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Abstract

We search and classify two-component versions of the quad equations in the ABS
list, under certain assumptions. The independent variables will be called y, z and in
addition to multilinearity and irreducibility the equation pair is required to have the
following specific properties: (1) The two equations forming the pair are related by
y ↔ z exchange. (2) When z = y both equations reduce to one of the equations in
the ABS list. (3) Evolution in any corner direction is by a multilinear equation pair.
One straightforward way to construct such two-component pairs is by taking some
particular equation in the ABS list (in terms of y), using replacement y ↔ z for some
particular shifts, after which the other equation of the pair is obtained by property
(1). This way we can get 8 pairs for each starting equation. One of our main results
is that due to condition (3) this is in fact complete for H1, H3, Q1, Q3. (For H2 we
have a further case, Q2, Q4 we did not check.) As for the CAC integrability test,
for each choice of the bottom equations we could in principle have 82 possible side-
equations. However, we find that only equations constructed with an even number
of y ↔ z replacements are possible, and for each such equation there are two sets of
“side” equation pairs that produce (the same) genuine Bäcklund transformation and
Lax pair.

1 Introduction

Within the topic of integrable discrete systems [14], equations that can be defined on a
single quadrilateral of the Cartesian Z× Z lattice have been studied in great detail. One
common equation type is defined by the following:

Definition. 1. [Acceptable one-component quad equations]

1.1 The equation depends on all corner variables of the elementary quadrilateral.

1.2 The equation is affine linear in each corner variable.
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Figure 1. Corner variables on an elementary quadrilateral.

1.3 The equation is irreducible.

1.4 Uniformity: Every quadrilateral in the plane carries the same equation (depending
on corresponding corner variables)

The geometric description is in Figure 1: subscript m labels the points in the vertical
direction and n in the horizontal direction. The lattice parameters p, q are associated with
horizontal and vertical directions, respectively. In practice we use shorthand notation in
which a shift in the n-direction is indicated by a tilde, and in the m-direction by a hat

un,m = u, un+1,m = ũ, un,m+1 = û, un+1,m+1 = ̂̃u.

If the conditions in Definition 1 are satisfied one can define evolution starting from
staircase- or corner-like initial conditions.

For lattice equations a necessary property for integrability is “Multidimensional Consis-
tency”. It means that the equations can be consistently extended into higher dimensions,
which is related to the existence of a hierarchy of integrable continuous equations ([14],
Sec 3.2). For 2D quad equations it means in practice Consistency-Around-a-Cube (CAC),
that is, the original quad equation can be put on a 3D cube in a consistent way. Con-
sider Figure 2 and assume that the original 2D lattice equation is on the bottom of the
cube. Certain modifications of that equation are then placed on the back and left sides.
Typically these equations are obtained by cyclic permutation:

˜ → ̂ → →˜ p → q → r → p n → m → k → n (1)

where we have also introduced a bar to denote shift in the vertical direction, where steps
are counted by k : un,m,k+1 = u. The equations on the opposing sides are obtained by the
perpendicular shift. We then have 6 equations

bottom: Q12(u, ũ, û, ̂̃u; p, q) = 0. top: Q12(u, ũ, û, ̂̃u; p, q) = 0, (2a)

back: Q23(u, û, u, û; q, r) = 0, front: Q23(ũ, ̂̃u, ũ, ̂̃u; q, r) = 0, (2b)

left: Q31(u, u, ũ, ũ; r, p) = 0, right: Q31(û, û, ̂̃u, ̂̃u; r, p) = 0. (2c)

The consistency problem arrives as follows: Take u, ũ, û, u as initial values, then from
bottom, back and left equations we can compute the values of ̂̃u, û and ũ, respectively.
After these are substituted into the top, front and right equations we get independently 3

values for ̂̃u and these values must be the same. This introduces severe conditions.
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Figure 2. The consistency cube.

Several isolated examples of integrable quad-equations were found already in the 1980s
by considering continuous equations and the permutability property of their Bäcklund
transformations ([14], Sec. 2.4-5). A major development in this field was the classification
of integrable quad-equations by Adler, Bobenko and Suris [1], under the assumptions of
D4 symmetry and the “tetrahedron property”. (The tetrahedron property was essential
in the classification work. It states that the triply shifted quantity computed in three
ways from (2) does not depend on u.) The result of this classification is the so-called
“ABS-list”, its main components being the H and Q lists:

H-list

H1 : (u− ̂̃u)(û− ũ) = p2 − q2 (3a)

H2 : (u− ̂̃u)(ũ− û) = (p− q)(u+ ũ+ û+ ̂̃u) + p2 − q2 (3b)

H3 : p(uũ+ û̂̃u)− q(uû+ ũ̂̃u) = δ2(p2 − q2) (3c)

Q-list:

Q1 : p(u− û)(ũ− ̂̃u)− q(u− ũ)(û− ̂̃u) = δ2pq(q − p) (4a)

Q2 : p(u− û)(ũ− ̂̃u)− q(u− ũ)(û− ̂̃u) + pq(p− q)(u+ ũ+ û+ ̂̃u)
= pq(p− q)(p2 − pq + q2) (4b)

Q3 : p(1− q2)(uû+ ũ̂̃u)− q(1− p2)(uũ+ û̂̃u)

= (p2 − q2)

(
(ûũ+ û̃u) + δ2

(1− p2)(1− q2)

4pq

)
(4c)

Q4 from [11] : sn(α)(uũ+ û̂̃u)− sn(β)(uû+ ũ̂̃u)− sn(α− β)(ũû+ û̃u)
+k sn(α)sn(β)sn(α− β)(1 + uũû̂̃u) = 0. (4d)

However, it is well known that there are other CAC-compatible equations if some con-
ditions used by ABS are relaxed, for example ̂̃uu− ũ û = 0, which breaks the tetrahedron
condition.
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One of the assumptions used to generate the ABS list was that equations on opposing
sides are related by the corresponding shift, as can be seen in (2). This assumption was
relaxed in the work of Boll [3, 4], while still keeping the tetrahedron property. On the
other hand, in the classification of Hietarinta [13] the tetrahedron assumption was not
made but the search was restricted to equations that were quadratic homogeneous.

When we have a set of consistent equations on the sides of the cube one can use the
“side” equations to construct a Lax pair or a Bäcklund transformation, which should
generate the “bottom” equation (see e.g., [14], Sec. 3.3). But in [13] it was found that
many equations can pass the CAC test without being integrable, in other words, sometimes
the Lax pair generated from the side equations is trivial. This means that CAC is only a
necessary test and must be verified by the existence of a genuine Lax or Bäcklund pair.

2 Previous work on two-component equations

Multi-component quad equations have also been studied and various types of equations
have been proposed. For example discrete versions of the Boussinesq equations have
been proposed, often in three-component form [12], but after eliminating one variable one
obtains in some cases a two component form still on the elementary quadrilateral (e.g.,
[18], (4.8)). Several two-component equations were also proposed in [8]. However, none of
these equations satisfy the exchange conditions 2.2 in Definition 2 below.

Furthermore in this paper we restrict our attention to equations that can be considered
as multi-component generalizations of the equations in the ABS-list. One such equation
was given in [5] (table 5, with name change x→ y, y → z)

{
(y − ̂̃y)(z̃ − ẑ)− p2 + q2 = 0,

(z − ̂̃z)(ỹ − ŷ)− p2 + q2 = 0.
(5)

Clearly the limit z → y (for any shift: none, tilde, hat, tilde-hat) takes both equations to
H1. Furthermore the equations are related by y ↔ z exchange for all shifts. Also note
that in the first equation the once shifted variables have been changed by y → z.

Is this equation integrable? At least it should have the CAC property. With (5) as
the bottom equation we have to choose the side equations. It would be natural to try the
cyclic rule (1), which produces

bottom:

{
(y − ̂̃y)(z̃ − ẑ) + q − p = 0,

(z − ̂̃z)(ỹ − ŷ) + q − p = 0,
(6a)

back:

{
(y − ŷ)(ẑ − z) + r − q = 0,

(z − ẑ)(ŷ − y) + r − q = 0,
(6b)

left:

{
(y − ỹ)(z − z̃) + p− r = 0,

(z − z̃)(y − ỹ) + p− r = 0.
(6c)

This indeed passes the CAC test with the triply shifted variables being

̂̃y =
pỹ(y − ŷ) + qŷ(−y + ỹ) + ry(ŷ − ỹ)

p(y − ŷ) + q(−y + ỹ) + r(ŷ − ỹ)
, (7a)

̂̃z =
pz̃(z − ẑ) + qẑ(−z + z̃) + rz(ẑ − z̃)

p(z − ẑ) + q(−z + z̃) + r(ẑ − z̃)
. (7b)



]ocnmp[ Two-component versions of lattice equations 17

Note that this has the tetrahedron property (no unshifted y, z) and that the y and z
variables are separated in the final formulae.

The above construct in which variables with an odd number of shifts are exchanged,
was described already in [2] as Toeplitz extension. It was generalized to all the equations
in the ABS list in [9] by the same rule: exchanging the singly shifted variables, see also
[16]. This approach was developed further by including other replacements by symmetry
arguments [19]. Another approach in deriving multi-component versions of the ABS list
was given in [17] where such equations were derived by from the star-triangle relations.

One result in [19] was the following two-component version of H1 (Eqs. (2.25), (2.28),(2.29))
consisting of

bottom:

{
(z − ̂̃y)(z̃ − ŷ) + q − p = 0,

(y − ̂̃z)(ỹ − ẑ) + q − p = 0,
(8a)

back:

{
(z − ŷ)(ŷ − z) + r − q = 0,

(y − ẑ)(ẑ − y) + r − q = 0,
(8b)

left:

{
(y − ỹ)(y − ỹ) + p− r = 0,

(z − z̃)(z − z̃) + p− r = 0,
(8c)

Here the bottom and back equations are related by cyclic permutation, but the left equa-
tion is of entirely different type, in fact separating the y and z variables. This peculiar
combination passes the CAC test, and the triply shifted variables are

̂̃y =
pz̃(ŷ − z) + qŷ(z − z̃) + rz(−ŷ + z̃)

p(ŷ − z) + q(z − z̃) + r(−ŷ + z̃)
, (9a)

̂̃z = pỹ(y − ẑ) + qẑ(−y + ỹ) + ry(−ỹ + ẑ)

p(y − ẑ) + q(−y + ỹ) + r(−ỹ + ẑ)
, (9b)

and they have the tetrahedron property.

3 Classification of two-component generalizations of the ABS

list

The puzzling triplet (8) suggests that there may be interesting phenomena specific for two-
component equations. The purpose of this paper is to search and classify such equations.

3.1 The domain of the search

Since the fully generic case of the problem is too hard to tackle we restrict our attention
to equation pairs with the following properties:

Definition. 2 [Acceptable two-component quad equations]

2.1 Both equations of the pair are affine multilinear and irreducible.

2.2 Exchange rule: The two equations that form the pair are related by the exchange
rule y ↔ z, ỹ ↔ z̃, ŷ ↔ ẑ, ̂̃y ↔ ̂̃z.
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2.3 Evolution: From the pair of equations one can solve for any of the corner variable
pairs {y, z}, {ỹ, z̃}, {ŷ, ẑ}, {̂̃y, ̂̃z}

2.4 Strong multilinearity: When any resolved variable pair is written as a pair of poly-
nomial equations, the polynomials are again multilinear and irreducible.

Remarks:

• We use • to indicate when the exchange rule 2.2 has been applied, That is, if B is

obtained from A by the exchange rule we write B =
•

A. Obviously (
•

A )
•

= A.

• Multilinearity does not imply unique evolution. Consider the pair

ẑ̃y + ŷẑ + 2ŷz̃ + z̃ỹ = 0,

ŷ̃z + ŷẑ + 2ẑỹ + z̃ỹ = 0.

As given it is resolved for {̂̃y, ̂̃z} and for {y, z}. However, if one tries solve for {ỹ, z̃}
or {ŷ, ẑ} there will be square roots and therefore evolution in the NW or SE direction
is not uniquely determined. Note also that the one-component reduction of this pair
is not multilinear.

• Multilinearity does not imply strong multilinearity. Consider the pair of equations

(2y − z − ̂̃y)(2ẑ − ŷ − 2z̃ + ỹ) = p2 − q2,

(2z − y − ̂̃z)(2ŷ − ẑ − 2ỹ + z̃) = p2 − q2,

which is resolved for ̂̃y, ̂̃z. It is obviously multilinear and reduces to H1. When this
pair is solved for {ỹ, z̃} one obtains the pair

3(ŷ − ỹ)(2y − ̂̃y − z)(y − 2z + ̂̃z) = (p2 − q2)(2̂̃y + ̂̃z − 3y),

3(ẑ − z̃)(2z − ̂̃z − y)(z − 2y + ̂̃y) = (p2 − q2)(2̂̃z + ̂̃y − 3z),

which is resolved for both {ỹ, z̃} and {ŷ, ẑ}. However, this is not multilinear because
y and z appear quadratically. (As a consequence, if we attempt to resolve for y, z
from this pair there is a superfluous solution.)

3.2 Results for acceptable pairs

Proposition 3.1. 1. For any given equation in the ABS list one can get a two component
version satisfying the conditions in Definition 2 by applying to the original equation any



]ocnmp[ Two-component versions of lattice equations 19

one of the following eight replacements

0 : none, (10a)

1 : y → z, (10b)

2 : ỹ → z̃, (10c)

3 : ŷ → ẑ, (10d)

4 : y → z, ỹ → z̃, (10e)

5 : y → z, ŷ → ẑ, (10f)

6 : ỹ → z̃, ŷ → ẑ, (10g)

7 : y → z, ỹ → z̃, ŷ → ẑ, (10h)

after which the other member of the pair is obtained by the exchange rule 2.2

2. For H1, H3, Q1 and Q3 this result is complete.

For H2 we have a counterexample on completeness, given below, while for Q2 and Q4
uniqueness is open.

Proof. 1. It is easy to verify that from an equation in the ABS list, any of the substitutions
(10) results in a pair satisfying all properties of Definition 2.

2. It is a bit more laborious to show that there are no others. For this purpose we
generate multilinear equations (with arbitrary coefficients) for all four resolutions, i.e.
equation pairs of the type

{
̂̃y L1(y, z, ỹ, z̃, ŷ, ẑ) + P1(y, z, ỹ, z̃, ŷ, ẑ) + C = 0,
̂̃z L1(z, y, z̃, ỹ, ẑ, ŷ) + P1(z, y, z̃, ỹ, ẑ, ŷ) + C = 0,

(11a)

{
ỹ L2(y, z, ŷ, ẑ, ̂̃y, ̂̃z) + P2(y, z, ŷ, ẑ, ̂̃y, ̂̃z) + C = 0,

z̃ L2(z, y, ẑ, ŷ, ̂̃z, ̂̃y) + P2(z, y, ẑ, ŷ, ̂̃z, ̂̃y) + C = 0,
(11b)

{
ŷ L3(y, z, ỹ, z̃, ̂̃y, ̂̃z) + P3(y, z, ỹ, z̃, ̂̃y, ̂̃z) + C = 0,

ẑ L3(z, y, z̃, ỹ, ̂̃z, ̂̃y) + P3(z, y, z̃, ỹ, ̂̃z, ̂̃y) + C = 0,
(11c)

{
y L4(ỹ, z̃, ŷ, ẑ, ̂̃y, ̂̃z) + P4(ỹ, z̃, ŷ, ẑ, ̂̃y, ̂̃z) + C = 0,

z L4(z̃, ỹ, ẑ, ŷ, ̂̃z, ̂̃y) + P4(z̃, ỹ, ẑ, ŷ, ̂̃z, ̂̃y) + C = 0,
(11d)

where Lj are linear and Pj quadratic multilinear polynomials in the indicated variables.
Next some coefficients in Lj, Pj are fixed by the condition that the z 7→ y reduction leads
to one of the equations H1, H3, Q1, Q3. This still leaves 3 free coefficients in each Lj and

9 in Pj. The pairs in (11) describe the same evolution and therefore if we solve {̂̃y, ̂̃z} from
(11a), say, and substitute to the other equations they should all vanish. This leads to 384
smallish equations, which can be solved by starting with the simplest ones and proceeding
step by step. This is not difficult, only tedious. For each of the equations H1, H3, Q1, Q3
the solution process eventually splits into eight branches as listed in (10). �
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3.2.1 H2

For H2 we found an equation that does not fit into the result of Proposition 3.1:

(̂̃y − (y + z)/2)(ŷ − ỹ + ẑ − z̃)

+ ν1 (y + ỹ + z + z̃ + 2 ǫ p)(ŷ − ẑ)

+ ν2 (y + ŷ + z + ẑ + 2 ǫ q)(ỹ − z̃)

+ ν3 (ŷ − ỹ + ẑ − z̃ − 2 ǫ (p − q))(y − z)

− ǫ (p − q)(2 ̂̃y + y + z + ŷ + ỹ + ẑ + z̃)

− 2ǫ2(p2 − q2) = 0, (12)

together with its z ↔ y reflection. This pair satisfies the strong multilinearity condition if
all parameters νi are nonzero. It reduces to H2 when all z = y, and clearly the parameters
νj disappear in this reduction. We do not know whether (12) is integrable or linearizable.

4 Integrability

4.1 Integrability by CAC

The example (6) shows that if one uses the replacement rule 6 and its cyclic variants for
the bottom back and left equations (which we denote as (6, 6, 6)) the system has CAC
property. On the other hand in example (8) the replacements are given by (4, 5, 0). The
question then arises as to which combinations among the 83 possibilities have the CAC
property. The result is as follows:

Proposition 4.1. For each equation in the ABS list the following eight replacement rules
have the CAC property: (0,0,0), (0,4,5), (4,5,0), (4,6,5), (5,0,4), (5,4,6), (6,5,4), (6,6,6),
where the numbers in the triplet are the replacement rules used for bottom, back, and
left equations on the cube. The rules given in (10) must be modified cyclically to fit the
corresponding side. The top, front and right equations are obtained by a perpendicular
shift.

Proof. By direct computation. Since there are no free parameters the computations for
the 512 cases are easy to automatize. �

Remarks:

• The only replacements appearing in the list are 0,4,5,6, which correspond to replace-
ments of even number of variables.

• The cases (0,4,5), (4,5,0), (5,0,4), are related by rotation around the (y, z) − (̂̃y, ̂̃z)
axis, the same holds for (4,6,5), (6,5,4), (5,4,6). There are therefore only four essen-
tially different triplets.

• The fact that there are two kinds of side equation pairs for each bottom equation pair
follows from the y ↔ z symmetry. For if we do this exchange only on the variables
with a bar-shift, the top pair does not change (and neither does the bottom pair),
but the side equations will change.
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• Our end result agrees with the result of [19], which was derived by an entirely
different approach.

4.2 Decoupling

It is easy to see that in the (0,0,0) case the equations are decoupled, since in each pair one
equation depends only on the y variables and the other only on the z variables. We will
now look whether the other sets can also be decoupled somehow.

Since the CAC analysis is completely algebraic the variable names do not matter:
instead of y, z, ỹ, z̃, ŷ, . . . we could have used a, b, c, d, . . . and the algebra would have been
the same.

In the case of (4,5,0) given in (8) we see that (8c) is already decoupled and we can
separate variables into two set, Sa = {y, ỹ, y, ỹ} and Sb = {z, z̃, z, z̃}. Insisting that any
particular equation depends only on variables from one set, we can augment these sets
using (8) and its shifted version to

(4, 5, 0) : Sa = {y, ỹ, y, ỹ, ẑ, ẑ, ̂̃z, ̂̃z}, Sb = {z, z̃, z, z̃, ŷ, ŷ, ̂̃y, ̂̃y}. (13a)

Thus there are 6 equations depending on variables from Sa and they satisfy CAC all be
themselves, similarly for Sb. It seems that all equations that pass the CAC test do decouple
in the described manner. For example while (6,5,4) passes CAC and decouples, (6,4,5)
does not decouple nor pass CAC. The sets for the other integrable combinations are as
follows:

(0, 0, 0) : Sa = {y, ỹ, y, ỹ, ŷ, ŷ, ̂̃y, ̂̃y}, Sb = {z, z̃, z, z̃, ẑ, ẑ, ̂̃z, ̂̃z}, (13b)

(6, 5, 4) : Sa = {y, z̃, y, z̃, ẑ, ẑ, ̂̃y, ̂̃y}, Sb = {z, ỹ, z, ỹ, ŷ, ŷ, ̂̃z, ̂̃z}, (13c)

(6, 6, 6) : Sa = {y, z̃, z, ỹ, ẑ, ŷ, ̂̃y, ̂̃z}, Sb = {z, ỹ, y, z̃, ŷ, ẑ, ̂̃z, ̂̃y}. (13d)

These can be described as follows: (0,0,0) is decoupled as it stands; (4,5,0) is decoupled
if for odd number of hat-shits we exchange z ↔ y; (6,5,4) can be decoupled if for odd
total number of tilde and hat-shifts we exchange, while bar shift has no effect; for (6,6,6)
exchange is needed when the total number of all kinds of shifts is odd.

If the exchanges needed for decoupling are transferred to a property of the lattice
itself, then for (0,0,0) the lattice is uniform; for (4,5,0) we should change the lattice on
alternate planes in the hat direction; for (6,5,4) we have checkerboard lattice in tilde
and hat direction without change in bar direction; for (6,6,6) we need a lattice that is
alternating in every direction.

The possibility of decoupling follows in part from our assumption that the two equations
are related by y ↔ z replacement. But there are other two-component equation pairs for
which decoupling is not possible, for example the discrete Boussinesq equation given e.g. as
the pair (3.3) of [15] has w̃, z̃, ŵ, ẑ in both equations of the pair.

The above decoupling approach explains the algebra quite well, but in practice the
variables are not featureless symbols but the tilde-hat-bar decorations have a dynamic
meaning. That is, if we have a solution y = y(n,m, k), z = z(n,m, k) for the set of
equations then ŷ, ẑ are obtained by changing m → m + 1 in the concrete formula for y
and z. If the y and z solutions are different (for example solitons traveling in different
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directions) it may be better to keep the dependent variables uncoupled and the equations
coupled than vice versa.

4.3 Integrability by BT

It has been observed that CAC is necessary but not always sufficient for integrability [13].
However, the existence of a genuine Bäcklund Transformation (BT) (or equivalently, a
nontrivial Lax pair) is a proof of integrability.

Proposition 4.2. For each equation in the ABS list the following eight replacement rules
(0,0,0), (0,4,5), (4,5,0), (5,0,4), (4,6,5), (6,5,4), (5,4,6), (6,6,6), generate a genuine BT.
That is, if one assigns any of the listed triplet replacements on the bottom, back, and left
pairs of equations (or their cyclic permutations), then one can freely choose two pairs of
“side” equations for BT and together with their perpendicular shift equations they generate
by variable elimination the third pair.

For example if the bottom pair is generated by replacement 5, back pair by 4 then they
together generate left pair of type 6, after three of the four variables on the right pair are
eliminated. The same left pair is also generated if bottom and back equations are both
generated by replacement 6.

4.4 The Lax pair

One of the more important proofs of integrability is by construction of a Lax pair. But
here one must note that there are “fake” Lax pairs [7, 13] and therefore one must verify
that the Lax pair is genuine and able to generate the equation(s) in question. The general
formula for constructing Lax pairs from a CAC consistent system is given e.g., in [14]
Section 3.3.1, and furthermore there are now even computer programs that can do that
[5, 6].

It is perhaps sufficient to consider an example, for which we choose type 5 Q1. As
noted before type 5 bottom equation goes together with side equations 4,6 as well as 0,4.

4.4.1 Example: Q1, sides 4,6 generate bottom 5

We construct the Lax pair for Q1;5 from a back equation pair of type 4

q(z − y)(ẑ − ŷ)− r(z − ẑ)(y − ŷ) = δ2qr(r − q), (14a)

q(y − z)(ŷ − ẑ)− r(y − ŷ)(z − ẑ) = δ2qr(r − q), (14b)

and a left equation of type 6

r(y − z̃)(z − ỹ)− p(y − z)(z̃ − ỹ) = δ2rp(p− r), (14c)

r(z − ỹ)(y − z̃)− p(z − y)(ỹ − z̃) = δ2rp(p− r), (14d)

Together they should generate a bottom equation of type 5, i.e.,

p(z − ẑ)(ỹ − ̂̃y)− q(z − ỹ)(ẑ − ̂̃y) = δ2pq(q − p), (14e)

p(y − ŷ)(z̃ − ̂̃z)− q(y − z̃)(ŷ − ̂̃z) = δ2pq(q − p). (14f)
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In order to construct the Lax pair we solve the first 4 equations of (14) for the double
shifted quantities and then replace the barred quantities as follows:

y =
f

k
, z =

g

l
, ỹ =

f̃

k̃
, z̃ =

g̃

l̃
, ŷ =

f̂

k̂
, ẑ =

ĝ

l̂
.

For the left equations this leads to

f̃

k̃
=

g[pz̃ + r(y − z̃)] + pl[δ2r(r − p)− yz̃]

pg + l[−py + r(y − z̃)]
, (15a)

g̃

g̃
=

f [pỹ + r(z − ỹ)] + pk[δ2r(r − p)− zỹ]

pf + k[−pz + r(z − ỹ)]
. (15b)

These can be written in matrix form

ψ̃ = LQ1;6 ψ where ψ = (f, k, g, l)T and LQ1;6 =

(
0 L
•

L 0

)
with (16a)

L = λ

(
pz̃ + r(y − z̃) p[δ2r(r − p)− yz̃]

p −py + r(y − z̃)

)
, (16b)

where the parameter λ is the splitting factor (and may depend on y, z̃ and therefore it is

possible that λ 6=
•

λ).

Similarly, from the back equation we get

ψ̂ = MQ1;4 ψ where MQ1;4 =

(
M 0

0
•

M

)
with (17a)

M = κ

(
qẑ + r(z − ẑ)] q[δ2r(r − q)− zẑ]

q −qz + r(z − ẑ)]

)
. (17b)

The commutativity condition L̂M = M̃L now implies

L̂
•

M = M̃L, or equivalently
•

L̂M =
•

M̃
•

L.

In order to get the equations from this we have to fix the separations constants λ, κ. One
elegant way to do that is to require detL = detM = 1. Here it leads to

λ2 =1/[(δ2p2 − (y − z̃)2)(p − r)r],
•

λ
2
= 1/[(δ2p2 − (z − ỹ)2)(p− r)r], (18a)

κ2 =1/[(δ2q2 − (y − ŷ)2)(q − r)r],
•

κ2 = 1/[(δ2p2 − (z − ẑ)2)(q − r)r]. (18b)

From these one can relatively easily derive (κ̃
•

κ q)2 = (λλ̂p)2, but in practice we need

κ̃
•

κ q = λλ̂p, (19)

and its exchanged version, in order to derive the bottom Q1; 5-equation. (The apparent
asymmetry in (19) is due to the block structure of the Lax matrices).



24 ]ocnmp[ Jarmo Hietarinta

4.4.2 Example: Q1, sides 0,4 generate bottom 5

A back equation pair of type 0 is given by

q(y − y)(ŷ − ŷ)− r(y − ŷ)(y − ŷ) = δ2qr(r − q), (20a)

q(z − z)(ẑ − ẑ)− r(z − ẑ)(z − ẑ) = δ2qr(r − q), (20b)

and a left equation of type 4

r(z − ỹ)(z − ỹ)− p(z − z)(ỹ − ỹ) = δ2rp(p− r), (20c)

r(y − z̃)(y − z̃)− p(y − y)(z̃ − z̃) = δ2rp(p− r). (20d)

Now comparing equations (14) and (20) we find that the sets are the same if we exchange
all barred quantities and only them: y ↔ z, ỹ ↔ z̃, ŷ ↔ ẑ. From the Lax matrix point of
view this means permuting the blocks, i.e.,

LQ1;0 =

(
0

•

L

L 0

)
, MQ1;5 =

(
•

M 0

0 M

)
,

while keeping the previous definitions (16b) and (17b). Thus we end up with the same
conditions.

5 Conclusions

In this paper we have searched for two-component versions of the equations in the ABS
list. In addition to the standard assumptions placed on quad equations we assumed the
following (the dependent variables are named y, z)

1. The two equations forming the pair are related by y ↔ z exchange (for all shifts).

2. When z = y both equations reduce to one of the equations in the ABS list.

3. Evolution in any corner direction is by a pair of multilinear equations.

Condition 3 in more detail: one must be able to solve for any corner variable pair (e.g., ỹ =
A/B, z̃ = C/D) and when this is written as equations (e.g., Bỹ−A = 0, Dz̃−C = 0) they
must be multilinear in all of the dependent variables. We call this strong multilinearity.

The above conditions turn out to be quite strong and as a result we found that the
only possibility is that the pair of equations is obtained from the original one component
equation by a simple replacement (Proposition 3.1), the only caveats are H2, for which we
have a counterexample, and Q2 and Q4 which we did not check.

Since one can get several candidate pairs for each original equation there rises a ques-
tion related to multidimensional consistency, namely how we should populate the sides of
the consistency cube. We found eight combinations that satisfy the CAC-condition, as
described in Proposition 4.1. Our end result is essentially the same as the one obtained
in [19] by symmetry arguments. Note also that if the CAC condition is satisfied for some
bottom equation, it is satisfied with two different sets of side equations. Also, both pairs of
side equations work as a Bäcklund transformations generating the same bottom equation,
and from both pairs one gets the same Lax pair. We gave the details for Q1 of type 5.

With the above equations one can ask some natural questions which include: what are
their semi-continuous and fully continuous limits, and what are their soliton solutions, in
particular how do the different components of a soliton solution interact.
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