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Abstract

We show how the zero-curvature equations based on a loop algebra of D4 with a
principal gradation reduce via self-similarity limit to a polynomial Hamiltonian system

of coupled Painlevé III models with four canonical variables andD
(1)
4 affineWeyl group

symmetry.

1 Zero curvature derivation of the t3 flow of the D
(1)
4 hierar-

chy

Our starting point will be an integrable hierarchy with commuting flows defined via the
zero-curvature formalism based on a loop algebra of G = D4 endowed with a principal
gradation. We will apply a conventional self-similarity limit on the t3 flow of the hierarchy
and show how through several explicit changes of variables the reduced model can be cast

into the polynomial Hamiltonian system of four canonical variables invariant under D
(1)
4

affine Weyl group symmetry.
An unusual aspect of the t3 flow of the D4 hierarchy is that it is parametrized by two

independent variables, ε1, ε2, reflecting the fact that a kernel of E(1), a central object of
zero-curvature equations, turns out to have a two-dimensional kernel on the level of grade
three. The presence of these parameters enriches the symmetry structure of the two-

dimensional hierarchy of zero-curvature equations based on D
(1)
4 affine Weyl algebra and

survives the self-similarity limit as shown in equations (19). Considering these equations
with dependence on only one of these parameters or their linear combination we obtain,
up to few normalization adjustments, and after several changes of variables, the model
of reference [1], where it was proposed as a pair of coupled Painlevé III equations that

form a Hamiltonian system invariant under D
(1)
4 affine Weyl group symmetry. To the
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best of our knowledge, an explicit derivation of this particular model as a reduction of

two-dimensional hierarchy of zero-curvature equations based on D
(1)
4 affine Weyl algebra,

has not been done previously.

To make the presentation self-contained we provide all the necessary algebraic back-
ground information in Appendix A and main expressions of the zero-curvature calculation
in Appendix B.

For other derivations of integrable hierarchy based on D
(1)
4 affine algebra the reader can

consult [2] and the references therein. There also exist in the literature other approaches

to applying similarity reduction to integrable hierarchy of type D
(1)
4 [3] but the focus there

was on deriving the sixth Painlevé equation.

As a starting point we consider the zero-curvature equation for the third flow in the

setting of the affine algebra D
(1)
4 :

[∂x + E(1) +A0 , ∂t3 +D(0) +D(1) +D(2) +D(3)] = 0 (1)

with D(i) ∈ Gi and A0 =
∑4

i=1 φiHi with E
(1),Gi,Hi defined in Appendix A.

The highest grade-four component of equation (1), [E(1),D(3)] = 0, is solved by

D(3) = ε1V1 + ε2V2 , (2)

where V1, V2 are two matrices defined in (56) that span a basis for the two-dimensional
kernel of E(1) in G(3). The standard zero-curvature technique allows recursive derivation
of the lower grade matrices D(i), i = 0, 1, 2 from appropriate grade projections of equation
(1). Grade 2 element given by:

D(2) =M1E
(0)
e1−e3 +M2E

(0)
e2+e4 +M3E

(0)
e2−e4 +M4E

(1)
−e1−e3 , (3)

is solved for from the grade 3 equation

[E(1),D(2)] + [A0,D
(3)] = 0 , (4)

from which one obtains explicitly coefficients Mi, i = 1, 2, 3, 4 of D(2) given in equation
(62).

The grade 2 component of the zero curvature equations (1) is

[E(1),D(1)] + [A0,D
(2)] + ∂xD

(2) = 0 , (5)

where

D(1) = d1E1 + d2E2 + d3E3 + d4E4 + d5E5 , (6)

where we employed the basis elements Ei, i = 1, . . ., 5 given in expressions (61). Equation
(5) yields explicit expressions for di, i = 2, . . ., 5 given in equation (63).

The grade one component of (1) reads as

∂xD
(1) + [E(1),D(0)] + [A0,D

(1)] = 0 , (7)
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with D(0) =
∑

i viHi. The advantage of using the basis (61) is that

[E(1),D(0)] = (v2 − v1)E
(0)
e1−e2 + (v3 − v2)E

(0)
e2−e3 + (v4 − v3)E

(0)
e3−e4

− (v3 + v4)E
(0)
e3+e4 + (v1 + v2)E

(1)
−e1−e2

= v1E2 + v2E3 + v3E4 + v4E5 ,

(8)

where Ei, i = 1, . . .E5 are the basis elements given in expressions (61).

Solving the grade one equation (7) in direction of E1 yields

∂xd1 = −
1

3
φ2d4 −

1

3
φ3d3 +

1

3
φ1d2 +

1

3
φ4d5 +

2

3
φ3d4 +

2

3
φ2d3, (9)

plugging expressions (63) and taking out the total derivative gives

d1 =
ε1 + ε2

12

(

−φ21 − φ
2
4 + φ22 + φ23 + 2φ2φ3

)

+
1

6
(ε1 − ε2)φ1φ4 . (10)

Solving the grade one equation (7) in directions of Ei, i = 2, 3, 4, 5 yields

vi = −∂xdi+1 − Ci+1, i = 1, 2, 3, 4 , (11)

with Ci, i = 2, 3, 3, 5 given in (64) and with d1 in given in expression (10) while expressions
di, i = 2, .., 5 are given in (63).

Inserting these values of di and Ci into (11) we obtain vi given in expression (65).

The grade zero component of (1) is

∂xD
(0) − ∂t3A0 + [A0,D

(0)] = 0 . (12)

Since [A0,D
(0)] = 0 the equation (12) reduces to

∂t3A0 =
∑

i

∂t3φiHi = ∂xD
(0) =

∑

i

∂xviHi ,

that in components gives the t3 flows written as

∂t3φi = ∂xvi, i = 1, 2, 3, 4 . (13)

When on the right hand side we insert values of vi from equation (65) we find the t3-flow
explicitly written in equation (66) with their symmetries listed below in equations (16).

With definitions

u = φ1 + φ4, v = φ1 − φ4, f = φ2 + φ3, g = φ2 − φ3 . (14)
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Equations (66) can be conveniently rewritten in this notation as

∂t3u = ε1∂x(
1

4
uv2 −

1

4
uf2 +

1

2
v∂xf −

1

2
f∂xv)

+ ε2∂x(
1

4
uv2 −

1

4
ug2 + v∂xf +

1

2
u∂xg +

1

2
f∂xv + ∂2xu) ,

∂t3v = ε1∂x(
1

4
vu2 −

1

4
vg2 + u∂xf +

1

2
v∂xg +

1

2
f∂xu+ ∂2xv)

+ ε2∂x(
1

4
vu2 −

1

4
vf2 +

1

2
u∂xf −

1

2
f∂xu) ,

∂t3f = ε1∂x(
1

4
fg2 −

1

4
fu2 − u∂xv −

1

2
v∂xu−

1

2
f∂xg − ∂

2
xf)

+ ε2∂x(−
1

4
fv2 +

1

4
fg2 − v∂xu−

1

2
u∂xv −

1

2
f∂xg − ∂

2
xf) ,

∂t3g = ε1∂x(
1

4
gf2 −

1

4
gv2 +

1

2
f∂xf −

1

2
v∂xv)

+ ε2∂x(
1

4
gf2 −

1

4
gu2 +

1

2
f∂xf −

1

2
u∂xu) .

(15)

These equations are invariant under:

F1 : u↔ −v, ε1 → ε2, g → g, f → f ,

F4 : u↔ v, ε1 → ε2, g → g, f → f .
(16)

In addition for ε2 = 0 these equations are invariant under:

F2 : f ↔ v, ε1 → −ε1, g → g, u→ u (17)

while for ε1 = 0 they are invariant under:

F3 : f ↔ u, ε2 → −ε2, g → g, v → v .

Obviously, for one of the parameters ε1 or ε2 being zero the remaining parameter can be
absorbed by redefining t3.

The above operations satisfy F 2
2 = I = F 2

3 and

F1F4 = F4F1 = TG = GT : u→ −u, v → −v, g → g, f → f ,

where T and G are automorphisms :

T : u↔ u, v → −v, g → g, f → −f ,

G : u↔ −u, v → v, g → g, f → −f ,

with F4T = TF1. All the above automorphisms of equations (15) are “mirror automor-
phisms”, meaning that they square to one.
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2 Self-similarity reduction for the t3 flow

We will look at the self-similar reduction of equation (15) with

φ(x, t) = t−
1

3ϕ(z), z =
x

t
1

3

= xt−1/3 , (18)

and correspondingly

d

dx
=

d

dz

dz

dx
= t−1/3 d

dz
,

d

dt
=

d

dz

dz

dt
= −

1

3
t−1 d

dz
z ,

such that the KdV type of expression :

d

dt
φ(x, t) + β1

d

dx
(φ(x, t)

d

dx
φ(x, t)) + β2

d

dx
φ3(x, t) + β3

d3

dx3
φ(x, t) = 0 ,

is transformed to an equation fully expressible in terms of functions of z:

d

dz
(zϕ(z)) − 3β1

d

dz
(ϕ(z)

d

dz
ϕ(z)) − 3β2

d

dz
ϕ3(z)− 3β3

d3

dz3
ϕ(z) = 0 .

Following these rules we are now able to take self-similarity limit of equations (15) to
obtain:

−
z

3
u+ C1 = ε1(

1

4
uv2 −

1

4
uf2 +

1

2
v∂zf −

1

2
f∂zv)

+ ε2(
1

4
uv2 −

1

4
ug2 + v∂zf +

1

2
u∂zg +

1

2
f∂zv + ∂2zu)

−
z

3
v +K2 = ε1(

1

4
vu2 −

1

4
vg2 + u∂zf +

1

2
v∂zg +

1

2
f∂zu+ ∂2zv)

+ ε2(
1

4
vu2 −

1

4
vf2 +

1

2
u∂zf −

1

2
f∂zu)

−
z

3
f +K1 = ε1(

1

4
fg2 −

1

4
fu2 − u∂zv −

1

2
v∂zu−

1

2
f∂zg − ∂

2
zf)

+ ε2(−
1

4
fv2 +

1

4
fg2 − v∂zu−

1

2
u∂zv −

1

2
f∂zg − ∂

2
zf)

−
z

3
g + C2 = ε1(

1

4
gf2 −

1

4
gv2 +

1

2
f∂zf −

1

2
v∂zv)

+ ε2(
1

4
gf2 −

1

4
gu2 +

1

2
f∂zf −

1

2
u∂zu) ,

(19)

where Ci,Ki, i = 1, 2 are integration constants.

Here we comment that it is enough to chose any direction in ε1 − ε2 plane because of
a presence of previously noticed automorphisms that establish an equivalence (by substi-
tution) between any of the one-parameter ε models in a self-similarity limit.

For example, we notice a symmetry between ε2 = 0 limit of equation (19) and ε1 = 0
limit of equation (19) via

ε2 ←→ ε1, (v,K2)←→ (u,C1), (u,C1)←→ (v,K2)

(f,K1)←→ (f,K1), (g,C2)←→ (g,C2)
(20)
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These substitutions follow from to symmetries F1, F4 from equation (16). Note that equa-
tions (19) with arbitrary ε1, ε2 remain invariant under transformations (20) that inter-
change u and v.

We further point out that symmetry extends to any direction in the ε1− ε2 plane. For
example we can transform the system of equations (19) with ε1 = 0 into the system of
equations (19) with ε1 + ε2 = 0 with only the parameter ε such that ε = ε1− ε2 as follows

ε1 = 0←→ ε1 + ε2 = 0, ε2 ←→
ε

2
,

(v,K2)←→ (f,K2), (f,K1)←→ (u,K1)

(u,C1)←→ (v,C1), (g,C2)←→ (g,C2) .

(21)

Thus for simplicity we will from now on only consider the self-similarity limit for the case
of ε2 = 0 rewritten as:

−
z

3
v+ +K+ = ε(

1

4
v−(u

2 − g2)− u∂zv− +
1

2
v−∂zg −

1

2
v−∂zu+ ∂2zv−)

−
z

3
v− +K− = ε(

1

4
v+(u

2 − g2) + u∂zv+ +
1

2
v+∂zg +

1

2
v+∂zu+ ∂2zv+)

−
z

3
u+ C1 =

ε

4
(uv+v− − (v+∂zv− − v−∂zv+))

−
z

3
g + C2 =

ε

4
(−gv+v− − ∂z(v+v−)) ,

(22)

where

v± = v ± f, K± = K1 ±K2, ε = ε1 .

First, we note that equations (22) can be made independent of ε through the substitution
S:

S : v± → (ε)−1/3v±, Ku→ (ε)−1/3u, Kg → (ε)−1/3g, z → (ε)1/3z . (23)

It is instructive to leave the equations (22) in the current form as the change of variables
we will perform to arrive at the Hamiltonian formalism will lead anyway to canonical
coordinates that are invariant under the above transformation S.

The equations (22) are explicitly invariant under F2:

F2 : v± ↔ ±v±, ε→ −ε, g → g, u→ u

From the last two equations of (22) we derive

v′−
v−

=
1

2
(u− g) −

2

εv+v−

[

(C2 −
zg

3
) + (C1 −

zu

3
)
]

v′+
v+

= −
1

2
(u+ g) +

2

εv+v−

[

(C1 −
zu

3
)− (C2 −

zg

3
)
]

.

(24)

The first order derivatives for u, g are:

(zg)z = −
z

4
(v2− + v2+) +

6

ε v+ v−

[

(C2 −
z

3
g)2 − (C1 −

z

3
u)2

]

+
3

4
(K+ v+ + K− v−)

(zu)z =
z

4
(v2− − v

2
+) +

3

4
(K+ v+ −K− v−) .

(25)
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Introducing for convenience

G = zg, U = zu ,

we can rewrite equations (24),(25) as

v′− =
v−
2z

(U −G)−
2

εv+

[

(C2 −
G

3
) + (C1 −

U

3
)
]

,

v′+ = −
v+
2z

(U +G)−
2

εv−

[

(C2 −
G

3
)− (C1 −

U

3
)
]

,

(G)z = −
z

4
(v2− + v2+) +

6

ε v+ v−

[

(C2 −
1

3
G)2 − (C1 −

1

3
U)2

]

+
3

4
(K+ v+ + K− v−) ,

(U)z =
z

4
(v2− − v

2
+) +

3

4
(K+ v+ −K− v−) .

(26)

There is one further change of variables needed to end up with equations that are mani-
festly Hamilton equations, namely:

Ḡ =
1

3
G− C2, Ū =

1

3
U − C1 .

Equations for Ḡ, Ū variables are:

(

Ḡ+ Ū
)

z
= −

z

2 · 3
v2+ +

2

ε v+ v−

(

Ḡ+ Ū
) (

Ḡ− Ū
)

+
1

2
K+ v+ ,

(

Ḡ− Ū
)

z
= −

z

2 · 3
v2− +

2

ε v+ v−

(

Ḡ+ Ū
) (

Ḡ− Ū
)

+
1

2
K− v− .

(27)

To end up with the polynomial Hamilton equations we further introduce :

F+ =
Ḡ+ Ū

v+
, F− =

Ḡ− Ū

v−
.

Using this notation the first two of equations (26) can be rewritten as:

v′± = −
3

2z
v2±F± −

3

2z
v±(C2 ± C1) +

2

ε
F∓ . (28)

From equations (27) and (28) we obtain

(F±)
′ = −

z

3 · 2
v± +

1

2
K± +

3

2z
v±F

2
± +

3

2z
(C2 ± C1)F± . (29)

Define now the Hamiltonian :

H =

(

3

4z
v2+F

2
+ +

1

2
K+v+ −

z

3 · 4
v2+ +

3

2z
(C1 + C2)F+v+

)

−
2

ε
F+F−

+

(

3

4z
v2−F

2
− +

1

2
K−v− −

z

3 · 4
v2− +

3

2z
(C1 − C2)F−v−

)

.

(30)

which is polynomial in all variables such that it reproduces equations (28)-(29) through

(F±)
′ =

δ

δv±
H, (v±)

′ = −
δ

δF±

H . (31)
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Note that the “plus” and “minus” parts of H in (30) are connected by only one term
−2
εF+F−.
The transformation

F+ → F+ +
a

v+
, v+ → v+

or

v+ → v+ +
a

F+
, F+ → F+

leaves only the first part of Hamiltonian (30) invariant (up to a constant).
We will now attempt to cast equations (28)-(29) in a form of equations that are mani-

festly D
(1)
4 invariant [1].

First, we apply the redefinition

F± → F± +
z

3
, v± → v± ,

to obtain

(F+)
′ =

3

2z
v+F

2
+ + v+F+ +

3

2z
(C1 + C2)F+ +

(

1

2
K+ +

1

2
(C1 + C2)−

1

3

)

,

v′+ = −
3

2z
v2+F+ −

1

2
v2+ −

3

2z
v+(C1 + C2) +

2

ε
(F− +

z

3
) ,

(32)

and

(F−)
′ =

3

2z
v−F

2
− + v−F− −

3

2z
(C1 − C2)F− +

(

1

2
K− −

1

2
(C1 − C2)−

1

3

)

,

v′− = −
3

2z
v2−F− −

1

2
v2− −

3

2z
v−(C2 − C1) +

2

ε
(F+ +

z

3
) .

(33)

We now further substitute

F+ → zFp, F− → zFm, v+ →
1

z
vp, v− →

1

z
vm, (34)

to obtain for Fp, vp equations :

(Fp)
′ =

1

z

[3

2
vpF

2
p + vpFp +

3

2
(C1 + C2 −

2

3
)Fp +

(

1

2
K+ +

1

2
(C1 + C2)−

1

3

)

]

v′p =
1

z

[

−
3

2
v2pFp −

1

2
v2p −

3

2
vp(C1 +C2 −

2

3
)
]

+
2z2

ε
(Fm +

1

3
) .

(35)

Introducing α1 +α2 = (C1 +C2 −
2
3) and α2 =

1
2K+ + 1

2(C1 +C2)−
1
3 we can rewrite the

above equations as

(Fp)
′ =

1

z

[3

2
vpF

2
p + vpFp +

3

2
(α1 + α2)Fp + α2

]

v′p =
1

z

[

−
3

2
v2pFp −

1

2
v2p −

3

2
(α1 + α2)vp

]

+
2z2

ε
(Fm +

1

3
) .

(36)
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For the “−” sector we obtain

(Fm)
′ =

1

z

[3

2
vmF

2
m + vmFm −

3

2
(C1 − C2 +

2

3
)Fm +

(

1

2
K− −

1

2
(C1 − C2)−

1

3

)

]

v′m =
1

z

[

−
3

2
v2mF− −

1

2
v2m −

3

2
vm(C2 − C1 −

2

3
)
]

+
2z2

ε
(Fp +

1

3
) .

(37)

Introducing α3+α4 = −(C1−C2+
2
3 ) and α4 =

1
2K−−

1
2(C1−C2)−

1
3 we can compactly

rewrite the above equations as

(Fm)
′ =

1

z

[3

2
vmF

2
m + vmFm +

3

2
(α3 + α4)Fm + α4

]

v′m =
1

z

[

−
3

2
v2mFm −

1

2
v2m −

3

2
(α3 + α4)vm

]

+
2z2

ε
(Fp +

1

3
) .

(38)

Equations (36) and (38) can be obtained from the Hamiltonian:

H =
1

z

(

3

4
v2pF

2
p +

1

2
v2pFp +

3

2
(α1 + α2)Fpvp + α2vp

)

−
2z2

ε
(Fm +

1

3
)(Fp +

1

3
)

+
1

z

(

3

4
v2mF

2
m +

1

2
v2mFm +

3

2
(α3 + α4)Fmvm + α4vm

)

.

(39)

through

(Fi)
′ =

δ

δvi
H, (vi)

′ = −
δ

δFi
H, i = p,m . (40)

The author of [1] has proposed such system as two coupled Painlevé III equations involving
four variables and derived by symmetry consideration as a system that admits affine Weyl

group symmetry of type D
(1)
4 .

Comparing equations (36) and (38) we notice presence of π0 automorphism :

π0 : vp, Fp ↔ vm, Fm, α2 ↔ α4, α1 ↔ α3 ,

that transforms equation (36) into (38) and vice-versa.
In addition we introduce a variable α0 defined by the condition 2α0+α1+α2+α3+α4 =

const [1]. The constant used to define α0 will be fixed below by a symmetry transformation
s0, that mixes the “+/−” sectors to be defined below. In [1] that constant is set to 1
consistently with Sasano’s normalization (different from ours).

Furthermore we also find the following Bäcklund transformation s2 :

s2 : vp → vp +
2α2

Fp
, Fp → Fp, α2 → −α2 , (41)

that keeps equations (36) invariant. The consequence of s2(α2) = −α2 is that s2(α0) =
α0 + α2 just to keep the condition 2α0 + α1 + α2 + α3 + α4 = const unchanged.

Similarly the following Bäcklund transformation :

s4 : vm → vm +
2α4

Fm
, Fm → Fm, α4 → −α4 , (42)
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will keep equations (38) invariant.

Note that s22 = s24 = 1, s2s4 = s4s2 and π0s2π0 = s4.

Furthermore, inspired by the automorphism (17), we define the two automorphisms:

π1 : vp → −vp, Fp → −
2

3
− Fp, ε→ −ε, α1 → α2 → α1

π3 : vm → −vm, Fm → −
2

3
− Fm, ε→ −ε, α3 → α4 → α3 ,

(43)

that both keep equations (36) - (38) invariant and satisfy

π21 = π23 = 1, π0π1π0 = π3, π0π3π0 = π1 .

Coincidently, all the canonical coordinates vp, vm, Fp, Fm have been defined in such a
way that they are invariant under transformation S defined in relation (23), while the
substitution z → (ε)1/3z allows to eliminate ε completely from equations (36) - (38). With
ε being replaced by 1, one can alternatively define the automorphisms π1, π3 involving a
change of the sign of z → −z instead of ε→ −ε, as it was done in [1].

The other two Bäcklund transformations are ( s0, s3 in notation of [1]) but here relabeled
as :

s1 : vp → vp +
2α1

Fp +
2
3

, Fp → Fp, α1 → −α1, α2 → α2, α0 → α0 + α1

s3 : vm → vm +
2α3

Fm + 2
3

, Fm → Fm, α3 → −α3, α4 → α4, α0 → α0 + α3 .

(44)

They both square to one : s21 = s23 = 1. Also the Bäcklund transformations satisfy :

πisiπi = si+1, πisi+1πi = si, i = 1, 3,

πisi±2πi = si±2, πisi±3πi = si±3, +/− for i = 1/3

π0siπ0 = si+2, i = 1, 2

Finally we need to prove invariance under s0 that mixes the +/− sectors. When this
Bäcklund transformation is defined as

s0(Fp) = Fp −
2α0 vm

vpvm −
4
3εz

3
, s0(vp) = vp, s0(α1) = α1 + α0, s0(α2) = α2 + α0

s0(Fm) = Fm −
2α0 vp

vpvm −
4
3εz

3
, s0(vm) = vm, s0(α3) = α3 + α0, s0(α4) = α4 + α0

s0(α0) = −α0 ,

(45)

the equations (36) and (38) are invariant if the condition,

2α0 + α1 + α2 + α3 + α4 = −2 ,

holds. As remarked before our normalization is different from the one used by Sasano
[1] and the differences also include different powers of z in equations (45) and in the
Hamiltonian (39).
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Note that s20 = 1 because ᾱ0 = −α0 and π0s0π0 = s0, πis0πi, i = 1, 3. It is easy to

verify that the D
(1)
4 si, 1, 2, 3, 4 Bäcklund transformations satisfy :

s2i = 1, i = 1, 2, 3, 4 ,

sisj = sjsi, i, j = 1, 2, 3, 4 ,

sis0si = s0sis0, i = 1, 2, 3, 4 ,

where the last two identities are equivalent to the standard D
(1)
4 relations (sisj)

2 =

1, (s0si)
3 = 1. This is in contrast to the A

(1)
l affine Weyl symmetry group multiplica-

tions for which it holds that (sisi±1)
3 = 1 and (sisi±2)

2 = 1. These examples clearly

illustrate a difference from the D
(1)
4 structure encountered above.

The steps shown in this section complete the systematic derivation of the D
(1)
4 Hamil-

tonian system starting from the integrable hierarchy of D4 symmetry. We will return to
the model with two independent parameters εi, i = 1, 2 in a separate publication.

This work illustrates the power of algebraic methods to derive systems invariant under
affine Weyl groups that should lend itself well to generalizations to other group structures.

Recently, the Sasano systems of four-dimensional Painlevé type equations with affine

Weyl group symmetry of type D
(1)
6 [5] were derived as isomonodromic deformation equa-

tions in [6, 7], which suggests that a similar analysis will apply to coupled Painlevé III
models with four canonical variables of reference [1] obtained in this paper from the self-
similarity limit.

A Algebraic background on so(2n)

Here we discuss the Lie algebra so(2n) and its loop algebra that underlies the zero-
curvature considerations. The algebra so(2n) = {X ∈ gl(2n,C)|X+XT = 0} is generated
by 2n× 2n anti-symmetric matrices Li,j = −Lj,i with components

(Li,j)k,l = δilδjk − δikδjl, i, j = 1, . . ., 2n . (46)

These 1
2(2n)(2n−1) matrices form a basis for the so(2n) Lie algebra with the commutation

relations :

[Li,j , Lm,n] = δi,mLj,n + δj,nLi,m − δi,nLj,m − δj,mLi,m , (47)

where we followed Olive’s convention [4]. The Cartan sub-algebra generators are:

Hi = iL2i−1,2i, 1, 2, . . ., n .

The relevant commutation relations in accordance to (47) are:

[Hi, L2j−1,2k−1] = iδi,jL2j,2k−1 − iδi,kL2i,2j−1

[Hi, L2j,2k−1] = −iδi,jL2j−1,2k−1 + iδi,kL2j,2k

[Hi, L2j−1,2k] = iδi,jL2j,2k − iδi,kL2j−1,2k−1

[Hi, L2j,2k] = −iδi,jL2j−1,2k − iδi,kL2j,2k−1

(48)
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The roots are:

α = ǫ ej + η ek, j 6= k

with independent ǫ, η = ±1 and ei, i = 1, . . ., n with (ei, ej) = δi,j being a basis for Rn.
The associated step operators are

Eα = −
1

2
(L2j−1,2k−1 + iǫL2j,2k−1 + iηL2j−1,2k − ǫηL2j,2k)

Number of roots is 1
2n(n− 1)× 2× 2 = 2n(n − 1),which is the dimension of so(2n), rank

of Cartan sub-algebra is n.
It holds that

[Hi, Eα] = (ǫδi,j + ηδi,k)Eα ,

as long as η2 = 1, ǫ2 = 1.
All roots have equal length and satisfy (α,α) = 2. The basis of simple roots is given

by:

αi = ei − ei+1, i = 1, . . ., n− 1

αn = en−1 + en,
(49)

The inner product of simple roots

(αi,αj) =















2 i = j 1 ≤ i, j ≤ n
−1 |i− j| = 1 1 ≤ i, j ≤ n− 1
0 |i− j| ≥ 2 1 ≤ i, j ≤ n
0 i = n− 1, j = n

defines the corresponding Cartan matrix. For so(2n) the roots and co-roots are identical,
the highest root is

ψ = e1 + e2 = α1 + 2α2 + . . .+ 2αn−2 +αn−1 +αn ,

the Coxeter number h and the dual Coxeter number h∨ coincide and

h = h∨ = 2n− 2 .

For case of so(8) these become

ψ = e1 + e2 = α1 + 2α2 ++α3 +α4, h = h∨ = 6 (50)

The fundamental weights Λi such that 2(αi,Λj)/(αi,αi) = δij are:

Λi =
i

∑

j=1

ej = α1+2α2+. . .+(i−1)αi−1+i(αi+. . .+αn−2)+
i

2
(αn−1+αn), i = 1, . . ., n−2

Λn−1 =
1

2
(e1+ . . .+en−1−en) =

1

2
(α1+2α2+ . . .+(n−2)αn−2)+

n

2
αn−1+

n− 2

2
αn
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Λn =
1

2
(e1 + . . .+ en−1 + en) =

1

2
(α1 +2α2 + . . .+(n− 2)αn−2)+

n− 2

2
αn−1 +

n

2
αn

Especially for so(8) with n = 4 we find for weights and simple roots

Λ1 = e1, α1 = e1 − e2,

Λ2 = e1 + e2, α2 = e2 − e3,

Λ3 =
1

2
(e1 + e2 + e3 − e4), α3 = e3 − e4,

Λ4 =
1

2
(e1 + e2 + e3 + e4), α4 = e3 + e4,

we obtain for a sum of weights:

Λ =

4
∑

i=1

Λi = 3e1 + 2e2 + e3 (51)

The product of Λ and a general root α = ǫei + ηej

(Λ,α) 6= 0

for all α = ǫei + ηej .
We will use (51) to define the principal gradation operator for so(8):

Q = 6d+

n
∑

i=1

Λi ·H = 6d+ Λ ·H = 6d+ (3e1 + 2e2 + e3) ·H . (52)

Note that

(Λ, ψ) = (3e1 + 2e2 + e3, e1 + e2) = 5 .

A.1 so(8) charge sectors and their bases

The underlying charge sectors are (with m ∈ Z):

G(6m) = {H
(m)
1 ,H

(m)
2 ,H

(m)
3 ,H

(m)
4 }

G(6m+1) = {E
(m)
e1−e2 , E

(m)
e2−e3 , E

(m)
e3−e4 , E

(m)
e3+e4 , E

(m+1)
−ψ = E

(m+1)
−e1−e2}

G(6m+2) = {E
(m)
e1−e3 , E

(m)
e2+e4 , E

(m)
e2−e4 , E

(m+1)
−e1−e3}

G(6m+3) = {E
(m)
e1−e4 , E

(m)
e1+e4 , E

(m)
e2+e3 , E

(m+1)
−e1−e4 , E

(m+1)
−e1+e4 , E

(m+1)
−e2−e3}

G(6m+4) = {E
(m)
e1+e3 , E

(m+1)
−e2+e4 , E

(m+1)
−e2−e4 , E

(m+1)
−e1+e3}

G(6m+5) = {E
(m)
e1+e2 , E

(m+1)
−e3+e4 , E

(m+1)
−e3−e4 , E

(m+1)
−e2+e3 , E

(m+1)
−e1+e2} .

(53)

The unique grade one semi-simple element in G(1) is

E(1) =

4
∑

i=1

E(0)
αi

+ E
(1)
−ψ

= E
(0)
e1−e2 + E

(0)
e2−e3 + E

(0)
e3−e4 + E

(0)
e3+e4 + E

(1)
−e1−e2

(54)
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where the sum was over all simple roots of so(8) from (49).
Define the kernels K(i) ∈ G(i) to be such that

[E(1),K(i)] = 0 ,

for i = 2, 3, 4, 5 and G(i) as given in (53).
Given the grade 2 sector G(2) in (53) we consider

[E(1), E
(0)
e1−e3 ] = −E

(0)
e1−e4 − E

(0)
e1+e4 − E

(1)
−e2−e3

[E(1), E
(0)
e2+e4 ] = +E

(0)
e1+e4 + E

(0)
e2+e3 + E

(1)
−e1+e4

[E(1), E
(0)
e2−e4 ] = +E

(0)
e1−e4 + E

(0)
e2+e3 + E

(1)
−e1−e4

[E(1), E
(1)
−e1−e3 ] = −E

(1)
−e2−e3 − E

(1)
−e1−e4 − E

(1)
−e1+e4

(55)

Accordingly we find for

K(2) = aE
(0)
e1−e3 + bE

(0)
e2+e4 + cE

(0)
e2−e4 + dE

(1)
−e1−e3

that

[E(1),K(2)] = 0

only for a = b = c = d = 0 and K(2) is empty.
For

K(3) = ε1E
(0)
e1−e4 + ε2E

(0)
e1+e4 + ε3E

(0)
e2+e3 + ε4E

(1)
−e1−e4 + ε5E

(1)
−e1+e4 + ε6E

(1)
−e2−e3

we find that

[E(1),K(3)] = 0 for ε3 = −ε1 − ε2, ε6 = −ε1 − ε2, ε4 = ε2, ε5 = ε1 (56)

with arbitrary two parameters ε1, ε2 that parameterize K(3). If we define elements in K(3)

that both satisfy (56):

K(3)
ε = ε1E

(0)
e1−e4 + ε2E

(0)
e1+e4 − (ε1 + ε2)E

(0)
e2+e3 + ε2E

(1)
−e1−e4 + ε1E

(1)
−e1+e4 − (ε1 + ε2)E

(1)
−e2−e3

K(3)
η = η1E

(0)
e1−e4 + η2E

(0)
e1+e4 − (η1 + η2)E

(0)
e2+e3 + η2E

(1)
−e1−e4 + η1E

(1)
−e1+e4 − (η1 + η2)E

(1)
−e2−e3 ,

(57)

then

[K(3)
ε ,K(3)

η ] = 0 ,

for any two arbitrary sets (ε1, ε2), (η1, η2). Thus K
(3) is, as expected, abelian.

For

K(4) = ε1E
(0)
e1+e3 + ε2E

(1)
−e2+e4 + ε3E

(1)
−e2−e4 + ε4E

(1)
−e1+e3 ,

we find that

[E(1),K(4)] = 0 for ε1 = 0, ε2 = 0, ε3 = 0, ε4 = 0 , (58)
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and K(4) is empty.

For

K(5) = aE
(0)
e1+e2 + bE

(1)
−e3+e4 + cE

(1)
−e3−e4 + dE

(1)
−e2+e3 + eE

(1)
−e1+e2 ,

we find that

[E(1),K(5)] = 0 for b = a, c = a, e = a, d = 2a , (59)

with an arbitrary one parameter a that parametrizes K(5).

For the (sub-algebras) G(3) and G(1) that have non-trivial two- and one-dimensional
kernels, K(3) and K(1), respectively, it is useful to describe their bases.

For G(3) from the relation (53) we will use the basis:

V1 = E
(0)
e1−e4 − E

(0)
e2+e3 + E

(1)
−e1+e4 − E

(1)
−e2−e3 ,

V2 = E
(0)
e1+e4 − E

(0)
e2+e3 + E

(1)
−e1−e4 − E

(1)
−e2−e3 ,

V3 = E
(0)
e1−e4 + E

(0)
e1+e4 + E

(1)
−e2−e3 ,

V4 = −E
(0)
e1+e4 − E

(0)
e2+e3 −E

(1)
−e1+e4 ,

V5 = −E
(0)
e1−e4 − E

(0)
e2+e3 −E

(1)
−e1−e4 ,

V6 = E
(1)
−e1−e4 + E

(1)
−e1+e4 + E

(1)
−e2−e3 ,

(60)

with V1, V2 being the two matrices from (56) that span a basis for the kernel K(3) of E(1)

in G(3), while V3, V4, V5, V6 span a basis for the image of E(1) in G(3).

To analyze zero-curvature equations involving G(1) from the relation (53) we will use
the basis E1, . . ., E5 :

E1 = E(1), E2 = −E
(0)
e1−e2 + E

(1)
−e1−e2

E3 = E
(0)
e1−e2 − E

(0)
e2−e3 + E

(1)
−e1−e2 , E4 = E

(0)
e2−e3 − E

(0)
e3−e4 − E

(0)
e3+e4

E5 = E
(0)
e3−e4 − E

(0)
e3+e4 ,

(61)

for G(1) . The first element E1 is obviously in kernel of E(1), while E2, E3, E4, E5 span the
image of E(1). One can check that

ε1E1 + ε2E2 + ε3E3 + ε4E4 + ε5E5 = 0 → ε1 = ε2 = ε3 = ε4 = ε5 = 0 ,

and the same basic relation for the V -basis.
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B Main expressions of of the zero-curvature calculation

The coefficients Mi, i = 1, . . ., 4 of the matrix D(2) defined in expressions (3), are explicitly
given by solving the grade 3 equation (4):

M1 =
(ε1 + ε2)

2
(φ1 + φ2 + φ3)−

(ε1 − ε2)

2
φ4 ,

M2 =
(ε1 + ε2)

2
(−φ4 + φ2 + φ3) +

(ε1 − ε2)

2
φ1 ,

M3 =
(ε1 + ε2)

2
(φ2 + φ3 + φ4)−

(ε1 − ε2)

2
φ1 ,

M4 =
(ε1 + ε2)

2
(−φ1 + φ2 + φ3) +

(ε1 − ε2)

2
φ4 .

(62)

The coefficients di, i = 2, . . ., 5 of the grade one element D(1) along the basis elements
Ei, i = 2, . . .E5 given in expressions (61) are obtained from the grade 2 component of the
zero curvature equations (1) to be

d2 = −
(ε1 + ε2)

2
(φ1φ2 + ∂xφ1)−

(ε1 − ε2)

2
(φ3φ4 − ∂xφ4) ,

d3 =
(ε1 + ε2)

6

(

−φ2φ3 + φ22 − 2φ23 − φ
2
4 + 2φ21 + 3∂x(φ2 + φ3)

)

−
(ε1 − ε2)

6
φ1φ4 ,

d4 =
(ε1 + ε2)

6

(

φ2φ3 − φ
2
3 + φ21 − 2φ24 + 2φ22 + 3∂x(φ2 + φ3)

)

+
(ε1 − ε2)

6
φ1φ4 ,

d5 =
(ε1 + ε2)

2
(φ3φ4 − ∂xφ4) +

(ε1 − ε2)

2
(φ1φ2 + ∂xφ1)

(63)

The components of [A0,D
(1)] =

∑5
i=2CiEi can be calculated as

C2 = −φ1d1 − φ2d2 − φ1d3 ,

C3 = −φ2d1 −
2

3
φ1d2 −

1

3
φ2d3 −

1

3
φ3d3 −

1

3
φ2d4 +

2

3
φ3d4 +

1

3
φ4d5 ,

C4 = −φ3d1 −
1

3
φ1d2 −

2

3
φ2d3 +

1

3
φ3d3 +

1

3
φ2d4 +

1

3
φ3d4 +

2

3
φ4d5 ,

C5 = −φ4d1 + φ4d4 + φ3d5 .

(64)
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Inserting these values of di and Ci into equation (11) we obtain

v1 =
(ε1 + ε2)

4
(−φ1(φ

2
2 + φ23 + φ24 − φ

2
1) + 2φ1∂x(φ3 + 2φ2) + 2∂2xφ1)

+
(ε1 − ε2)

2
(−φ2φ3φ4 + φ2∂xφ4 + ∂x(φ3φ4)− ∂

2
xφ4) ,

v2 =
(ε1 + ε2)

4
(−φ2(φ

2
1 + φ23 + φ24 − φ

2
2) + 2φ4∂xφ4 + 2(φ2 + φ3)∂xφ3 − 4φ1∂xφ1 − 2∂2x(φ2 + φ3))

−
(ε1 − ε2)

2
(φ1φ3φ4 − φ1∂xφ4) ,

v3 =
(ε1 + ε2)

4
(−φ3(φ

2
1 + φ22 + φ24 − φ

2
3) + 4φ4∂xφ4 − 2(φ2 + φ3)∂xφ2 − 2φ1∂xφ1 − 2∂2x(φ2 + φ3))

−
(ε1 − ε2)

2
(φ1φ2φ4 + φ4∂xφ1) ,

v4 =
(ε1 + ε2)

4
(−φ4(φ

2
1 + φ22 + φ23 − φ

2
4)− 2φ4∂x(φ2 + 2φ3) + 2∂2xφ4)

−
(ε1 − ε2)

2
(φ1φ2φ3 + φ3∂xφ1 + ∂x(φ1φ2) + ∂2xφ1) .

(65)

We can now insert the above values vi into the t3 flow expression (13) to obtain

∂t3φ1 = ∂x
[(ε1 + ε2)

4
(−φ1(φ

2
2 + φ23 + φ24 − φ

2
1) + 2φ1∂x(φ3 + 2φ2) + 2∂2xφ1)

]

+ ∂x
[(ε1 − ε2)

2
(−φ2φ3φ4 + φ2∂xφ4 + ∂x(φ3φ4)− ∂

2
xφ4)

]

,

∂t3φ2 = ∂x
[(ε1 + ε2)

4
(−φ2(φ

2
1 + φ23 + φ24 − φ

2
2) + 2φ4∂xφ4 + 2(φ2 + φ3)∂xφ3 − 4φ1∂xφ1 − 2∂2x(φ2 + φ3)

]

− ∂x
[(ε1 − ε2)

2
(φ3φ1φ4 − φ1∂xφ4))

]

,

∂t3φ3 = ∂x
[(ε1 + ε2)

4
(−φ3(φ

2
1 + φ22 + φ24 − φ

2
3) + 4φ4∂xφ4 − 2(φ2 + φ3)∂xφ2 − 2φ1∂xφ1 − 2∂2x(φ2 + φ3))

]

− ∂x
[(ε1 − ε2)

2
(φ2φ1φ4 + φ4∂xφ1)

]

,

∂t3φ4 = ∂x
[(ε1 + ε2)

4
(−φ4(φ

2
2 + φ23 + φ21 − φ

2
4)− 2φ4∂x(φ2 + 2φ3) + 2∂2xφ4)

]

+ ∂x
[(ε1 − ε2)

2
(−φ1φ3φ2 − φ3∂xφ1 − ∂x(φ1φ2)− ∂

2
xφ1)

]

.

(66)
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[5] Y. Sasano, RIMS Kôkyûroku Bessatsu B5 137-152 (2008)

[6] H. Sakai, MSJ Memoirs 37 1-23 (2018)

[7] H. Kawakami, Journal of Integrable Systems 3 1-36 (2018)

http://arxiv.org/abs/0704.2331

	Zero curvature derivation of the t3 flow of the D4(1) hierarchy
	Self-similarity reduction for the t3 flow 
	Algebraic background on so(2n) 
	so(8) charge sectors and their bases 

	Main expressions of of the zero-curvature calculation

