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Abstract

We show how the zero-curvature equations based on a loop algebra of D4 with a
principal gradation reduce via self-similarity limit to a polynomial Hamiltonian system
of coupled Painlevé ITI models with four canonical variables and Dil) affine Weyl group
symimetry.

1 Zero curvature derivation of the ¢; flow of the Dil) hierar-

chy

Our starting point will be an integrable hierarchy with commuting flows defined via the
zero-curvature formalism based on a loop algebra of G = D4 endowed with a principal
gradation. We will apply a conventional self-similarity limit on the ¢3 flow of the hierarchy
and show how through several explicit changes of variables the reduced model can be cast
into the polynomial Hamiltonian system of four canonical variables invariant under Dil)
affine Weyl group symmetry.

An unusual aspect of the t3 flow of the Dy hierarchy is that it is parametrized by two
independent variables, e1, €9, reflecting the fact that a kernel of E(M)| a central object of
zero-curvature equations, turns out to have a two-dimensional kernel on the level of grade
three. The presence of these parameters enriches the symmetry structure of the two-
dimensional hierarchy of zero-curvature equations based on Dfll) affine Weyl algebra and
survives the self-similarity limit as shown in equations (I9)). Considering these equations
with dependence on only one of these parameters or their linear combination we obtain,
up to few normalization adjustments, and after several changes of variables, the model
of reference [I], where it was proposed as a pair of coupled Painlevé III equations that

)

form a Hamiltonian system invariant under Dfll affine Weyl group symmetry. To the
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best of our knowledge, an explicit derivation of this particular model as a reduction of

) affine Weyl algebra,

two-dimensional hierarchy of zero-curvature equations based on Dfll
has not been done previously.

To make the presentation self-contained we provide all the necessary algebraic back-
ground information in Appendix[A] and main expressions of the zero-curvature calculation
in Appendix [Bl

For other derivations of integrable hierarchy based on Dfll) affine algebra the reader can
consult [2] and the references therein. There also exist in the literature other approaches
to applying similarity reduction to integrable hierarchy of type Dfll) [3] but the focus there
was on deriving the sixth Painlevé equation.

As a starting point we consider the zero-curvature equation for the third flow in the

setting of the affine algebra Dfll):

[0, + EY + Ay, 8, + DO + DW 4 D@ 4 D] =0 (1)

with D@ ¢ G; and Ay = Z?:l é;H; with EM | G;. H; defined in Appendix [Al
The highest grade-four component of equation (), [E™), D®)] = 0, is solved by

D® =e1V; + eV, (2)

where V1, V5 are two matrices defined in (56 that span a basis for the two-dimensional
kernel of E() in 9(3). The standard zero-curvature technique allows recursive derivation
of the lower grade matrices D i = 0, 1,2 from appropriate grade projections of equation
(). Grade 2 element given by:

+M;EY 4+ MyEY) (3)

€2 —e4q —e1—es3 )

+ MzE(O)

ex+eq

p® = mEY

e1—es
is solved for from the grade 3 equation
[E(1)7D(2)] + [A07D(3)] =0, (4)

from which one obtains explicitly coefficients M;,i = 1,2,3,4 of D@ given in equation

©62).

The grade 2 component of the zero curvature equations () is

[ED, DW] 4[4y, DP] +8,D? =0, (5)
where

DW = d\Ey + dy By + d3Es + dyEy + d5 Fs , (6)
where we employed the basis elements F;,i = 1,...,5 given in expressions (61Il). Equation

[{Bl) yields explicit expressions for d;,i = 2,...,5 given in equation (G3)).
The grade one component of (II) reads as

8$D(1) + [E(1)7D(0)] + [A(]a D(l)] =0, (7)
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with D(O) = 3. v;H;. The advantage of using the basis (GI)) is that

(D, DO = (vy — 1) B, + (3 — v2) B, + (v4 — v3) By

e;1—e2 ex—es3 €3—eéq
- (U3 + 'U4)Eé(3]2i-e4 + (Ul + U2)E(—16)1—62 (8)

= v1Fy + voE3 +v3Ey + vy Fs

where E;,i = 1,...FE5 are the basis elements given in expressions (G1).
Solving the grade one equation (7)) in direction of E; yields

1 1 1 1 2 2
Opdy = —§¢2d4 - §<Z53d3 + §¢1d2 + §<Z54d5 + §¢3d4 + §<Z52d3, (9)

plugging expressions ([63]) and taking out the total derivative gives

€1t é€2

& 12

(—¢7 — @7 + ¢35 + &3 + 26203) + %(51 —€2)P104 - (10)
Solving the grade one equation () in directions of E;,i = 2,3,4,5 yields

v; = —0pdiy1 — Ciy1, 1=1,2,3,4, (11)
with C;,7 = 2,3,3,5 given in (64]) and with d; in given in expression (I0) while expressions
di,i=2,..,5 are given in (G3)).

Inserting these values of d; and C; into (IIl) we obtain v; given in expression (G5l).
The grade zero component of () is

9, D) — 9, Ag + [Ag, DV = 0. (12)
Since [Ag, D()] = 0 the equation (IZ) reduces to

O Ao = _ Oy H;y = 0,00 =" 0,0, H;

that in components gives the t3 flows written as
8t3¢i = 890112', 1= 1, 2, 3,4. (13)

When on the right hand side we insert values of v; from equation (63]) we find the t3-flow
explicitly written in equation (66) with their symmetries listed below in equations (I6l).

With definitions

U=P1+ Py, V=01 — Py, [ = P2+ @3, g = P2 — ¢3. (14)
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Equations (66]) can be conveniently rewritten in this notation as

Dr 518( wo? — Sy 4 L Suef - f@xv)

4
1 1 1 1
+ £90, ( uv? —Zug + v0, f—|—2u8$g—|—2f8xv+8 u),
Oy v 518( vu —ivg +u8f—|—;v8mg+;f8u+82)
+623( - —ivf2+ Lo, f - fc‘)xu),
1 1 1 (15)
3t3f=€13( fg* = L fu® = udov — SvOpu — = forg — 03 f)
+ azax(——fu + —fg2 — vdyu — %u@xv — %f@xg —02f),
1 1
O1y9 = €10(5 Lo - gv + 5 f0uf — Sv0u0)
. 2_1 2, 1 1
+€28w(4gf 4gu + 2f@mf 2u8xu).

These equations are invariant under:

Fi:u<+ —v, 51—>62,g—>g,f—>f7

(16)
Fy:usov, 61—, g—9g,f— f.
In addition for e5 = 0 these equations are invariant under:
F:fo v 61— —€1,9g—gu—u (17)

while for €; = 0 they are invariant under:

Fs5:fou, 69— —e9, g—>9,0v—0.
Obviously, for one of the parameters €1 or €5 being zero the remaining parameter can be
absorbed by redefining t3.

The above operations satisfy F = I = FZ and

hE,=Fh=TG=GT:u— —u, v——v, g—>g,f—f,
where T and G are automorphisms :

T:-u+u,v—>-v,9—9,f——f,

G:us—u,v—=v,9g—=>9f—=—f,

with FyT = TFy. All the above automorphisms of equations (IZ) are “mirror automor-
phisms”, meaning that they square to one.
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2 Self-similarity reduction for the ¢; flow
We will look at the self-similar reduction of equation (I5l) with
— 3 _ T _ 13
¢($7t) =1 3(10(2)7 =T = xt ) (18)
t3

and correspondingly

d _dds_apd d_dde_ 1.,d

dr ~ dzdx dz’ dt dzdt 3 dz

such that the KdV type of expression :

d d d d d3
%qb(ilﬁ,t) + 51%(¢(l‘7t>%¢($7t>) + ﬁ2%¢3($7t) + ﬁ3@¢(l‘7t> =0,

is transformed to an equation fully expressible in terms of functions of z:

3
2 (50(2)) — 381 1-(9(2)1-(2)) — 3aa(2) — BBadilz) = 0.

Following these rules we are now able to take self-similarity limit of equations (I5]) to

obtain:

—Eu +C = 61(11&)2 — 1qu + %v@zf — %f@zv)

3 4 4
+ 52(%1&)2 — iug2 + 00, f + %u@zg + %f@zv + 9%u)
—%v + Koy = sl(imﬂ — ivg2 +ud, f + %v@zg + %f@zu + 0%v)
4 Eg(imf - ivﬂ + %u@zf - %f@zu)
SIf K = ey fe e~ udo — Judu— 5 0.9~ )
Feal— g fo? + 1 fe — Do~ Ludew — 1 folg — 02)
—%g +Cy = 61(%91“2 - ing + %fazf - %vazv)
+ 62(%9]“2 - igzﬂ + %fazf - %uazU),

where C;, K;,1 = 1,2 are integration constants.

Here we comment that it is enough to chose any direction in €1 — €9 plane because of
a presence of previously noticed automorphisms that establish an equivalence (by substi-

tution) between any of the one-parameter € models in a self-similarity limit.

For example, we notice a symmetry between 9 = 0 limit of equation (I9) and £, = 0

limit of equation (I9) via

€9 < €1, (U,KQ) <> (’LL, Cl), (u, 01) < (U,KQ)
(val) — (f7K1)7 (9702) A (9702)

(20)
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These substitutions follow from to symmetries F, Fy from equation (I€). Note that equa-
tions (I9) with arbitrary e1,e2 remain invariant under transformations (20)) that inter-
change u and v.

We further point out that symmetry extends to any direction in the €1 — €5 plane. For
example we can transform the system of equations (I9)) with ey = 0 into the system of
equations (I9) with e1 + 2 = 0 with only the parameter € such that ¢ = ¢; — &5 as follows

€
€1 =0¢+— €1 4+e2=0, e9¢— 3

(U’K2) — (f7K2)’ (faKl) A (uvKl) (21)
(U,Cl) A (’U’Cl)’ (9702) A (9702)'

Thus for simplicity we will from now on only consider the self-similarity limit for the case
of g9 = 0 rewritten as:

1 1 1
—§v+ + Ky =e(-v_(u® — ¢*) —ud,v_ + —v_0,9 — —v_0u+ dv_)

4 2 2
p 1, 1 1 )
—gv-+ K_ = €(ZU+(U —g°) +udug + §v+8zg + §v+82u +0Zvy) 22)
—%u +C = Z(uwrv_ — (v40,v_ —v_0,vy))
£

z
—39+ C2 = 1 (=gviv- = O:(vsv)),
where
Ui:’Uﬂ:f, Ki:KliKg, E=e€1.

First, we note that equations (22]) can be made independent of € through the substitution
S:

S:vr— (6) Vs, Ku— () V3, Kg— () V3, 2z— (e)/32. (23)

It is instructive to leave the equations (22]) in the current form as the change of variables
we will perform to arrive at the Hamiltonian formalism will lead anyway to canonical
coordinates that are invariant under the above transformation S.

The equations (22]) are explicitly invariant under Fb:

Fr:vp & tvg, e = —€, g—=>g,u—u

From the last two equations of ([22]) we derive

v 1 2 zg zu
et Lt e (it SR ] -
v _ 1 _ 2,
vy 2(u 9+ EVLU_ e 3 )= (G 3 )]
The first order derivatives for u, g are:
6 3
(z9). = —E(’Uz +02) + [(Co — E9)2 —(C — Eu)2] +-(Kyvy+ K_v_)
4 EVLV_ 3 3 4 (25)

z 3
(Zu)z = Z(Uz - 'U_2i_) + Z(K—'— vy — K_ 'U_) .
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Introducing for convenience
G=z29, U=zu,

we can rewrite equations (IQZI),(DE) as

V= U= 6) = (€= )+ (€= ]

= -Rw+) - G- D - @G- 3, "
(@) =202 +02) + va_ (Co— %GF (- éU)ﬂ + Z(K; ve t K_v),
) =22 =)+ <K+v+—K v).

There is one further change of variables needed to end up with equations that are mani-
festly Hamilton equations, namely:

- 1 _ 1
G=G-Cy T=-U-0.
3 2 3 1

Equations for G, U variables are:

- z 2 - = = 1
(G+U), = -0l + (G+U)(G-U)+ K4 vy,
# 2.3 EVL V_ 2 (27)
_ _ z 2 _ _ _ _ 1
G-U) =- 2 G+U)(G-U)+-K_v_.
(G-U), =53t (@+U)(G-U)+ 5K v
To end up with the polynomial Hamilton equations we further introduce :
G+U G-U
F+ — + ; F_ - .
V4 v_
Using this notation the first two of equations (26]) can be rewritten as:
3 3 2
U;: = _Z_zv?tFi — gvi(Cb + Cl) + EF1 . (28)
From equations (27) and (28) we obtain
z 1 3 3
(F:t)/ = 3 2U:|: + K:t + 5 'U:I:Fj: —I— (02 + 01) (29)
Define now the Hamiltonian :
3 1 z 3 2
H= VIF] + K vy — v —(C1 + Co)Fyvy | — ZF F_
4z 2 3.4 47 € (30)
3 1 z
F? 4+ K v — Fou ).
+ <4Z’U_ -+ 5 3. 4’0_ —l— (01 02) v >

which is polynomial in all variables such that it reproduces equations ([28)-(29) through

)0 )0
(Fﬂ:) - 6'U:|:H7 (Ui) - (SFj:H (31)
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Note that the “plus” and “minus” parts of H in (B0) are connected by only one term
2
—ZFyF.
The transformation
a
F+—)F++—, Vy — Vg
Ut

or

a
Vy — UV + —, F+—>F+
Fy

leaves only the first part of Hamiltonian (B0 invariant (up to a constant).
We will now attempt to cast equations (28])-(29) in a form of equations that are mani-

festly Dil) invariant [1].
First, we apply the redefinition

z
Fi—>F:|:+§, V4 — V4,

to obtain
, 3 3 1 1
(Fy) = 2—U+F++U+F++ (C1+Co)Fy + K+t 5 (01+C2) —3)
3 1 3 2 (32)
/ 02 2 z
= 2R, — 2 (F 12
e 2Zv+(01+02)+6( +3),
and
3 1 1 1
(F_)/ = —’U_FE +v_F_ — —(01 — CQ)F_ + (| =K_ — —(01 — 02) =1,
2z 2z 2 2 3 33
3 1 3 2 z (33)
;9 29 19 O _ < z
o= ZZU_F_ 5=~ 3,Y (Cy— ) (Fy + 3).
We now further substitute
1 1
Fi = 2F,, F_ — zFy,, vy — —vp, V- — —Up, (34)
z z

to obtain for F},, v, equations :

(Fp) = 1 |:3'UPF2+UPF + = (Cl +Cy — —)F + < Ky+ - ((j1 + ) — _>]
. (3)

222 1
?

1 3 1 3 2
I 2 2
o= -5k - TVEW@+@‘ﬂ+:“%+
Introducing oy + g = (C1 + Cy — %) and ay = —K+ + 5 (Cl + Cy) — 5 we can rewrite the
above equations as

173 3
(F) = > bva;? + vpFp + 5(041 + az) +O‘2]

3 222 1
5 Up 5(&14—(12)’0};} +T(Fm+§)

(36)
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For the “—” sector we obtain
173 3 2 1 1 1
(Fn) = - [S0mF2 + vmFy = 5(Cr = Co+ 5) P+ 5K- = 2(Cr = Co) = 2 ]|
z L2 2 3 2 2 3 (37)
Ir 3 1 3 2 222 1
v;n:;[—iv?nF_— 5 %—gvm(og—cl—g)] —(Fp g)
Introducing a3+ ay = —(C1 — Co + %) and oy = %K_ — %(Cl —C9) — % we can compactly
rewrite the above equations as
1713 3
(Fm)’ — ; |:§va31 + v P + 5(&3 + a4)Fm + a4}
38)
Ir 3 1 3 222 1 (
’U;n = ; [ — §U3nFm — 52}1%), — 5(0[3 + OZ4)Um:| + ?(Fp + g) .
Equations (36 and (38]) can be obtained from the Hamiltonian:
1/3 1 3 222 1 1
H = . <ZU§F§ + §U12)Fp + §(oz1 + ag)Fpv, + ozgvp> — ?(Fm + g)(Fp + 5) )
1/3 45 9 14 3
+ — | v, Fy + v Fo + = (a3 4+ aq) Frpvm, + aqvp, | .
z \ 4 2 2
through
0 )
F) =—H ) = ——H, i= . 40
(F) = 5-H. (w) ==5-H i=pm (10)

The author of [I] has proposed such system as two coupled Painlevé I1I equations involving
four variables and derived by symmetry consideration as a system that admits affine Weyl
group symmetry of type Dfll).

Comparing equations (36) and (38)) we notice presence of my automorphism :
o Upy By v, By 2 & g, 1 < g,

that transforms equation (B@) into (B8] and vice-versa.

In addition we introduce a variable g defined by the condition 2cg+a1 +as+ag+aq =
const [I]. The constant used to define oy will be fixed below by a symmetry transformation
S0, that mixes the “+/—" sectors to be defined below. In [I] that constant is set to 1
consistently with Sasano’s normalization (different from ours).

Furthermore we also find the following Béacklund transformation ss :

2a
S9 & vp—>vp+T2, Fp—>Fp, Qg — —Q2, (41)
p
that keeps equations (B6]) invariant. The consequence of so(ag) = —ag is that sa(ag) =

ag + ag just to keep the condition 2ag + a1 + ag + a3 + a4 = const unchanged.
Similarly the following Backlund transformation :

2
541 U, —>vm+%, F,— F,, ag — —ay, (42)
m
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will keep equations (B8] invariant.
Note that S% = 3421 =1, 8984 = 489 and TySomy = S4.
Furthermore, inspired by the automorphism (I7)), we define the two automorphisms:

2
T @ Vp — —Up, Fp—>—§—Fp,6—>—€, a1 — g — o
) (43)
M3 1 Uy — —VUmy, Fm—>—§—Fm,a—>—€, a3 — oy — Qs

that both keep equations ([B6) - (B8] invariant and satisfy
2 _ 2 _ _ _
m =my =1, mWommy = M3, MWEMWIMY = TMq .

Coincidently, all the canonical coordinates vy, vy, Fp, Fy, have been defined in such a
way that they are invariant under transformation S defined in relation (23]), while the
substitution z — (¢)'/32 allows to eliminate e completely from equations (38) - [B8). With
€ being replaced by 1, one can alternatively define the automorphisms 7, 73 involving a
change of the sign of z — —z instead of ¢ — —¢, as it was done in [J.

The other two Backlund transformations are ( s, s3 in notation of [I]) but here relabeled
as :

20[1
$1: 0 = U+ ———, Fpy 2> Fp, a1 = —ap, ag = ag, ap > ap+ g

”202 (44)
831 Um = Um + =5, Fim = iy, a3 = —ag, ag — o, ap = ap + as.

m T3
They both square to one : s = s3 = 1. Also the Bicklund transformations satisfy :
TiSiMi = Siy1,  TWiSi41T = 8, 1= 1,3,
TiSikaM; = Sik2, TiSik3M; = Six3, +/— for i=1/3

TS0 = Si+2, = 17 2

Finally we need to prove invariance under sy that mixes the +/— sectors. When this
Bécklund transformation is defined as

200 v
so(Fp) = Fp — TZ 3 s0(vp) = vp, so(@1) = a1 + ap, so(az2) = a2 + g
VpUm — §Z
20 v
50(Fn) = Fru — D, 50(tm) = vm, solas) = a3 + ao, sol) = oy +ag )
VUpUm — %Z
SO(QO) = —0p,

the equations ([B6]) and (B8] are invariant if the condition,
200 + a1 +ag +asz +ag =2,

holds. As remarked before our normalization is different from the one used by Sasano
[1] and the differences also include different powers of z in equations (@3] and in the
Hamiltonian (39).
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Note that Sg = 1 because ayg = —ag and mysgmg = Sg, mSo™, ¢ = 1,3. It is easy to
verify that the Dfll) siy 1,2, 3,4 Backlund transformations satisfy :

s2=1, i=1,2,34,
SZ'Sj :SjSZ', i,j = 1,2,3,4,
5;508; = S0S5:50, 1= 1, 2, 3, 4 s
where the last two identities are equivalent to the standard Dfll) relations (s;s;)? =
1,(s9s;)® = 1. This is in contrast to the Al(l) affine Weyl symmetry group multiplica-
tions for which it holds that (s;s;+1)® = 1 and (s;s;42)?> = 1. These examples clearly
illustrate a difference from the Dil) structure encountered above.

The steps shown in this section complete the systematic derivation of the Dil) Hamil-
tonian system starting from the integrable hierarchy of D4 symmetry. We will return to
the model with two independent parameters €;,7 = 1,2 in a separate publication.

This work illustrates the power of algebraic methods to derive systems invariant under
affine Weyl groups that should lend itself well to generalizations to other group structures.

Recently, the Sasano systems of four-dimensional Painlevé type equations with affine
Weyl group symmetry of type Dél) [5] were derived as isomonodromic deformation equa-
tions in [0} [7], which suggests that a similar analysis will apply to coupled Painlevé III
models with four canonical variables of reference [I] obtained in this paper from the self-
similarity limit.

A Algebraic background on so(2n)

Here we discuss the Lie algebra so(2n) and its loop algebra that underlies the zero-
curvature considerations. The algebra so(2n) = {X € gl(2n,C)|X + X7 = 0} is generated
by 2n x 2n anti-symmetric matrices L; ;j = —L;; with components

(Li,j)k,l = 57,l5]k — 5ik5jla Z,j = 1, ceey 2n. (46)

These 1(2n)(2n—1) matrices form a basis for the so(2n) Lie algebra with the commutation
relations :

[Li j, Lin) = 6imLjn + 0jnLim — 0inLjm — 0jmLim, (47)
where we followed Olive’s convention [4]. The Cartan sub-algebra generators are:

H; =iloi—12;, 1,2,...,n.
The relevant commutation relations in accordance to (47) are:

[H;, Loj—12k—1) = 10 jLoj ok—1 — 16; 1 L2i 251

[H;, Lojok—1) = —i0; jLoj—1,2—1 + 10 . Loj o
[H;, Loj_1,2k]
]

[(H;, Lojor| = —i0i jLoj 1,2k — 10 p Loj ok—1

=10 j Loj ok, — 10; k. Loj_1,2k—1
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The roots are:
a=cej+ney jF#k

with independent e, = £1 and e;,7 = 1,...,n with (e;,e;) = J; ; being a basis for R"™.
The associated step operators are

1

Ea:—§

(Loj—1,26—1 +i€Lojop—1 + inLoj_1 21 — €nLoj k)
Number of roots is n(n — 1) x 2 x 2 = 2n(n — 1),which is the dimension of so(2n), rank
of Cartan sub-algebra is n.

It holds that

[H;, Eq] = (€055 + 10 1) Ee s

as long as n? =1, = 1.
All roots have equal length and satisfy (a, a) = 2. The basis of simple roots is given
by:

ai:ei—eiﬂ,i:l,...,n—l (49)
oy =€ep_1 + €y,

The inner product of simple roots

2 i=7 1<4,5<n
_J-1 Ji—jl=1 1<ij<n-1
(o) =30 isj =2 1<ij<n

0 2=n—-1,7=n

defines the corresponding Cartan matrix. For so(2n) the roots and co-roots are identical,
the highest root is

Yp=e+e=0a1+ 20+ ...+ 20,2+ p_1+ Oy,
the Coxeter number h and the dual Coxeter number k" coincide and
h=h"=2n-2.
For case of so(8) these become
Y =e1 +er = a1+ 2a + +ag + ay, h=h"=6 (50)
The fundamental weights A; such that 2(oy, Aj)/ (o, o) = 6;5 are:
i .
A = Zej = o +200+. . .+ (i—1)oy_ 1 +i(ai+. . .+an_2)+%(an_1+an), i=1,...,n—2
j=1

1 1 n n—2
A1 = 5(e1 +...tep_1—epn) = §(a1+2a2+. ..+(n—2)an_2)+§an_1+Tan
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1 1 n n
n = §(el+...+en_1+en) = 5(0:1+2a2+...+(n—2)an_2)+Tan_1+§an

A

Especially for so(8) with n = 4 we find for weights and simple roots
Ay =e, o = €1 — e,
Ay =e1 + e, Qg = €2 — €3,

As = 61+62+63—64), Qa3 = e3 — ey,

5
1
A4=§(€1+€2+63+64), a4y = e3 + ey,

we obtain for a sum of weights:

4
A:ZAZ':3€1—|—262—|—€3 (51)
=1

The product of A and a general root o = ee; + ne;

(Aa) #0

for all a = ee; + ne;.
We will use (5I)) to define the principal gradation operator for so(8):

Q=6d+> Aj-H=06d+A H=06d+ (3e1+2e3 +e3) - H. (52)
=1

Note that

(A,T/)) = (361 + 2e9 + €3,€1 + 62) =5.

A.1 so(8) charge sectors and their bases

The underlying charge sectors are (with m € Z):

g(6m+1 {E(m ) E(m) E(m) E(m+1) E(m+1) }

e;—e2’ 62 e3) ez—eq) Tezteq) T —1h —ej—e2

g(6m+2 _ {E(m E( m) E(m) E(m+1) }

e1—e3’ “ezteq? “ea—ey) T —e1—es3

g(6m+3 _{E(m E( m) E(m) E(m+1) E(m+1) E(m+1)}

e1—eq) “erteq) “eate3zr) T —eir—eq) T —ejteq) T~ —ezx—e3

GOt = (B PO, BULEL B Y
(6m+5 {E(m m+1) E(m—H) E(m—H) E(m—H)

ej+ez? —e3+e4’ —e3—eq’ "~ —ez2te3z) —€1+62}‘

The unique grade one semi-simple element in GV

4
D= Z EQ +EY)

() (0) (0) (0) 1
_Eel 62+E62 63+E63 64+E +E

e3+eq —e1—e2
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where the sum was over all simple roots of so(8) from (43]).
Define the kernels K® € G to be such that

[ED, K] =0,

for i = 2,3,4,5 and G as given in (G3).
Given the grade 2 sector G in (53) we consider

0) 0 1
[E Eél 63] = 61 eq Eéll_&l E(—e)z es
0 5 _ (0) 1)
[E E62+e4] =+E e1+e4 E62+e3 E—e1+e4 55
(0) (0) 1 (55)
[E Eeg 64] = + el eq Eeg-l—eg + E—el —eq
(1) 1 1
[E(l —61 63] —62 es E(—e)l—64 - E(—e)1+64

Accordingly we find for

K@ =aBY  +bED,, +cEY, +dEY

€1— 53 €2—€4 —€1—e3

that
[E(l),K(2)] -0

only for a =b=c=d=0and £? is empty.
For

K® = leé?) ea €2E§?)+e4 + 63E§2)+63 + 64E(_le)1 ey T €5E(—1@)1+e4 + €6E(—e)2 es
we find that

[E(l),K(3)] =0 for e3=—€1 —€9,66 = —€1 —€9,64 = 9,65 = &1 (56)
with arbitrary two parameters e1, €5 that parameterize K®). If we define elements in £®)

that both satisfy (B0):

+ &1 EW —(e1+ 62)E(1)

—ejteq —ez2—e3

K(g) =& E( ) +€2E( ) (61 —|—€2)E( ) —I—€2E( )

e1—eq e1+es eates —e1—eq
0 0 1
K1g3) = 771Eé1) 64 Eé12i-e4 (771 + 772)Eégzi-es + 72 E(—e)1 €4 + nlE(—6)1+64 o (771 + 772)E(—e)2 €3’
(57)

then
K& KP] =0,

for any two arbitrary sets (e1,e2), (m1,72). Thus K®) is, as expected, abelian.
For

—i—sE()

—e1+e3

KW = ElE( ) + EQE(l) + EgE( )

e1+es —ez+teq —ex—eq

we find that

[EW KW =0 for e, =0,e0=0,e3=0,e4=0, (58)
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and KW is empty.

For
K( ) = aEéll‘e2 + bE(—€)3+64 + CE(—€)3 et dE(—€)2+63 + EE(—6)1+62 )
we find that
EW KOl =0 for b=a,c=a,e=a,d=2a, (59)

with an arbitrary one parameter a that parametrizes KO,

For the (sub-algebras) G(® and GM) that have non-trivial two- and one-dimensional
kernels, K®) and KW, respectively, it is useful to describe their bases.

For G® from the relation (53] we will use the basis:

=%, -9, +e"  —BY .

Vo= Bk, — EQ + Y —BY, .,

Va=8",  +EO, +EY (60)
Vi=—E e, = EQves = B ey

Vo =-E,, —EQ,., - BY) .,

Veo=pY _, +EBY  +EY

with Vi, Vs being the two matrices from (5B) that span a basis for the kernel K3 of E()
in GO, while V3, Vi, Vi, Vi span a basis for the image of E®) in GG,

To analyze zero-curvature equations involving G from the relation (53) we will use
the basis F1,..., E5 :

Ele(l), B, E() +E()

e1—es —e1—es
(0) (0) 1) _ (0 (0) (0)
Es = Eel ez E62 e3 + E—el —e2? Ey E62 e3 Ee3 eq4 Ee3+e4 (61)
(0) (0)
E - E63 eq E63+64 ’

for GV . The first element E; is obviously in kernel of EMV) | while Es, E5, Ey, E5 span the
image of EM). One can check that

e1F1 +eoFs+e3FEs+e4FEy+e5F5 =0 — €1 =eg=¢e3=¢e4=¢5=0,

and the same basic relation for the V-basis.
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B Main expressions of of the zero-curvature calculation

The coefficients M;,i = 1, ...,4 of the matrix D@ defined in expressions @), are explicitly
given by solving the grade 3 equation (4)):

€ +z—: €1 — €
My = (€1 2)(¢1+¢2+¢3) (1272)%,
€1 t+e €1 —€
My = (1272)(—@ + ¢2 + ¢3) + %Qﬁl ;
(e1+e2) —i—&?) (e1 —&9) (62)
My = "2 (fo+ d3 + 1) — %%,
€1 t+e €1 —€
My = (1272)(—% + ¢2 + ¢3) + %%-
The coefficients d;,i = 2,...,5 of the grade one element D) along the basis elements

E;,i=2,...E5 given in expressions (6I]) are obtained from the grade 2 component of the
zero curvature equations (II) to be

dy = —M (P12 + 02 01) — E1—e) (P34 — 0204) ,
ds = (e1 252) (—otps + ¢35 — 265 — 65 + 267 + 305(d2 + ¢3)) — @%QM,
(61 +&2) (€1 — &2) (03)
dy = g (pagps — 3 + ¢T — 203 + 205 + 30, (2 + ¢3)) +%¢1¢4,
ds = Er1te) + 2) (P304 — 0204) + L;@) (P12 + 02 01)

The components of [Ag, D] = 322, C;E; can be calculated as

Cy = —¢1dy — pady — ¢1d3,

2 1 1 1 2 1

C3 = —¢ady — - P1da — - ¢ad3 — s ¢3d3 — s Pads + S P3ds + 5 Pads
3 3 3 3 3 3 (64)
1 2 1 1 1 2

Cy = —¢p3dy — §¢1d2 - §¢2d3 + §¢3d3 + §¢2d4 + §¢3d4 + §¢4d5 ,

Cs = —¢ady + Qady + ¢3ds .
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Inserting these values of d; and C; into equation (III) we obtain

n=1 T ) 00(63 4 65+ 63— 6) + 2010405+ 26) + 20%61)
+ (El ; 62) (—¢2¢3¢4 + (252(9;(;(]54 + ax(¢3¢4) - a£¢4) )

vy = (81 Z 22) (Z a2 + 02+ 02 — 82) + 204004 + 2hs + 63)0u 3 — Ab1nos — 2022 + ba)
) 46360~ 010u00).

vy = ELEE 661 63+ 63— 63) + 104001 — 2000 + 03)0ur — 210,01 — 202 + )
— (21 ; €2) (P10204 + P10:¢1) ,

=8 I 2 (L5463 + 63 + 6% — 63) — 26040202 + 260) + 20%04)
_ (& ; €2) (p12¢3 + P30.01 + Op(P102) + D2¢n1) .

We can now insert the above values v; into the t3 flow expression (I3]) to obtain

0 = 0. 0634 3 + 68— 6) + 2601005 + 26) + 20000)]
+ 0.2 a3 + 0atu + 0ulonon) — 0)].
00 = D[ (063 1 634 6% — )+ 2040001 + 2000 + 65)0us — 4D — 20202+ )
0.0 (40101 - 010000)].
01,03 = 0, [ T % (5(6% + 63+ 63— ) + 4610001 — 202 + 65)0:02 — 20101 — 2026+ 63))]
0. (40160 + 64001)]
000 = 0[P (04063 1 63+ 6% — D) — 2040400 + 209) + 20261)]
+ 0.2 (10300 — 03t — ulr6) — 201)].
(6)
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