Proof. First, we observe that

[−ni]q (Q) = − [ni]q (Q
−1). (23)

Indeed, this follows from the form of the recurrence (21) and the fact that this is true for
the initial values (see the table above).

Next, (18) implies:
P (Q−1) = P (Q)
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for any polynomial P (Q) with real coefficients.

Multiplying any polynomial with real coefficients by purely imaginary [i]q, one arrives
at the opposite to (23) property:

P (Q−1) [i]q = −P (Q) [i]q.

Hence the result. �

5 q-deformed Gaussian integers and Chebyshev polynomials

In this section, we explain the relationship of imaginary and real parts of [ni]q with the
Chebyshev polynomials, experimentally observed in Section 4.1. Our proof is computa-
tional, and it would be interesting to have a more conceptual proof.

5.1 Chebyshev polynomials of second kind

The classical Chebyshev polynomials of second kind is a sequence of polynomials in one
variable satisfying the recurrence

Un+1(x) = 2xUn(x)− Un−1(x),

and the initial conditions

U0(x) = 1, U1(x) = 2x.

The sequence of Chebyshev polynomials starts as follows:

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1,

· · ·

The well-known determinant formula is

Un(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x 1

1 2x 1

. . .
. . .

. . .

1 2x 1

1 2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This tridiagonal determinant is known under the name of continuant, it naturally appears
in the theory of continued fractions.
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5.2 The two “variants” of the Chebyshev polynomials

Consider a slightly modified recurrence

Ũn+1(x) =

{

2x Ũn(x)− Ũn−1(x), n odd,

2 Ũn(x)− Ũn−1(x), n even.
(24)

The initial values will be chosen in one of the following two ways

Ũ I
0 (x) = 1, Ũ I

1 (x) = 2x, Ũ II
0 (x) = 1, Ũ II

1 (x) = 2.

Hence, for n even we have

Ũ I
n(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x 1

1 2 1

1 2x 1

1 2 1

. . .
. . .

. . .

1 2x 1

1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, Ũ II
n (x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1

1 2x 1

1 2 1

1 2x 1

. . .
. . .

. . .

1 2 1

1 2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If n is odd, the formulas are similar, with the main diagonal ending with 2x or 2, respec-
tively.

The sequences of polynomials Ũ I
n(x) and Ũ II

n (x) start as follows:

Ũ I
0 (x) = 1,

Ũ I
1 (x) = 2x,

Ũ I
2 (x) = 4x− 1,

Ũ I
3 (x) = 8x2 − 4x,

Ũ I
4 (x) = 16x2 − 12x+ 1,

· · ·

Ũ II
0 (x) = 1,

Ũ II
1 (x) = 2,

Ũ II
2 (x) = 4x− 1,

Ũ II
3 (x) = 8x− 4,

Ũ II
4 (x) = 16x2 − 12x+ 1,

· · ·

The polynomials Ũ I
n(x) and Ũ II

n (x) have lower degree than the classical Chebyshev poly-
nomials Un(x), but exactly the same coefficients. Note also that Ũ I

2m(x) = Ũ II
2m(x).

5.3 Recurrences for the imaginary and real parts of [ni]q

The recurrences and determinant formulas for the sequences of the imaginary and real
parts of [ni]q is very similar to that of the Chebyshev polynomials.

Since the imaginary parts of [ni]q are all proportional to [i]q, and since the real parts

are proportional to 2(q−1)
q2−q+1 , we use the following notation

In(z) := Im
(

[ni]q

)

[i]−1
q , Rn(z) := −Re

(

[ni]q

) q2 − q + 1

2 (q − 1)
,
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where

z =
q

q2 − q + 1
. (25)

This considerably simplifies the formulas. It turns out that the coefficients In(z) of the
imaginary part, and the difference of the coefficients of the real parts, Rn(z) −Rn−2(z),
of [ni]q coincide with the variants of the Chebyshev polynomials:

Theorem 5.1. One has

In+1(z) = Ũ I
n(z), Rn+2(z)−Rn(z) = Ũ II

n (z). (26)

where z is given by (25).

Proof. This statement follows from the following recurrence.

Lemma 5.2. (i) The imaginary parts of [ni]q satisfy the recurrence

In+1(z) =

{

2z In(z)− In−1(z), n odd,

2In(z)− In−1(z), n even;
(27)

(ii) the real parts of [ni]q satisfy the recurrence

Rn+1(z) =

{

2zRn(z)−Rn−1(z)− 1, n odd,

2Rn(z)−Rn−1(z), n even.
(28)

Proof of the lemma. Our proof is a straightforward computation using the induction on n.
Let us give the details for the imaginary part of [ni]q, in the case where n is even.

One needs to prove that

In+2 = (4z − 2)In − In−2,

which is equivalent to (27).

Recurrence (21) implies

Im
(

[(n+ 2) i]q

)

= (Re (Q) + 1) Im
(

[ni]q

)

− Re (Q) Im
(

[(n− 2) i]q

)

+Im (Q)
(

Re([ni]q)− Re([(n− 2)i]q)
)

.

For the first line in the right-hand-side,

(Re (Q) + 1) Im([ni]q)− Re (Q) Im([(n− 2) i]q) =

(1− Re (Q))
(

Im([ni]q) + Im([(n− 2) i]q)
)

+ 2Re (Q) Im([ni]q)− Im([(n− 2) i]q).

The first line in the right-hand-side becomes

(1− Re (Q))
(

Im([ni]q) + Im([(n− 2) i]q)
)

=
4q(q − 1)2

(q2 − q + 1)2
In−1 [i]q .
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Indeed, by induction hypothesis, we know that

In + In−2 =
2q

q2 − q + 1
In−1.

Again, by induction hypothesis,

Re([ni]q)− Re([(n− 2)i]q) = − 2(q − 1)

q2 − q + 1
In−1,

for n even, and therefore

Im (Q)
(

Re([ni]q)− Re([(n− 2)i]q)
)

= − 4q(q − 1)2

(q2 − q + 1)2
In−1 [i]q .

After cancellation, one finally obtains

In+2 = 2Re(Q)In − In−2,

but the coefficient 2Re(Q) equals to 4z − 2. Hence the first formula in (27).

The other cases are similar. �

Part (i) of Lemma 5.2 implies that In satisfy recurrence (24). Since the initial values
of In coincide with those of Ũ I

n(z), this implies the first formula (26).

Part (ii) of Lemma 5.2 implies that the difference of the real parts, Rn − Rn−2, also
satisfies recurrence (24). The initial values of Rn −Rn−2 coincide with those of Ũ II

n (z).

Theorem 5.1 follows. �

6 The q-deformed Picard group PSL(2,Z[i])

The group SL(2,Z[i]) is called the Picard group. It consists of 2× 2 matrices

A =

(

a b

c d

)

, ad− bc = 1,

where the coefficients a, b, c, d are Gaussian integers. The group SL(2,Z[i]) acts on complex
rationals by linear-fractional transformations. For x ∈ Q[i] ∪ {∞}, one has

A(x) =
ax+ b

cx+ d
,

the action is transitive and faithful for the projectivization PSL(2,Z[i]) := SL(2,Z[i])/{±Id}.
The Picard group was an object of many studies since the classical book [2].

Our next goal is to describe the q-deformation of the group PSL(2,Z[i]) that naturally
arises in our context. I give here only an “esquisse” and believe that this q-deformation
of PSL(2,Z[i]) deserves a further study.
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6.1 Generators and relations of PSL(2,Z[i])

The projective Picard group is generated by the matrices

T =

(

1 1

0 1

)

, S =

(

0 −1

1 0

)

, U =

(

1 i

0 1

)

, L =

(

−i 0

0 i

)

;

with the following relations

TU = UT, (29)

S2 = L2 = (TL)2 = (SL)2 = (UL)2 = Id, (30)

(TS)3 = (USL)3 = Id. (31)

Any relation between the generators R,S,U,L is a corollary of the relations (29)-(31)
(see [19, 1]). Note, as pointed in [19], that L can be expressed in R,S,U , and thus removed
from the list of the generators, but the relations between R,S,U become more complicated.

Since an element of PSL(2,Z[i]) is defined up to a scalar multiple, L can be rewritten
as follows

L =

(

−1 0

0 1

)

.

Note also that, instead of L, one can chose the generator

J = SL =

(

0 1

1 0

)

,

which is particularly useful for continued fractions.

6.2 The operator Lq

We already have the q-deformed operators Tq, Sq, Uq. The remaining generator L and its
q-deformation also appeared in the context of q-deformed rational numbers [11, 13, 8].

The operator of linear-fractional transformations associated with the matrix L is the
“negation operator”: L(x) = −x. It was observed in [11, 13, 8] that, besides the invariance
under the modular group action, q-deformed rational numbers satisfy one more invariance
property:

[−x]q = −q−1 [x]q−1 .

This means that we also have an action of L on the space of rational functions. Let us
adopt this action as the definition of Lq.

Definition. Set

Lq X := −X(q−1)

q
. (32)

Similarly to Uq, the operator (32) inverses the parameter of deformation q. Hence Lq

can be represented by the matrix

Lq =

(

−1 0

0 q

)

◦ τ,

where τ is as in (10).
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6.3 Relations between the q-deformed generators

The four operators Tq, Sq, Uq, Lq satisfy all the relations of PSL(2,Z[i]), except for the last
one.

Proposition 6.1. The operators Tq, Sq, Uq, Lq satisfy the following relations

TqUq = UqTq, (33)

S2
q = L2

q = (TqLq)
2 = (SqLq)

2 = (UqLq)
2 = Id, (34)

(TqSq)
3 = Id. (35)

Proof. All of the relations, except for (UqLq)
2 = Id, have already been checked in [11, 8].

Let us give here the details of the computation for the latter relation. The product of the
operators UqLq is the linear-fractional transformation given by the matrix

UqLq =

(

1 iq
1

2

1− q q

)(

−1 0

0 q−1

)

=

(

−1 iq−
1

2

q − 1 1

)

.

One then obtains

(UqLq)
2 =





1 + iq
1

2 − iq−
1

2 0

0 1 + iq
1

2 − iq−
1

2



 ,

which is the identity matrix up to a scalar multiple. �

Note that the fact that all the relations, except for one, are unchanged is quite re-
markable. This allows one to control the structure of the obtained group. I do not know
if every relation between Tq, Sq, Uq, Lq is a corollary of (33)-(35); computer experiments
allow us to conjecture that this is, indeed, the case.

6.4 Extension of the group PSL(2,Z[i])

The group generated by the operators Tq, Sq, Uq, Lq is a subgroup of the group of matrices

with coefficients in C(q
1

2 ) composed with τ . This group is an extension of PSL(2,Z[i]):

{1} −−−−→ N −−−−→ ̂PSL(2,Z[i]) −−−−→ PSL(2,Z[i]) −−−−→ {1},

where N is the normal subgroup characterized by the condition A ∈ N if and only if

A = Id + (q − 1)Ã, (36)

where Ã is an arbitrary element. Let us explain this in some details.

The relation (USL)3 = Id has no q-analog. The matrices

USL =

(

−1 i

i 0

)

, (USL)−1 =

(

0 i

i 1

)
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have index 3 in PSL(2,Z[i]), but for their q-deformations

UqSqLq =





−1 iq−
1

2

iq
1

2 iq−
1

2 − iq
1

2



 , (UqSqLq)
−1 =





iq
1

2 − iq−
1

2 iq−
1

2

iq
1

2 1



 ,

this is not true. The operators (UqSqLq)
3 and (UqSqLq)

−3 belong to the normal sub-
group N . Indeed, one checks that

(UqSqLq)
3 = Id + (q − 1)





0 iq−
1

2

iq
1

2 1− (q−
1

2 − q
1

2 )



 .

The condition (36) is stable under conjugation, so that the matrices with this property
form a normal subgroup.

6.5 Concluding remarks

One needs the notion of continued fractions to define a notion of q-deformed complex
number. This approach was used in the real case [11], and we believe that the Hurwitz
continued fractions (see [4, 5, 3]) will lead to an interesting notion of a q-deformed complex
number.

Let us finally mention that appearance of an extension of the symmetry group is a com-
mun phenomenon in quantization. In the context of Kirillov-Kostant-Souriau geometric
quantization (see [7] and references therein) this leads to an extension of the quantized
space. Usually, the initial symplectic manifold increases its dimension by one and becomes
a contact manifold. Heuristically, we think that the requirement of PSL(2,Z[i])-invariance
of the q-deformation of the complex plane C (which is naturally symplectic) should lead
to a three-dimensional space, yet to be understood.
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