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Abstract

A phenomenon of “algebraic self-similarity” on 3d cubic lattice, providing what can
be called an algebraic analogue of Kadanoff–Wilson theory, is shown to possess a 4d
version as well. Namely, if there is a 4× 4 matrix A whose entries are indeterminates
over the field F2, then the 2× 2× 2× 2 block made of sixteen copies of A reveals the
existence of four direct “block spin” summands corresponding to the same matrix A.
Moreover, these summands can be written out in quite an elegant way. Somewhat
strikingly, if the entries of A are just zeros and ones—elements of F2—then there are
examples where two more “block spins” split out, and this time with different A’s.

1 Introduction

This paper is significantly inspired by Hietarinta’s work [3]. We develop some algebra,
dealing with four-dimensional cubic lattices having a “spin” at each of its edges, and a
copy of a 4× 4 matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (1)

in each of its vertices that governs the permitted configurations of the adjacent spins.
Namely, we choose positive directions for all four coordinate axes and assume that all
edges are oriented according to these directions; this implies that each vertex has four
incoming, or input, edges, and for outgoing, or output, ones. Denoting the input spins ( =
spins on incoming edges) as xi, i = 1, . . . , 4, and output spins similarly as yi, we require
that (

x1 x2 x3 x4
)
A =

(
y1 y2 y3 y4

)
(2)
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Figure 1. One vertex of a 4d lattice and its adjacent spins. We fix, with this picture, the way we

depict the four coordinate axes—their directions on the 2d plane, and their colors (xj and yj are

of course on a line parallel to the j-th axis)

at each vertex, see Figure 1.

Both our spins and matrix entries in (1) are supposed to belong to a field of a finite
characteristic. To be exact, in this paper, it will be either the smallest Galois field F2, or
its transcendental extension by (as many as needed) independent indeterminates.

Remark 1. It can be seen already from (2) that we prefer to use row vectors that are,
accordingly, multiplied by matrices from the right. One of the reasons is that the GAP
computer algebra system [1], which we used extensively, has the same clear preference.

This construction may be considered as a simplified model of 4d lattice statistical
physics. Earlier, similar models in three dimensions were considered in [5] and [6]. In [5],
a remarkable property was discovered that we call algebraic self-similarity : a cubic block
of matrices A decomposes into a direct sum of new vertices, each bearing a matrix related
in a simple way to the initial A. In [6], it was shown that this makes it possible to
calculate some quite nontrivial spin correlation functions at least for a “combinatorial”
model, where all permitted configurations have equal probabilities.

In theoretical physics, self-similarity on lattices is studied usually within the framework
of Kadanoff–Wilson theory [4, 8], and is applied to the theory of phase transitions. The
reader can find more on that subject, e.g., in [2, Chapter 4]. Our theory can thus be called
an algebraic analogue of Kadanoff–Wilson theory.

Concerning our motivation to study the four -dimensional case, we think it is interesting
already because it reveals, as we will show, new and interesting algebraic structures. It
must also be kept in mind that a reduction to the physically more realistic 3d case may
be found.

Remark 2. Some way of making “four dimensions from three dimensions” has been already
proposed in [5, Section VI]. It looks, however, too restrictive, because of the very special
boundary conditions that we had to impose there. It is certainly desirable to have more
freedom in boundary conditions if we want, for instance, to define and calculate interesting
correlation functions, like we did in [6]. Moreover, block spins in that approach correspond
to (long) strings made of 3 × 3 matrices; we think that our current approach where a

© The author. Distributed under a Creative Commons Attribution 4.0 International License
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Figure 2. A 2 × 2 × 2 × 2 block B. It is understood that a copy of matrix A is at each of 16

vertices, marked by small black filled circles

block spin corresponds to a single 4× 4 matrix is more elegant, and more promising both
from the viewpoint of studying its algebraic structure, and from the viewpoint of possible
applications.

2 General case, with indeterminates over F2

In this section, we take aij in (1) to be indeterminates over the Galois field F2. Accordingly,
spins belong now to the field F of rational functions of all aij , and linear spaces are
considered over F .

We make then a 2 × 2 × 2 × 2 block B of copies of matrix A, as shown in Figure 2.
In each of the four coordinate directions, numbered below by j = 1, . . . , 4, there are eight
input or output spins. We write them (either input or output spins) together as an 8-row
vector, and call the linear space formed by them Vj , for each direction j. The whole
block B acts in the direct sum

V = V1 ⊕V2 ⊕V3 ⊕V4 , (3)

accordingly, we write its elements as 32-rows composed of the mentioned four 8-rows taken
in the natural order.

Definition 1. Spaces Vj of 8-rows containing either input or output spins belonging to
edges parallel to any of the coordinate directions j = 1, . . . , 4, as described above, are
called below thick spaces.

The order of entries in each 8-row, or, which is the same, the order of eight edges in
Figure 2 going in a fixed direction, is chosen in the following natural way. Assume that
there is a 4d coordinate system whose axes are situated in such way that the coordinates
of all vertices with matrices A in Figure 2 belong to the Cartesian product {0, 1}×{0, 1}×
{0, 1} × {0, 1} (that is, any coordinate of any vertex is either 0 or 1), and the directions
of the axes coincide with the directions of the edges in that figure.
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Definition 2. We call coordinates of an edge the three coordinates of its any point in the
mentioned coordinate system, excluding from its four coordinates one belonging to the
axis parallel to the edge in question.

Returning to the question of ordering the eight parallel edges, we use the lexicographic
ordering of their coordinates.

There might be some confusion in terminology in this paper, because the word “block”
can have, in our context, two meanings. First, B is itself a block of copies of matrix A,
in the same sense as in the Kadanoff–Wilson theory. Second, as B acts in a direct sum of
four linear spaces, B may be represented by a block matrix consisting of “blocks” acting
from a given Vi into a given Vj . We reserve here the word “block” for its first sense,
while in the second case, we rename blocks into “thick matrix entries”, according to the
following definition.

Definition 3. The submatrix of B consisting of rows corresponding to Vi and columns
corresponding to Vj will be denoted bjk and called thick matrix entry of B.

It turns out that there are vectors e
(j)
i ∈ Vj , four such linearly independent vectors

(i = 1, . . . , 4) in each Vj , such that block B acts on them like matrix Ã obtained from A
by the Frobenius transform

ajk 7→ ãjk = a2jk (4)

of all the entries:

e
(j)
i bjk = a2jke

(k)
i . (5)

In other words, a 32-row λ1e
(1)
i + λ2e

(2)
i + λ3e

(3)
i + λ4e

(4)
i is taken by (the right action of)

B into µ1e
(1)
i + µ2e

(2)
i + µ3e

(3)
i + µ4e

(4)
i , where(

µ1 µ2 µ3 µ4

)
=
(
λ1 λ2 λ3 λ4

)
Ã . (6)

The actual form of vectors e
(j)
i will be given soon in Proposition 1. Here we note that,

although relations (5) are obviously conserved if we change these vectors to their linear
combinations in the following way:

e
(j)
1

e
(j)
2

e
(j)
3

e
(j)
4

 7→


m

(j)
1

m
(j)
2

m
(j)
3

m
(j)
4

 = M


e
(j)
1

e
(j)
2

e
(j)
3

e
(j)
4

 ,

where M is a nondegenerate 4×4 matrix (the same for all j), the mentioned Proposition 1

clearly shows that there is a preferred specific choice of e
(j)
i .

Remark 3. Index i in e
(j)
i has, apparently, a nature different from j. Namely, j numbers our

thick spaces Vj , while i numbers four vectors within each of them. This makes even more
surprising Proposition 1 below, because it implies, as one can easily see, that changing A
to its transpose AT leads to interchange i ↔ j.
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Figure 3. Products of variables ui for the example of edges parallel to the 2nd axis (remember

that these are colored blue). They are multiplied by spins standing at their corresponding blue

edges, according to (7). Here we show only one 3-face of the 4d cube perpendicular to the 2nd

axis; it may be either input or output

Definition 4. We put a representing polynomial depending on four indeterminates uj ,
j = 1, . . . , 4, in correspondence to a vector in each of the spaces Vj according to the
following principle: for a vector

(
x1 . . . x8

)
∈ Vj , take all ui except uj , not changing

their order, and denote them as v1, v2, v3 (for instance, if j = 1, then v1 = u2, v2 = u3,
and v3 = u4). The polynomial is, by definition,

x1v1v2v3 + x2v1v2 + x3v1v3 + x4v1 + x5v2v3 + x6v2 + x7v3 + x8. (7)

Recall that an edge in Figure 2 parallel to j-th coordinate axis (with a fixed j ∈
{1, 2, 3, 4}) has, according to Definition 2, three coordinates, each being either 0 or 1, and
our spins xk—components of vector

(
x1 . . . x8

)
∈ Vj—correspond to these edges taken

in the lexicographic order. This means that indeterminates ul in (7) correspond thus to
the four coordinate axes in the following simple way: xk is multiplied by ul if the l-th
coordinate of the corresponding edge is 0, and not multiplied if 1. See these multipliers in
Figure 3 for the example of the second thick space V2.

Proposition 1. Vectors e
(j)
i satisfying (5) can be obtained from the representing polyno-

mials equal to the cofactors of the following matrix:

C = A+ diag(u1, u2, u3, u4) =


a11 + u1 a12 a13 a14

a21 a22 + u2 a23 a24
a31 a32 a33 + u3 a34
a41 a42 a43 a44 + u4

 , (8)
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that is, to obtain the polynomial representing e
(j)
i , delete the i-th row and the j-th column

from C and take the determinant of the resulting submatrix.

Proof. This somewhat mysterious statement can be proved, at this stage, only by a direct
calculation. A GAP program for this calculation in presented in Appendix A. ■

Recall that, according to what we said in the beginning of this section, e
(j)
i can be

considered as an element of linear space Vj , as well as of V = V1 ⊕V2 ⊕V3 ⊕V4. In
the first case, we write it as an 8-row, while in the second—as a 32-row, adding zeros at
the places corresponding to other spaces.

Proposition 2. Linear subspace W ⊂ V spanned by all vectors e
(j)
i is a direct summand

with respect to the action of B. That is, there exists another linear space W′, also invariant
under B and such that W ⊕W′ = V.

Proof. This can be proved based on considering the transposed matrixBT for the blockB.
As one can see, BT is obtained from AT in the same way as B from A, except that the
order of vertices along each coordinate axis is reversed. That is, each coordinate of each
vertex must be changed: 0 7→ 1 and 1 7→ 0.

We can thus introduce invariant space WT for BT in the same way as we introduced
space W for B, and then take W′ = (WT)

⊥, that is, the space of rows orthogonal to WT

in the sense of component-wise product. Then it is checked by a direct calculation that,
first, W ∩W′ = {0}, and second, W ⊕W′ gives the whole V. ■

Remark 4. Linear space W is certainly a direct sum

W = W1 ⊕W2 ⊕W3 ⊕W4 (9)

of its intersections Wj = W ∩Vj with our thick spaces Vj . Also, each Wj is of course

spanned be vectors e
(j)
i , i = 1, . . . , 4. We will be using a particular case of spaces Wj

below in Proposition 3.

Remark 5. Linear space W′ is also a direct sum of its intersections W′
j with Vj . The

problem is that the action of B within W′ looks much more complicated than within W.

3 Additional phenomena with just elements of F2

When matrix entries of A are just zeros and ones, some new and unexplained (as yet)
phenomena may occur. Namely, in addition to the four “block spin” direct summands in
the block B, there appear two more of them, but with different A’s!

Choose, for instance,

A =


1 1 1 1
0 1 1 0
0 0 1 1
1 0 0 0

 (10)
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Proposition 3. For block B made of matrices (10) according to Figure 2, each space Vj

decomposes in the following direct sum:

Vj = Wj ⊕ Fj ⊕Gj ⊕Hj , (11)

in such way that their direct sums W, F, G and H are invariant under B (here W is
defined as in (9), and the other three spaces similarly).

Spaces Wj in (11) are the same as in Section 2 (see Remark 4), except that aij are no
longer indeterminates but zeros and ones according to (10). Block B acts within W also
in the same way—decomposes into a direct sum of four matrices A (10).

Each space Fj is one-dimensional, and spanned by the vector f(j) from the following
list:

f(1) =
(
0 0 1 0 0 0 1 0

)
,

f(2) =
(
0 0 0 0 0 1 0 1

)
,

f(3) =
(
1 0 0 0 1 1 0 0

)
,

f(4) =
(
0 0 0 0 0 1 0 1

)
.

(12)

Block B acts within F as the following matrix:

A1 =


1 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0

 , (13)

Namely, we have (compare (5))

f(j)bjk = (a1)jkf
(k).

Similarly, each space Gj is one-dimensional, and spanned by the vector g(j) from the
following list:

g(1) =
(
0 1 0 1 0 1 0 1

)
,

g(2) =
(
0 0 0 0 0 0 1 0

)
,

g(3) =
(
0 0 0 0 1 0 1 0

)
,

g(4) =
(
1 0 1 1 1 0 1 1

)
.

(14)

Block B acts within G as the transpose of (13), that is, matrix

A2 = AT
1 . (15)

Namely, we have

g(j)bjk = (a2)jkg
(k).

The action of B in H is described in Appendix B.

Proof. Again direct calculation. ■

Remark 6. The phenomena described in Proposition 3 were found with the help of com-
puter algebra package Singular [7]. The interested reader can check them, however, using
GAP, by slightly modifying the program in Appendix A.
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4 Discussion

It is of course interesting what will happen if we continue by making blocks of blocks.
At our first step, there appeared, from our initial matrix (10), four copies of itself, one
matrix (13), one matrix (15), and something more complicated that we describe in Ap-
pendix B. The natural question is what appears when we make a 2× 2× 2× 2 block out
of matrices A1 (then we will see that also for A2 by means of transposing).

The answer is that we obtain four copies of A1 (as we could expect) together with one
initial A and one its transpose AT.

Such phenomena give us a hope that some interesting combinatorial correlations can
be calculated, in the spirit of work [6].

The main reason for our interest in this subject is, however, the fascinating algebra, of
which, it looks like only a small part has been already revealed.
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# Now we introduce matrix A whose entries A[i][j] are

# denoted a_{ij} in the text

A := NullMat( n, n, field );

for i in [1..n] do

for j in [1..n] do

A[i][j] := X( field, Concatenation( "A[", String(i),

"][", String(j), "]" ) );

od;

od;

# Matrix A is 4*4, but when we make a block of 16 copies of A,

# we must extend it to its direct sum with an identity matrix.

# How this is done, depends on the coordinates of the vertex

# where this A is placed.

# Here we assume that each of the n coordinates takes values

# in [0..char-1]. That is, either 0 or 1 in our case

big_A := function( A, coords )

local seq, m, AA;

seq := Cartesian( List( [1..n-1], x-> [0..char-1] ) );

m := function( i )

local without_i;

without_i := ShallowCopy( coords );

Remove( without_i, i ); # removing the i-th element from the

# copy of coords

# we thus obtain the coordinates of

# the i-th edge going through the considered vertex

return (i-1) * char^(n-1) + Position( seq, without_i );

# and here we number all edges in the following way:

# first go the edges parallel to the first axis,

# then to the second, etc., while parallel edges go in the

# lexicographic order of their coordinates

end;

AA := IdentityMat( n * char^(n-1), field );

for i in [1..n] do

for j in [1..n] do

AA[m(i)][m(j)] := A[i][j];

od;

od;

return AA * One(A[1][1]); # GAP requires that all matrix entries

# belong to the same field

# this time -- to the field containing our indeterminates

end;

f := function(A) # product of the copies of a matrix A

# over all vertices in the block

# starting from the leftmost multiplier
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# corresponding to vertex [0, ..., 0]

local g, c;

g := function( i ) # this function within function f gives

# all vertices whose sum of coordinates is i

local all_vertices;

all_vertices := Cartesian( List( [1..n], x-> [0..char-1] ) );

return Filtered( all_vertices, x -> Sum(x) = i );

end;

c := Concatenation( List( [0 .. n*(char-1)], i -> g(i) ) );

return Product( c, coords -> big_A( A, coords ) );

end;

F := f(A); # the actual product

# Thick matrix entries of F:

B := function( i, j )

local r;

r := char^(n-1);

return F{[(i-1)*r+1 .. i*r]}{[(j-1)*r+1 .. j*r]};

end;

# Four more indeterminates:

u := List( [1..4], i -> X( field,

Concatenation( "u[", String(i), "]" ) ) );

# 0 and 1 belonging to the required field

zero := Zero(u[1]);

one := One(u[1]);

# Making matrix C:

C := StructuralCopy( A );

C[1][1] := C[1][1] + u[1];

C[2][2] := C[2][2] + u[2];

C[3][3] := C[3][3] + u[3];

C[4][4] := C[4][4] + u[4];

# Making vectors e_i^(j):

e := function( j, i ) # j is the number of the space V_i

local without_j, v, without_i, H, d, l;

without_j := Difference( [1..4], [j] );

v := List( without_j, k -> u[k] );

without_i := Difference( [1..4], [i] );

H := C{without_i}{without_j};

d := Determinant( H );

l := [ ];



]ocnmp[ Self-similarity on 4d cubic lattice 11

l[1] := Value( Derivative( Derivative( Derivative( d,

v[1] ), v[2] ), v[3] ), v, [zero,zero,zero] );

l[2] := Value( Derivative( Derivative( d, v[1] ), v[2] ), v,

[zero,zero,zero] );

l[3] := Value( Derivative( Derivative( d, v[1] ), v[3] ), v,

[zero,zero,zero] );

l[4] := Value( Derivative( d, v[1] ), v, [zero,zero,zero] );

l[5] := Value( Derivative( Derivative( d, v[2] ), v[3] ), v,

[zero,zero,zero] );

l[6] := Value( Derivative( d, v[2] ), v, [zero,zero,zero] );

l[7] := Value( Derivative( d, v[3] ), v, [zero,zero,zero] );

l[8] := Value( d, v, [zero,zero,zero] );

l := l * one;

return l;

end;

# It looks convenient to unite the four row vectors e_i^(j),

# for a fixed j, in a matrix:

mat := function( j )

return [ e(j,1), e(j,2), e(j,3), e(j,4) ];

end;

# Then, what we must check is written in GAP as follows:

check_Boolean_value := ForAll( [1..4], j -> ForAll( [1..4], k ->

mat(j) * B(j,k) = mat(k) * A[j][k]^2 ) );;

Print( check_Boolean_value, "\n" );

B The more complicated direct summand

According to Proposition 3, block B made of matrices (10) decomposes into the direct sum
of four initial matrices A, one matrix A1 (13), one matrix A2 = AT

1 (13), and something in
the remaining space H—the direct sum of four two-dimensional spaces Hj , j = 1, . . . , 4.
Here is how H and the action of B within it can be described.

Space Hj , for j = 1, . . . , 4, is spanned by two vectors h
(j)
1 , h

(j)
2 ∈ Vj , which are as
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follows:(
h
(1)
1

h
(1)
2

)
=

(
0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 1

)
,(

h
(2)
1

h
(2)
2

)
=

(
0 1 0 1 0 1 0 1
0 0 0 0 1 0 1 0

)
,(

h
(3)
1

h
(3)
2

)
=

(
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

)
,(

h
(4)
1

h
(4)
2

)
=

(
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1

)
.

(16)

In the basis of vectors (16), the action of B is given by the following matrix:

R =



1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1

0 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1

1 0 0 1 1 0 0 0
0 1 0 0 1 0 0 0


. (17)

The exact sense of this is as follows. We consider R as a 4×4 matrix whose entries are 2×2
cells (blocks, into which it is divided in (17)). Denote, accordingly, Rjk the cell staying
at the intersection of the j-th doubled row and the k-th doubled column. For instance,

R34 =

(
0 0
1 1

)
.

Then, for matrix (17) and vectors (16), the following relation—analogue of (5)—holds:(
h
(j)
1

h
(j)
2

)
Bjk = Rjk

(
h
(k)
1

h
(k)
2

)
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