H. Aratyn ; J. F. Gomes ; G. V. Lobo ; A. H. Zimerman
-
Derivation of Painlevé type system with $D_4^{(1)}$ affine Weyl group
symmetry in a self-similarity limit
Derivation of Painlevé type system with $D_4^{(1)}$ affine Weyl group
symmetry in a self-similarity limitArticle
Authors: H. Aratyn ; J. F. Gomes ; G. V. Lobo ; A. H. Zimerman
NULL##NULL##0000-0001-9443-0324##NULL
H. Aratyn;J. F. Gomes;G. V. Lobo;A. H. Zimerman
We show how the zero-curvature equations based on a loop algebra of $D_4$
with a principal gradation reduce via self-similarity limit to a polynomial
Hamiltonian system of coupled Painlevé III models with four canonical
variables and $D_4^{(1)}$ affine Weyl group symmetry.