Igor G. Korepanov - Self-similarity on 4d cubic lattice

ocnmp:15462 - Open Communications in Nonlinear Mathematical Physics, May 28, 2025, Special Issue in honour of Jarmo Hietarinta - https://doi.org/10.46298/ocnmp.15462
Self-similarity on 4d cubic latticeArticle

Authors: Igor G. Korepanov

    A phenomenon of "algebraic self-similarity" on 3d cubic lattice, providing what can be called an algebraic analogue of Kadanoff--Wilson theory, is shown to possess a 4d version as well. Namely, if there is a $4\times 4$ matrix $A$ whose entries are indeterminates over the field $\mathbb F_2$, then the $2\times 2\times 2\times 2$ block made of sixteen copies of $A$ reveals the existence of four direct "block spin" summands corresponding to the same matrix $A$. Moreover, these summands can be written out in quite an elegant way. Somewhat strikingly, if the entries of $A$ are just zeros and ones -- elements of $\mathbb F_2$ -- then there are examples where two more "block spins" split out, and this time with different $A$'s.


    Volume: Special Issue in honour of Jarmo Hietarinta
    Published on: May 28, 2025
    Accepted on: May 26, 2025
    Submitted on: April 4, 2025
    Keywords: Mathematics - Quantum Algebra,Mathematical Physics,15A24 (Primary), 82B20, 82B28 (Secondary)

    Publications

    Continues
    Korepanov, I. GORCID. (2023). Self-similarity in cubic blocks of R-operators. In Journal of Mathematical Physics (Vols. 64, Issues 10). AIP Publishing. 10.1063/5.0143884
    Korepanov, I. GORCID. (2025). Combinatorial correlation functions in three-dimensional eight-vertex models. In Journal of Mathematical Physics (Vols. 66, Issues 4). AIP Publishing. 10.1063/5.0204131

    Consultation statistics

    This page has been seen 28 times.
    This article's PDF has been downloaded 13 times.