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Abstract

Many integrable hierarchies of differential equations allow a variational description,
called a Lagrangian multiform or a pluri-Lagrangian structure. The fundamental
object in this theory is not a Lagrange function but a differential d-form that is
integrated over arbitrary d-dimensional submanifolds. All such action integrals must
be stationary for a field to be a solution to the pluri-Lagrangian problem. In this paper
we present a procedure to obtain Hamiltonian structures from the pluri-Lagrangian
formulation of an integrable hierarchy of PDEs. As a prelude, we review a similar
procedure for integrable ODEs. We show that the exterior derivative of the Lagrangian
d-form is closely related to the Poisson brackets between the corresponding Hamilton
functions. In the ODE (Lagrangian 1-form) case we discuss as examples the Toda
hierarchy and the Kepler problem. As examples for the PDE (Lagrangian 2-form)
case we present the potential and Schwarzian Korteweg-de Vries hierarchies, as well
as the Boussinesq hierarchy.

1 Introduction

Some of the most powerful descriptions of integrable systems use the Hamiltonian for-
malism. In mechanics, Liouville-Arnold integrability means having as many independent
Hamilton functions as the system has degrees of freedom, such that the Poisson bracket
of any two of them vanishes. In the case of integrable PDEs, which have infinitely many
degrees of freedom, integrability is often defined as having an infinite number of com-
muting Hamiltonian flows, where again each two Hamilton functions have a zero Poisson
bracket. In addition, many integrable PDEs have two compatible Poisson brackets. Such
a bi-Hamiltonian structure can be used to obtain a recursion operator, which in turn is
an effective way to construct an integrable hierarchy of PDEs.

In many cases, especially in mechanics, Hamiltonian systems have an equivalent La-
grangian description. This raises the question whether integrability can be described from
a variational perspective too. Indeed, a Lagrangian theory of integrable hierarchies has
been developed over the last decade or so, originating in the theory of integrable lattice
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equations (see for example [14], [3], [12, Chapter 12]). It is called the theory of La-
grangian multiform systems, or, of pluri-Lagrangian systems. The continuous version of
this theory, i.e. its application to differential equations, was developed among others in
[26, 28]. Recently, connections have been established between pluri-Lagrangian systems
and variational symmetries [18, 19, 22] as well as Lax pairs [21].

Already in one of the earliest studies of continuous pluri-Lagrangian structures [26],
the pluri-Lagrangian principle for ODEs was shown to be equivalent to the existence of
commuting Hamiltonian flows (see also [24]). In addition, the property that Hamilton
functions are in involution can be expressed in Lagrangian terms as closedness of the
Lagrangian form. The main goal of this work is to generalize this connection between
pluri-Lagrangian and Hamiltonian structures to the case of integrable PDEs.

A complementary approach to connecting pluri-Lagrangian structures to Hamiltonian
structures was recently taken in [6]. There, a generalisation of covariant Hamiltonian field
theory is proposed, under the name Hamiltonian multiform, as the Hamiltonian coun-
terpart of Lagrangian multiform systems. This yields a Hamiltonian framework where
all independent variables are on the same footing. In the present work we obtain classi-
cal Hamiltonian structures where one of the independent variables is singled out as the
common space variable of all equations in a hierarchy.

We begin this paper with an introduction to pluri-Lagrangian systems in Section 2.
The exposition there relies mostly on examples, while proofs of the main theorems can be
found in Appendix A. Then we discuss how pluri-Lagrangian systems generate Hamiltonian
structures, using symplectic forms in configuration space. In Section 3 we review this
for ODEs (Lagrangian 1-form systems) and in Section 4 we present the case of (1 + 1)-
dimensional PDEs (Lagrangian 2-form systems). In each section, we illustrate the results
by examples.

2 Pluri-Lagrangian systems

A hierarchy of commuting differential equations can be embedded in a higher-dimensional
space of independent variables, where each equation has its own time variable. All equa-
tions share the same space variables (if any) and have the same configuration manifold Q.
We use coordinates t1, t2, . . . , tN in the multi-time M = RN . In the case of a hierarchy
of (1 + 1)-dimensional PDEs, the first of these coordinates is a common space coordinate,
t1 = x, and we assume that for each i ≥ 2 there is a PDE in the hierarchy expressing
the ti-derivative of a field u : M → Q in terms of u and its x-derivatives. Then the
field u is determined on the whole multi-time M if initial values are prescribed on the
x-axis. In the case of ODEs, we assume that there is a differential equation for each of the
time directions. Then initial conditions at one point in multi-time suffice to determine a
solution.

We view a field u : M → Q as a smooth section of the trivial bundle M ×Q, which has
coordinates (t1, . . . , tN , u). The extension of this bundle containing all partial derivatives
of u is called the infinite jet bundle and denoted by M × J∞. Given a field u, we call
the corresponding section JuK = (u, uti , utitj , . . .) of the infinite jet bundle the infinite jet
prolongation of u. (See e.g. [1] or [17, Sec. 3.5].)

In the pluri-Lagrangian context, the Lagrange function is replaced by a jet-dependent
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d-form. More precisely we consider a fiber-preserving map

L : M × J∞ →
∧d(T ∗M).

Since a field u : M → Q defines a section of the infinite jet bundle, L associates to it a
section of

∧d(T ∗M), that is, a d-form LJuK. We use the square brackets JuK to denote
dependence on the infinite jet prolongation of u. We take d = 1 if we are dealing with
ODEs and d = 2 if we are dealing with (1 + 1)-dimensional PDEs. Higher-dimensional
PDEs would correspond to d > 2, but are not considered in the present work. (An example
of a Lagrangian 3-form system, the KP hierarchy, can be found in [22].) We write

LJuK =
∑
i

LiJuK dti

for 1-forms and

LJuK =
∑
i,j

LijJuK dti ∧ dtj

for 2-forms.

Definition 2.1. A field u : M → Q is a solution to the pluri-Lagrangian problem for the
jet-dependent d-form L, if for every d-dimensional submanifold Γ ⊂M the action

∫
Γ LJuK

is critical with respect to variations of the field u, i.e.

d

dε

∫
Γ
LJu+ εvK

∣∣∣∣
ε=0

= 0

for all variations v : M → Q such that v and all its partial derivatives are zero on ∂Γ.

Some authors include in the definition that the Lagrangian d-form must be closed when
evaluated on solutions. That is equivalent to requiring that the action is not just critical on
every d-submanifold, but also takes the same value on every d-submanifold (with the same
boundary and topology). In this perspective, one can take variations of the submanifold Γ
as well as of the fields. We choose not to include the closedness in our definition, because
slightly weaker property can be obtained as a consequence Definition 2.1 (see Proposition
A.2 in the Appendix). Most of the authors that include closedness in the definition use
the term “Lagrangian multiform” (e.g. [14, 12, 32, 33, 22]), whereas those that do not
tend to use “pluri-Lagrangian” (e.g. [4, 5, 27]). Whether or not it is included in the
definition, closedness of the Lagrangian d-form is an important property. As we will see
in Sections 3.4 and 4.4, it is the Lagrangian counterpart to vanishing Poisson brackets
between Hamilton functions.

Clearly the pluri-Lagrangian principle is stronger than the usual variational principle
for the individual coefficients Li or Lij of the Lagrangian form. Hence the classical Euler-
Lagrange equations are only a part of the system equations characterizing a solution to
the pluri-Lagrangian problem. This system, which we call the multi-time Euler-Lagrange
equations, was derived in [28] for Lagrangian 1- and 2-forms by approximating an arbitrary
given curve or surface Γ by stepped curves or surfaces, which are piecewise flat with tangent
spaces spanned by coordinate directions. In Appendix A we give a more intrinsic proof
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that the multi-time Euler-Lagrange equations imply criticality in the pluri-Lagrangian
sense. Yet another proof can be found in [23].

In order to write the multi-time Euler-Lagrange equations in a convenient form, we
will use the multi-index notation for (mixed) partial derivatives. Let I be an N -index,
i.e. a N -tuple of non-negative integers. We denote by uI the mixed partial derivative of
u : RN → Q, where the number of derivatives with respect to each ti is given by the
entries of I. Note that if I = (0, . . . , 0), then uI = u. We will often denote a multi-index
suggestively by a string of ti-variables, but it should be noted that this representation is
not always unique. For example,

t1 = (1, 0, . . . , 0), tN = (0, . . . , 0, 1), t1t2 = t2t1 = (1, 1, 0, . . . , 0).

In this notation we will also make use of exponents to compactify the expressions, for
example

t32 = t2t2t2 = (0, 3, 0, . . . , 0).

The notation Itj should be interpreted as concatenation in the string representation, hence
it denotes the multi-index obtained from I by increasing the j-th entry by one. Finally, if
the j-th entry of I is nonzero we say that I contains tj , and write I 3 tj .

2.1 Lagrangian 1-forms

Theorem 2.2 ([28]). Consider the Lagrangian 1-form

LJuK =

N∑
j=1

LjJuK dtj ,

depending on an arbitrary number of derivatives of u. A field u is critical in the pluri-
Lagrangian sense if and only if it satisfies the multi-time Euler-Lagrange equations

δjLj
δuI

= 0 ∀I 63 tj , (1)

δjLj
δuItj

− δ1L1

δuIt1
= 0 ∀I, (2)

for all indices j ∈ {1, . . . , N}, where
δj
δuI

denotes the variational derivative in the direction
of tj with respect to uI ,

δj
δuI

=
∂

∂uI
− ∂j

∂

∂uItj
+ ∂2

j

∂

∂uItjtj
− · · · ,

and ∂j = d
dtj

.

Note the derivative ∂j equals the total derivative
∑

I uItj
∂
∂uI

if it is applied to a function
fJuK that only depends on tj through u. Using the total derivative has the advantage that
calculations can be done on an algebraic level, where the uI are formal symbols that do
not necessarily have an analytic interpretation as a derivative.
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Example 2.3. The Toda lattice describes N particles on a line with an exponential
nearest-neighbor interaction. We denote the displacement from equilibrium of the particles
by u = (q[1], . . . , q[N ]). We impose either periodic boundary conditions (formally q[0] = q[N ]

and q[N+1] = q[1]) or open-ended boundary conditions (formally q[0] =∞ and q[N+1] = −∞).

We will use q[k]j as shorthand notation for the derivative q[k]tj = dq[k]
dtj

. Consider the hierarchy

consisting of the Newtonian equation for the Toda lattice,

q[k]11 = exp
(
q[k+1] − q[k]

)
− exp

(
q[k] − q[k−1]

)
, (3)

along with its variational symmetries,

q[k]2 =
(
q[k]1

)2
+ exp

(
q[k+1] − q[k]

)
+ exp

(
q[k] − q[k−1]

)
,

q[k]3 =
(
q[k]1

)3
+ q[k+1]

1 exp
(
q[k+1] − q[k]

)
+ q[k−1]

1 exp
(
q[k] − q[k−1]

)
+ 2q[k]1

(
exp
(
q[k+1] − q[k]

)
+ exp

(
q[k] − q[k−1]

))
,

...

(4)

The hierarchy (3)–(4) has a Lagrangian 1-form with coefficients

L1 =
∑
k

(
1

2

(
q[k]1

)2 − exp
(
q[k] − q[k−1]

))
,

L2 =
∑
k

(
q[k]1 q

[k]

2 −
1

3

(
q[k]1

)3 − (q[k]1 + q[k−1]

1

)
exp
(
q[k] − q[k−1]

))
,

L3 =
∑
k

(
− 1

4

(
q[k]1

)4 − ((q[k+1]

1

)2
+ q[k+1]

1 q[k]1 +
(
q[k]1

)2)
exp
(
q[k+1] − q[k]

)
+ q[k]1 q

[k]

3 − exp
(
q[k+2] − q[k]

)
− 1

2
exp
(
2(q[k+1] − q[k])

))
,

...

See [18, 29] for constructions of this pluri-Lagrangian structure. The classical Euler-
Lagrange equations of these Lagrangian coefficients are

δ1L1

δq[k]
= 0 ⇔ q[k]11 = eq

[k+1]−q[k] − eq[k]−q[k−1]
,

δ2L2

δq[k]
= 0 ⇔ q[k]12 =

(
q[k]1 + q[k+1]

1

)
eq

[k+1]−q[k] −
(
q[k−1]

1 + q[k]1

)
eq

[k]−q[k−1]
,

...

We recover Equation (3), but for the other equations of the hierarchy we only get a
differentiated form. However, we do get their evolutionary form, as in Equation (4), from
the multi-time Euler-Lagrange equations

δ2L2

δq[k]1

= 0,
δ3L3

δq[k]1

= 0, · · · .

The multi-time Euler-Lagrange equations of type (2) are trivially satisfied in this case:
δjLj
δq

[k]
j

= q[k]1 for all j.
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2.2 Lagrangian 2-forms

Theorem 2.4 ([28]). Consider the Lagrangian 2-form

LJuK =
∑
i<j

LijJuK dti ∧ dtj ,

depending on an arbitrary number of derivatives of u. A field u is critical in the pluri-
Lagrangian sense if and only if it satisfies the multi-time Euler-Lagrange equations

δijLij
δuI

= 0 ∀I 63 ti, tj , (5)

δijLij
δuItj

− δikLik
δuItk

= 0 ∀I 63 ti, (6)

δijLij
δuItitj

+
δjkLjk
δuItjtk

+
δkiLki
δuItkti

= 0 ∀I, (7)

for all triples (i, j, k) of distinct indices, where

δij
δuI

=
∞∑

α,β=0

(−1)α+β∂αi ∂
β
j

∂

∂u
Itαi t

β
j

.

Example 2.5. A Lagrangian 2-form for the potential KdV hierarchy was first given in
[28]. It is instructive to look at just two of the equations embedded in R3. Then the
Lagrangian 2-form has three coefficients,

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3,

where t1 is viewed as the space variable. We can take

L12 = −u3
1 −

1

2
u1u111 +

1

2
u1u2,

L13 = −5

2
u4

1 + 5u1u
2
11 −

1

2
u2

111 +
1

2
u1u3,

where ui is a shorthand notation for the partial derivative uti , and similar notations are
used for higher derivatives. These are the classical Lagrangians of the potential KdV
hierarchy. However, their classical Euler-Lagrange equations give the hierarchy only in a
differentiated form,

u12 = 6u1u11 + u1111,

u13 = 30u2
1u11 + 20u11u111 + 10u1u1111 + u111111.

The Lagrangian 2-form also contains a coefficient

L23 = 3u5
1 −

15

2
u2

1u
2
11 + 10u3

1u111 − 5u3
1u2 +

7

2
u2

11u111 + 3u1u
2
111 − 6u1u11u1111

+
3

2
u2

1u11111 + 10u1u11u12 −
5

2
u2

11u2 − 5u1u111u2 +
3

2
u2

1u3 −
1

2
u2

1111

+
1

2
u111u11111 − u111u112 +

1

2
u1u113 + u1111u12 −

1

2
u11u13 −

1

2
u11111u2

+
1

2
u111u3
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which does not have a classical interpretation, but contributes meaningfully in the pluri-
Lagrangian formalism. In particular, the multi-time Euler-Lagrange equations

δ12L12

δu1
+
δ23L23

δu3
= 0 and

δ13L13

δu1
− δ23L23

δu3
= 0

yield the potential KdV equations in their evolutionary form,

u2 = 3u2
1 + u111,

u3 = 10u3
1 + 5u2

11 + 10u1u111 + u11111.

All other multi-time Euler-Lagrange equations are consequences of these evolutionary
equations.

This example can be extended to contain an arbitrary number of equations from the
potential KdV hierarchy. The coefficients L1j will be Lagrangians of the individual equa-
tions, whereas the Lij for i, j > 1 do not appear in the traditional Lagrangian picture.

Example 2.6. The Boussinesq equation

u22 = 12u1u11 − 3u1111 (8)

is of second order in its time t2, but the higher equations of its hierarchy are of first order
in their respective times, beginning with

u3 = −6u1u2 + 3u112. (9)

A Lagrangian 2-form for this system has coefficients

L12 =
1

2
u2

2 − 2u3
1 −

3

2
u2

11,

L13 = u2u3 + 6u4
1 + 27u1u

2
11 − 6uu12u2 +

9

2
u2

111 +
3

2
u2

12,

L23 = 24u3
1u2 + 18u1u11u12 + 9u2

11u2 − 18u1u111u2 − 2u3
2 − 6uu2u22

+ 6u2
1u3 + 9u111u112 + 3u11u13 + 3u12u22 − 3u111u3.

They can be found in [30] with a different scaling of L and a different numbering of the
time variables. Equation (8) is equivalent to the Euler-Lagrange equation

δ12L12

δu
= 0

and Equation (9) to

δ13L13

δu2
= 0.

All other multi-time Euler-Lagrange equations are differential consequences of Equations
(8) and (9). As in the previous example, it is possible to extend this 2-form to represent
an arbitrary number of equations from the hierarchy.

Further examples of pluri-Lagrangian 2-form systems can be found in [21, 22, 29, 30].
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3 Hamiltonian structure of Lagrangian 1-form systems

A connection between Lagrangian 1-form systems and Hamiltonian or symplectic systems
was found in [26], both in the continuous and the discrete case. Here we specialize that
result to the common case where one coefficient of the Lagrangian 1-form is a mechanical
Lagrangian and all others are linear in their respective time-derivatives. We formulate
explicitly the underlying symplectic structures, which will provide guidance for the case
of Lagrangian 2-form systems. Since some of the coefficients of the Lagrangian form will
be linear in velocities, it is helpful to first have a look at the Hamiltonian formulation for
Lagrangians of this type, independent of a pluri-Lagrangian structure.

3.1 Lagrangians that are linear in velocities

Let the configuration space be a finite-dimensional real vector space Q = RN and consider
a Lagrangian L : TQ→ R of the form

L(q, qt) = p(q)T qt − V (q), (10)

where

det

(
∂p

∂q
−
(
∂p

∂q

)T)
6= 0. (11)

Note that p denotes a function of the position q; later on we will use π to denote the
momentum as an element of cotangent space. If Q is a manifold, the arguments of this
subsection will still apply if there exists local coordinates in which the Lagrangian is of
the form (10). The Euler-Lagrange equations are first order ODEs:

q̇ =

((
∂p

∂q

)T
− ∂p

∂q

)−1

∇V, (12)

where ∇V =
(
∂V
∂q

)T
is the gradient of V .

Note that Equation (11) implies that Q is even-dimensional, hence Q admits a (lo-
cal) symplectic structure. Instead of a symplectic form on T ∗Q, the Lagrangian system
preserves a symplectic form on Q itself [2, 20]:

ω =
∑
i

−dpi(q) ∧ dqi =
∑
i,j

−∂pi
∂qj

dqj ∧ dqi (13)

=
∑
i<j

(
∂pi
∂qj
− ∂pj
∂qi

)
dqi ∧ dqj ,

which is non-degenerate by virtue of Equation (11).

Proposition 3.1. The Euler-Lagrange equation (12) of the Lagrangian (10) corresponds
to a Hamiltonian vector field with respect to the symplectic structure ω, with Hamilton
function V .
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Proof. The Hamiltonian vector field X =
∑

iXi
∂
∂qi

of the Hamilton function V with
respect to ω satisfies

ιXω = dV,

where

ιXω =
∑
i

∑
j 6=i

(
∂pj
∂qi
− ∂pi
∂qj

)
Xj dqi

and

dV =
∑
i

∂V

∂qi
dqi.

Hence

X =

((
∂p

∂q

)T
− ∂p

∂q

)−1

∇V,

which is the vector field corresponding to the Euler-Lagrange equation (12). �

3.2 From pluri-Lagrangian to Hamiltonian systems

On a finite-dimensional real vector space Q, consider a Lagrangian 1-form L =
∑

i Li dti
consisting of a mechanical Lagrangian

L1(q, q1) =
1

2
|q1|2 − V1(q), (14)

where |q1|2 = qT1 q1, and additional coefficients of the form

Li(q, q1, qi) = qT1 qi − Vi(q, q1) for i ≥ 2, (15)

where the indices of q denote partial derivatives, qi = qti = dq
dti

, whereas the indices of

L and V are labels. We have chosen the Lagrangian coefficients such that they share a
common momentum p = q1, which is forced upon us by the multi-time Euler-Lagrange
equation (2). Note that for each i, the coefficient Li contains derivatives of q with respect
to t1 and ti only. Many Lagrangian 1-forms are of this form, including the Toda hierarchy,
presented in Example 2.3.

The nontrivial multi-time Euler-Lagrange equations are

δ1L1

δq
= 0 ⇔ q11 = −∂V1

∂q
,

and

δiLi
δq1

= 0 ⇔ qi =
∂Vi
∂q1

for i ≥ 2,
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with the additional condition that

δiLi
δq

= 0 ⇔ q1i +
∂Vi
∂q

= 0.

Hence the multi-time Euler-Lagrange equations are overdetermined. Only for particular
choices of Vi will the last equation be a differential consequence of the other multi-time
Euler-Lagrange equations. The existence of suitable Vi for a given hierarchy could be
taken as a definition of its integrability.

Note that there is no multi-time Euler-Lagrange equation involving the variational
derivative

δ1Li
δq

=
∂Vi
∂q
− d

dt1

∂Vi
∂q1

because of the mismatch between the time direction t1 in which the variational deriva-
tive acts and the index i of the Lagrangian coefficient. The multi-time Euler-Lagrange
equations of the type

δiLi
δqi

=
δjLj
δqj

all reduce to the trivial equation q1 = q1, expressing the fact that all Li yield the same
momentum.

Since L1 is regular, det
(
∂2L1
∂q21

)
6= 0, we can find a canonical Hamiltonian for the first

equation by Legendre transformation,

H1(q, π) =
1

2
|π|2 + V1(q),

where we use π to denote the cotangent space coordinate and |π|2 = πTπ.

For i ≥ 2 we consider r = q1 as a second dependent variable. In other words, we double
the dimension of the configuration space, which is now has coordinates (q, r) = (q, q1).
The Lagrangians Li(q, r, qi, ri) = rqi−Vi(q, r) are linear in velocities. We have p(q, r) = r,
hence the symplectic form (13) is

ω = dr ∧ dq.

This is the canonical symplectic form, with the momentum replaced by r = q1. Hence we
can consider r as momentum, thus identifying the extended configuration space spanned
by q and r with the phase space T ∗Q.

Applying Proposition 3.1, we arrive at the following result:

Theorem 3.2. The multi-time Euler-Lagrange equations of a 1-form with coefficients
(14)–(15) are equivalent, under the identification π = q1, to a system of Hamiltonian
equations with respect to the canonical symplectic form ω = dπ ∧ dq, with Hamilton func-
tions

H1(q, π) =
1

2
|π|2 + V1(q) and Hi(q, π) = Vi(q, π) for i ≥ 2
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Example 3.3. From the Lagrangian 1-form for the Toda lattice given in Example 2.3 we
find

H1 =
∑
k

(
1

2

(
π[k]
)2

+ exp
(
q[k] − q[k−1]

))
,

H2 =
∑
k

(
1

3

(
π[k]
)3

+
(
π[k] + π[k−1]

)
exp
(
q[k] − q[k−1]

))
,

H3 =
∑
k

(
1

4

(
π[k]
)4

+

((
π[k+1]

)2
+ π[k+1]π[k] +

(
π[k]
)2
)

exp
(
q[k+1] − q[k]

)
+ exp

(
q[k+2] − q[k]

)
+

1

2
exp
(
2(q[k+1] − q[k])

))
,

...

We have limited the discussion in this section to the case where L1 is quadratic in
the velocity. There are some interesting examples that do not fall into this category, like
the Volterra lattice, which has a Lagrangian linear in velocities, and the relativistic Toda
lattice, which has a Lagrangian with a more complicated dependence on velocities (see
e.g. [25] and the references therein). The discussion above can be adapted to other types
of Lagrangian 1-forms if one of its coefficients Li has an invertible Legendre transform, or
if they are collectively Legendre-transformable as described in [26].

3.3 From Hamiltonian to Pluri-Lagrangian systems

The procedure from Section 3.2 can be reversed to construct a Lagrangian 1-form from a
number of Hamiltonians.

Theorem 3.4. Consider Hamilton functions Hi : T ∗Q→ R, with H1(q, π) = 1
2 |π|

2+V1(q).
Then the multi-time Euler-Lagrange equations of the Lagrangian 1-form

∑
i Li dti with

L1 =
1

2
|q1|2 − V1(q)

Li = q1qi −Hi(q, q1) for i ≥ 2

are equivalent to the Hamiltonian equations under the identification π = q1.

Proof. Identifying π = q1, the multi-time Euler-Lagrange equations of the type (1) are

δ1L1

δq
= 0 ⇔ q11 = −∂V1(q)

∂q
,

δiLi
δq1

= 0 ⇔ qi =
∂Hi(q, π)

∂p
,

δiLi
δq

= 0 ⇔ πi = −∂Hi(q, π)

∂q
.

The multi-time Euler-Lagrange equations of the type (2) are trivially satisfied because

δiLi
δqi

= q1

for all i. �
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Note that the statement of Theorem 3.4 does not require the Hamiltonian equations to
commute, i.e. it is not imposed that the Hamiltonian vector fields XHi associated to the
Hamilton functions Hi satisfy [XHi , XHj ] = 0. However, if they do not commute then
for a generic initial condition (q0, π0) there will be no solution (q, π) : RN → T ∗Q to the
equations

∂

∂ti
(q(t1, . . . tN ), π(t1, . . . tN )) = XHi(q(t1, . . . tN ), π(t1, . . . tN )) (i = 1, . . . , N),

(q(0, . . . , 0), π(0, . . . , 0)) = (q0, π0).

Hence the relevance of Theorem 3.4 lies almost entirely in the case of commuting Hamil-
tonian equations. If they do not commute then it is an (almost) empty statement because
neither the system of Hamiltonian equations nor the multi-time Euler-Lagrange equations
will have solutions for generic initial data.

Example 3.5. The Kepler Problem, describing the motion of a point mass around a
gravitational center, is one of the classic examples of a completely integrable system. It
possesses Poisson-commuting Hamiltonians H1, H2, H3 : T ∗R3 → R given by

H1(q, π) =
1

2
|π|2 − |q|−1, the energy, Hamiltonian for the physical motion,

H2(q, π) = (q × π) · ez, the 3rd component of the angular momentum, and

H3(q, π) = |q × π|2, the squared magnitude of the angular momentum,

where q = (x, y, z) and ez is the unit vector in the z-direction. The corresponding coeffi-
cients of the Lagrangian 1-form are

L1 =
1

2
|q1|2 + |q|−1,

L2 = q1 · q2 − (q × q1) · ez,
L3 = q1 · q3 − |q × q1|2.

The multi-time Euler-Lagrange equations are

δ1L1

δq
= 0 ⇒ q11 =

q

|q|3
,

the physical equations of motion,

δ2L2

δq1
= 0 ⇒ q2 = ez × q,

δ2L2

δq
= 0 ⇒ q12 = −q1 × ez,

describing a rotation around the z-axis, and

δ3L3

δq1
= 0 ⇒ q3 = 2(q × q1)× q,

δ3L3

δq
= 0 ⇒ q13 = 2(q × q1)× q1,

describing a rotation around the angular momentum vector.
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3.4 Closedness and involutivity

In the pluri-Lagrangian theory, the exterior derivative dL is constant on solutions (see
Proposition A.2 in the Appendix). In many cases this constant is zero, i.e. the Lagrangian
1-form is closed on solutions. Here we relate this property to the vanishing of Poisson
brackets between the Hamilton functions.

Proposition 3.6 ([26, Theorem 3]). Consider a Lagrangian 1-form L as in Section 3.2 and
the corresponding Hamilton functions Hi. On solutions to the multi-time Euler-Lagrange
equations, and identifying π = p(q, q1) = ∂Li

∂qi
, there holds

dLj
dti
− dLi

dtj
= pjqi − piqj

= {Hj , Hi},
(16)

where {·, ·} denotes the canonical Poisson bracket and pj and qj are shorthand for dp
dtj

and

dq
dtj

.

Proof. On solutions of the multi-time Euler-Lagrange equations there holds

dLj
dti

=
∂Lj
∂q

qi +
∂Lj
∂q1

q1i +
∂Lj
∂qj

qij

=

(
d

dtj

∂Lj
∂q

)
qi +

∂Lj
∂qj

qij

= pjqi + pqij .

Hence

dLj
dti
− dLi

dtj
= pjqi − piqj . (17)

Alternatively, we can calculate this expression using the Hamiltonian formalism. We have

dLj
dti
− dLi

dtj
=

d

dti
(pqj −Hj)−

d

dtj
(pqi −Hi)

= piqj − pjqi + 2{Hj , Hi}.

Combined with Equation (17), this implies Equation (16). �

As a corollary we have:

Theorem 3.7. The Hamiltonians Hi from Theorem 3.2 are in involution if and only if
dL = 0 on solutions.

All examples of Lagrangian 1-forms discussed so far satisfy dL = 0 on solutions. This
need not be the case.
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Example 3.8. Let us consider a system of commuting equations that is not Liouville
integrable. Fix a constant c 6= 0 and consider the 1-form L = L1 dt1 + L2 dt2 with

L1Jr, θK =
1

2
r2θ2

1 +
1

2
r2

1 − V (r)− cθ,

which for c = 0 would describe a central force in the plane governed by the potential V ,
and

L2Jr, θK = r2θ1(θ2 − 1) + r1r2.

Its multi-time Euler-Lagrange equations are

r11 = −V ′(r) + rθ2
1,

d

dt1
(r2θ1) = −c,

r2 = 0,

θ2 = 1,

and consequences thereof. Notably, we have

dL2

dt1
− dL1

dt2
= c

on solutions, hence dL is nonzero.
By Theorem 3.2 the multi-time Euler-Lagrange equations are equivalent to the canon-

ical Hamiltonian systems with

H1(r, θ, π, σ) =
1

2

σ2

r2
+

1

2
π2 + V (r) + cθ

H2(r, θ, π, σ) = σ,

where π and σ are the conjugate momenta to r and θ. The Hamiltonians are not in
involution, but rather

{H2, H1} = c =
dL2

dt1
− dL1

dt2
.

4 Hamiltonian structure of Lagrangian 2-form systems

In order to generalize the results from Section 3 to the case of 2-forms, we need to care-
fully examine the relevant geometric structure. A useful tool for this is the variational
bicomplex, which is also used in Appendix A to study the multi-time Euler-Lagrange
equations.

4.1 The variational bicomplex

To facilitate the variational calculus in the pluri-Lagrangian setting, it is useful to consider
the variation operator δ as an exterior derivative, acting in the fiber J∞ of the infinite jet
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bundle. We call δ the vertical exterior derivative and d, which acts in the base manifold
M , the horizontal exterior derivative. Together they provide a double grading of the space
Ω(M × J∞) of differential forms on the jet bundle. The space of (a, b)-forms is generated
by those (a+ b)-forms structured as

fJuK δuI1 ∧ . . . ∧ δuIa ∧ dtj1 . . . ∧ dtjb .

We denote the space of (a, b)-forms by Ω(a,b) ⊂ Ωa+b(M × J∞). We call elements of Ω(0,b)

horizontal forms and elements of Ω(a,0) vertical forms. The Lagrangian is a horizontal
d-form, L ∈ Ω(0,d).

The horizontal and vertical exterior derivatives are characterized by the anti-derivation
property,

d (ωp1,q11 ∧ ωp2,q22 ) = dωp1,q11 ∧ ωp2,q22 + (−1)p1+q1 ωp1,q11 ∧ dωp2,q22 ,

δ (ωp1,q11 ∧ ωp2,q22 ) = δωp1,q11 ∧ ωp2,q22 + (−1)p1+q1 ωp1,q11 ∧ δωp2,q22 ,

where the upper indices denote the type of the forms, and by the way they act on (0, 0)-
forms, and basic (1, 0) and (0, 1)-forms:

dfJuK =
∑
j

∂jfJuK dtj , δfJuK =
∑
I

∂fJuK
∂uI

δuI ,

d(δuI) = −
∑
j

δuIj ∧ dtj , δ(δuI) = 0,

d(dtj) = 0, δ(dtj) = 0.

One can verify that d + δ : Ωa+b → Ωa+b+1 is the usual exterior derivative and that

δ2 = d2 = δd + dδ = 0.

Time-derivatives ∂j act on vertical forms as ∂j(δuI) = δuIj , on horizontal forms as
∂j(dtk) = 0, and obey the Leibniz rule with respect to the wedge product. As a sim-
ple but important example, note that

d(fJuK δuI) =
N∑
j=1

∂jfJuK dtj ∧ δuI − fJuK δuItj ∧ dtj =
N∑
j=1

−∂j(fJuK δuI) ∧ dtj .

The spaces Ω(a,b), for a ≥ 0 and 0 ≤ b ≤ N , related to each other by the maps d
and δ, are collectively known as the variational bicomplex [8, Chapter 19]. A slightly
different version of the variational bicomplex, using contact 1-forms instead of vertical
forms, is presented in [1]. We will not discuss the rich algebraic structure of the variational
bicomplex here.

For a horizontal (0, d)-form LJuK, the variational principle

δ

∫
Γ
LJuK = δ

∫
Γ

∑
i1<...<id

Li1,...,idJuK dti1 ∧ . . . ∧ dtid = 0
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can be understood as follows. Every vertical vector field V = v(t1, . . . , ta)
∂
∂u , such that

its prolongation

prV =
∑
I

vI
∂

∂uI

vanishes on the boundary ∂Γ, must satisfy∫
Γ
ιprV δL =

∫
Γ

∑
i1<...<id

ιprV (δLi1,...,idJuK) dti1 ∧ . . . ∧ dtid = 0.

Note that the integrand is a horizontal form, so the integration takes place on Γ ⊂ M ,
independent of the bundle structure.

4.2 The space of functionals and its pre-symplectic structure

In the rest of our discussion, we will single out the variable t1 = x and view it as the
space variable, as opposed to the time variables t2, . . . , tN . For ease of presentation we
will limit the discussion here to real scalar fields, but it is easily extended to complex or
vector-valued fields. We consider functions u : R→ R : x 7→ u(x) as fields at a fixed time.
Let J∞ be the fiber of the corresponding infinite jet bundle, where the prolongation of u
has coordinates [u] = (u, ux, uxx, . . .). Consider the space of functions of the infinite jet of
u,

V = {v : J∞ → R} .

Note that the domain J∞ is the fiber of the jet bundle, hence the elements v ∈ V depend on
x only through u. We will be dealing with integrals

∫
v dx of elements v ∈ V. In order to

avoid convergence questions, we understand the symbol
∫
v dx as a formal integral, defined

as the equivalence class of v modulo space-derivatives. In other words, we consider the
space of functionals

F = V
/
∂xV,

where

∂x =
d

dx
=
∑
I

uIx
∂

∂uI
.

The variation of an element of F is computed as

δ

∫
v dx =

∫
δv

δu
δu ∧ dx, (18)

where

δ

δu
=
∞∑
α=0

(−1)α∂αx
∂

∂uxα
.

Equation (18) is independent of the choice of representative v ∈ V because the variational
derivative of a full x-derivative is zero.
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Since V is a linear space, its tangent spaces can be identified with V itself. In turn,
every v ∈ V can be identified with a vector field v ∂

∂u . We will define Hamiltonian vector
fields in terms of F-valued forms on V. An F-valued 1-form θ can be represented as the
integral of a (1, 1)-form in the variational bicomplex,

θ =

∫ ∑
k

ak[u] δuxk ∧ dx

and defines a map

V → F : v 7→ ιvθ =

∫ ∑
k

ak[u] ∂kxv[u] dx.

This amounts to pairing the 1-form with the infinite jet prolongation of the vector field
v ∂
∂u . Note that F-valued forms are defined modulo x-derivatives:

∫
∂xθ ∧ dx = 0 because

its pairing with any vector field in V will yield a full x-derivative, which represents the
zero functional in F . Hence the space of F-valued 1-forms is Ω(1,1)/∂xΩ(1,1).

An F-valued 2-form

ω =

∫ ∑
k,`

ak,`[u] δuxk ∧ δux` ∧ dx

defines a skew-symmetric map

V × V → F : (v, w) 7→ ιwιvω =

∫ ∑
k,`

ak,`[u]
(
∂kxv[u] ∂`xw[u]− ∂kxw[u] ∂`xv[u]

)
dx

as well as a map from vector fields to F-valued 1-forms

V → Ω(1,1)/∂xΩ(1,1) : v 7→ ιvω =

∫ ∑
k,`

ak,`[u]
(
∂kxv[u] δux` − ∂`xv[u] δuxk

)
∧ dx.

Definition 4.1. A closed (2, 1)-form ω on V is called pre-symplectic.

Equivalently we can require the form to be vertically closed, i.e. closed with respect to
δ. Since the horizontal space is 1-dimensional (x is the only independent variable) every
(a, 1)-form is closed with respect to the horizontal exterior derivative d, so only vertical
closedness is a nontrivial property.

We choose to work with pre-symplectic forms instead of symplectic forms, because
the non-degeneracy required of a symplectic form is a subtle issue in the present context.
Consider for example the pre-symplectic form ω =

∫
δu∧δux∧dx. It is degenerate because∫

ιvω =

∫
(v δux − vx δu) ∧ dx =

∫
−2vx δu ∧ dx,

which is zero whenever v[u] is constant. However, if we restrict our attention to compactly
supported fields, then a constant must be zero, so the restriction of ω to the space of
compactly supported fields is non-degenerate.
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Definition 4.2. A Hamiltonian vector field with Hamilton functional
∫
H dx is an element

v ∈ V satisfying the relation∫
ιvω =

∫
δH ∧ dx.

Note that if ω is degenerate, we cannot guarantee existence or uniqueness of a Hamil-
tonian vector field in general.

4.3 From pluri-Lagrangian to Hamiltonian systems

We will consider two different types of Lagrangian 2-forms. The first type are those
where for every j the coefficient L1j is linear in utj . This is the case for the 2-form for
the potential KdV hierarchy from Example 2.5 and for the Lagrangian 2-forms of many
other hierarchies like the AKNS hierarchy [21] and the modified KdV, Schwarzian KdV
and Krichever-Novikov hierarchies [30]. The second type satisfy the same property for
j > 2, but have a coefficient L12 that is quadratic in ut2 , as is the case for the Boussinesq
hierarchy from Example 2.6.

4.3.1 When all L1j are linear in utj

Consider a Lagrangian 2-form LJuK =
∑

i<j LijJuK dti∧dtj , where for all j the variational

derivative
δ1L1j
δutj

does not depend on any tj-derivatives, hence we can write

δ1L1j

δutj
= p[u]

for some function p[u] depending on on an arbitrary number of space derivatives, but not
on any time-derivatives. We use single square brackets [·] to indicate dependence on space
derivatives only. Note that p does not depend on the index j. This is imposed on us by
the multi-time Euler-Lagrange equation stating that

δ1L1j
δutj

is independent of j.

Starting from these assumptions and possibly adding a full x-derivative (recall that
x = t1) we find that the coefficients L1j are of the form

L1jJuK = p[u]uj − hj [u], (19)

where uj is shorthand notation for the derivative utj . Coefficients of this form appear in
many prominent examples, like the potential KdV hierarchy and several hierarchies related
to it [28, 29, 30] as well as the AKNS hierarchy [21]. Their Euler-Lagrange equations are

Epuj −
δ1hj [u]

δu
= 0, (20)

where Ep is the differential operator

Ep =

∞∑
k=0

(
(−1)k∂kx

∂p

∂uxk
− ∂p

∂uxk
∂kx

)
.

We can also write Ep = D∗p−Dp, where Dp is the Fréchet derivative of p and D∗p its adjoint
[17, Eqs (5.32) resp. (5.79)].
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Consider the pre-symplectic form

ω = −δp[u] ∧ δu ∧ dx

= −
∞∑
k=1

∂p

∂uxk
δuxk ∧ δu ∧ dx.

(21)

Inserting the vector field X = χ ∂
∂u we find∫

ιXω =

∫ ∞∑
k=0

(
∂p

∂uxk
χ δuxk ∧ dx− ∂p

∂uxk
χxk δu ∧ dx

)

=

∫ ∞∑
k=0

(
(−1)k∂kx

(
∂p

∂uxk
χ

)
− ∂p

∂uxk
χxk

)
δu ∧ dx

=

∫
Epχ δu ∧ dx.

From the Hamiltonian equation of motion∫
ιXω =

∫
δhj [u] ∧ dx

we now obtain that the Hamiltonian vector field X = χ ∂
∂u associated to hj satisfies

Epχ =
δ1hj
δu

,

which corresponds the Euler-Lagrange equation (20) by identifying χ = utj . This obser-
vation was made previously in the context of loop spaces in [16, Section 1.3].

The Poisson bracket associated to the symplectic operator Ep is formally given by{∫
f dx,

∫
g dx

}
= −

∫
δf

δu
E−1
p

δg

δu
dx. (22)

If the pre-symplectic form is degenerate, then Ep will not be invertible. In this case E−1
p can

be considered as a pseudo-differential operator and the Poisson bracket is called non-local
[16, 7]. Note that {·, ·} does not satisfy the Leibniz rule because there is no multiplication
on the space F of formal integrals. However, we can recover the Leibniz rule in one entry
by introducing

[f, g] = −
∞∑
k=0

∂f

∂uxk
∂kx E−1

p

δg

δu
.

Then we have{∫
f dx,

∫
g dx

}
=

∫
[f, g] dx

and

[fg, h] = f [g, h] + [f, h]g.

In summary, we have the following result:
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Theorem 4.3. Assume that
δ1hj [u]
δu is in the image of Ep and has a unique inverse (possibly

in some equivalence class) for each j. Then the evolutionary PDEs

uj = E−1
p

δ1hj [u]

δu
,

which imply the Euler-Lagrange equations (20) of the Lagrangians (19), are Hamiltonian
with respect to the symplectic form (21) and the Poisson bracket (22), with Hamilton
functions hj.

This theorem applies without assuming any kind of consistency of the system of multi-
time Euler-Lagrange equations. Of course we are mostly interested in the case where
the multi-time Euler-Lagrange equations are equivalent to an integrable hierarchy. In
almost all known examples (see e.g. [28, 21, 30]) the multi-time Euler-Lagrange equations
consist of an integrable hierarchy in its evolutionary form and differential consequences
thereof. Hence the general picture suggested by these examples is that the multi-time

Euler-Lagrange equations are equivalent to the equations uj = E−1
p

δ1hj [u]
δu form Theorem

4.3. In light of these observations, we emphasize the following consequence of Theorem
4.3.

Corollary 4.4. If the multi-time Euler-Lagrange equations are evolutionary, then they
are Hamiltonian.

Example 4.5. The pluri-Lagrangian structure for the potential KdV hierarchy, given in
Example 2.5, has p = 1

2ux. Hence

Ep = −∂x
∂p

∂ux
− ∂p

∂ux
∂x = −∂x

and {∫
f dx,

∫
g dx

}
=

∫
δf

δu
∂−1
x

δg

δu
dx.

Here we assume that δg
δu is in the image of ∂x. Then ∂−1

x
δg
δu is uniquely defined by the

convention that it does not contain a constant term. If f and g depend only on derivatives
of u, not on u itself, this becomes the Gardner bracket [10]{∫

f dx,
∫
g dx

}
=

∫ (
∂x

δf

δux

)
δg

δux
dx.

The Hamilton functions are

h2[u] =
1

2
uxut2 − L12 = u3

x +
1

2
uxuxxx,

h3[u] =
1

2
uxut3 − L13 =

5

2
u4
x − 5uxu

2
xx +

1

2
u2
xxx,

...

A related derivation of the Gardner bracket from the multi-symplectic perspective was
given in [11]. It can also be obtained from the Lagrangian structure by Dirac reduction
[15].
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Example 4.6. The Schwarzian KdV hierarchy,

u2 = −3u2
11

2u1
+ u111,

u3 = −45u4
11

8u3
1

+
25u2

11u111

2u2
1

− 5u2
111

2u1
− 5u11u1111

u1
+ u11111,

...

has a pluri-Lagrangian structure with coefficients [29]

L12 =
u3

2u1
− u2

11

2u2
1

,

L13 =
u5

2u1
− 3u4

11

8u4
1

+
u2

111

2u2
1

,

L23 = −45u6
11

32u6
1

+
57u4

11u111

16u5
1

− 19u2
11u

2
111

8u4
1

+
7u3

111

4u3
1

− 3u3
11u1111

4u4
1

− 3u11u111u1111

2u3
1

+
u2

1111

2u2
1

+
3u2

11u11111

4u3
1

− u111u11111

2u2
1

+
u111u113

u2
1

− 3u3
11u13

2u4
1

+
2u11u111u13

u3
1

− u1111u13

u2
1

+
u11u15

u2
1

− 27u4
11u3

16u5
1

+
17u2

11u111u3

4u4
1

− 7u2
111u3

4u3
1

− 3u11u1111u3

2u3
1

+
u11111u3

2u2
1

+
u2

11u5

4u3
1

− u111u5

2u2
1

,

...

In this example we have p = 1
2ux

, hence

Ep = −∂x
∂p

∂ux
− ∂p

∂ux
∂x =

1

u2
x

∂x −
uxx
u3
x

=
1

ux
∂x

1

ux

and

E−1
p = ux∂

−1
x ux.

This nonlocal operator seems to be the simplest Hamiltonian operator for the SKdV
equation, see for example [9, 31]. The Hamilton functions for the first two equations of
the hierarchy are

h2 =
u2

11

2u2
1

and h3 =
3u4

11

8u4
1

− u2
111

2u2
1

.

4.3.2 When L12 is quadratic in ut2

Consider a Lagrangian 2-form LJuK =
∑

i<j LijJuK dti ∧ dtj with

L12 =
1

2
α[u]u2

2 − V [u], (23)
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and, for all j ≥ 3, L1j of the form

L1jJuK = α[u]u2uj − hj [u, u2], (24)

where [u, u2] = (u, u2, u1, u12, u11, u112, . . .) since the single bracket [·] denotes dependence
on the fields and their x-derivatives only (recall that x = t1). To write down the full
set of multi-time Euler-Lagrange equations we need to specify all Lij , but for the present
discussion it is sufficient to consider the equations

δ12L12

δu
= 0 ⇔ α[u]u22 = −dα[u]

dt2
u2 +

1

2

∞∑
k=0

(−1)k∂kx

(
∂α[u]

∂uxk
u2

2

)
− δ1V [u]

δu

and

δ1jL1j

δu2
= 0 ⇔ α[u]uj =

δ1hj [u, u2]

δu2
.

We assume that all other multi-time Euler-Lagrange equations are consequences of these.

Since L12 is non-degenerate, the Legendre transform is invertible and allows us to
identify π = α[u]u2. Consider the canonical symplectic form on formal integrals, where
now the momentum π enters as a second field,

ω = δπ ∧ δu ∧ dx.

This defines the Poisson bracket{∫
f dx,

∫
g dx

}
= −

∫ (
δf

δπ

δg

δu
− δf

δu

δg

δπ

)
dx. (25)

The coefficients L1jJuK = α[u]u2uj − hj [u, u2] are linear in their velocities uj , hence
they are Hamiltonian with respect to the pre-symplectic form

δ(α[u]u2) ∧ δu ∧ dx,

which equals ω if we identify π = α[u]u2. Hence we find the following result.

Theorem 4.7. A hierarchy described by a Lagrangian 2-form with coefficients of the form
(23)–(24) is Hamiltonian with respect to the canonical Poisson bracket (25), with Hamilton
functions

H2[u, π] =
1

2

π2

α[u]
+ V [u]

and

Hj [u, π] = hj

[
u,

π

α[u]

]
for j ≥ 3.
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Example 4.8. The Lagrangian 2-form for the Boussinesq hierarchy from Example 2.6
leads to

H2 =
1

2
π2 + 2u3

1 +
3

2
u2

11,

H3 = −6u4
1 − 27u1u

2
11 + 6uπ1π −

9

2
u2

111 −
3

2
π2

1,

where the Legendre transform identifies π = u2. Indeed we have{∫
H2 dx,

∫
udx

}
=
∫
π dx =

∫
u2 dx,{∫

H2 dx,
∫
π dx

}
=
∫

(12u1u11 − 3u111) dx =
∫
π2 dx,

and {∫
H3 dx,

∫
udx

}
=
∫

(−6u1π + 3π11) dx =
∫
u3 dx,{∫

H3 dx,
∫
π dx

}
=
∫ (
−72u2

1u11 + 108u11u111 + 54u1u1111 − 6ππ1 − 9u111111

)
dx

=
∫
π3 dx.

4.4 Closedness and involutivity

Let us now have a look at the relation between the closedness of the Lagrangian 2-form
and the involutivity of the corresponding Hamiltonians.

Proposition 4.9. On solutions of the multi-time Euler-Lagrange equations of a La-
grangian 2-form with coefficients L1j given by Equation (19), there holds

{hi, hj} =

∫
(piuj − pjui) dx =

∫ (
dL1i

dtj
− dL1j

dti

)
dx, (26)

where the Poisson bracket is given by Equation (22).

Proof. On solutions of the Euler-Lagrange equations we have∫
dL1i

dtj
dx =

∫ (
δ1L1i

δu
uj +

∂L1i

∂ui
uij

)
dx

=

∫ ((
d

dti

δ1iL1i

δui

)
uj +

∂L1i

∂ui
uij

)
dx

=

∫
(piuj + puij) dx.

It follows that∫ (
dL1i

dtj
− dL1j

dti

)
dx =

∫
(piuj − pjui) dx. (27)

On the other hand we have that∫ (
dL1i

dtj
− dL1j

dti

)
dx =

∫ (
d

dtj
(pui − hi)−

d

dti
(puj − hj)

)
dx

= −
∫

(piuj − pjui) dx+ 2{hi, hj}.

Combined with Equation (27), this implies both identities in Equation (26). �
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Proposition 4.10. On solutions of the multi-time Euler-Lagrange equations of a La-
grangian 2-form with coefficients L1j given by Equations (23)–(24), there holds

{Hi, Hj} =

∫
(πiuj − πjui) dx =

∫ (
dL1i

dtj
− dL1j

dti

)
dx,

where the Poisson bracket is given by Equation (25) and the Hamilton functions Hj are
given in Theorem 4.7.

Proof. Analogous to the proof of Proposition 4.9, with p[u] replaced by the field π. �

Theorem 4.11. Let L be a Lagrangian 2-form with coefficients L1j given by Equation (19)
or by Equations (23)–(24). Consider the corresponding Hamiltonian structures, given by
H1j = hj or H1j = Hj, as in Theorems 4.3 and 4.7 respectively. There holds {H1i, H1j} =
0 if and only if∫ (

dLij
dt1
− dL1j

dti
+

dL1i

dtj

)
dx = 0

on solutions of the multi-time Euler-Lagrange equations.

Proof. Recall that t1 = x, hence d
dt1

= ∂x. By definition of the formal integral as an

equivalence class, we have
∫
∂xLij dx = 0. Hence the claim follows from Proposition 4.9

or Proposition 4.10. �

It is known that dLJuK is constant in the set of solutions u to the multi-time Euler-
Lagrange equations (see Proposition A.2). In most examples, one can verify using a trivial
solution that this constant is zero.

Corollary 4.12. If a Lagrangian 2-form, with coefficients L1jJuK given by Equation (19)
or by Equations (23)–(24), is closed for a solution u to the pluri-Lagrangian problem, then
{H1i, H1j} = 0 for all i, j.

All examples of Lagrangian 2-forms discussed so far satisfy dL = 0 on solutions. We
now present a system where this is not the case.

Example 4.13. Consider a perturbation of the Boussinesq Lagrangian, obtained by
adding cu for some constant c ∈ R,

L12 =
1

2
u2

2 − 2u3
1 −

3

2
u2

11 + cu,

combined with the Lagrangian coefficients

L13 = u2(u3 − 1)

L23 = (6u2
1 − 3u111)(u3 − 1).

The corresponding multi-time Euler-Lagrange equations consist of a perturbed Boussinesq
equation,

u22 = 12u1u11 − 3u1111 + c
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and

u3 = 1.

We have

dL12

dt3
− dL13

dt2
+

dL23

dt1
= c

on solutions, hence dL is nonzero.
The multi-time Euler-Lagrange equations are equivalent to the canonical Hamiltonian

systems with

H2 =
1

2
π2 + 2u3

1 +
3

2
u2

11 − cu

H3 = π.

They are not in involution, but rather{∫
H2 dx,

∫
H3 dx

}
=

∫
(12u11u1 − 3u1111 + c) dx =

∫
cdx.

Note that if we would allow the fields in V to depend explicitly on x, then we would find∫
cdx =

∫
∂x(cx) dx = 0. Note that this is not a property of the Lagrangian form, but of

the function space we work in. Allowing fields that depend on x affects the definition of the
formal integral

∫
(·) dx as an equivalence class modulo x-derivatives. If dependence on x

is allowed, then there is no such thing as a nonzero constant functional in this equivalence
class. However, in our definition of V, fields can only depend on x through u, hence c is
not an x-derivative and

∫
cdx is not the zero element of F .

4.5 Additional (nonlocal) Poisson brackets

Even though the closedness property in Section 4.4 involves all coefficients of a Lagrangian
2-form L, so far we have only used the first row of coefficients L1j to construct Hamiltonian
structures. A similar procedure can be carried out for other Lij , but the results are not
entirely satisfactory. In particular, it will not lead to true bi-Hamiltonian structures.
Because of this slightly disappointing outcome, we will make no effort to present the most
general statement possible. Instead we make some convenient assumptions on the form of
the coefficients Lij .

Consider a Lagrangian 2-form L such that for all i < j the coefficient Lij only contains
derivatives with respect to t1, ti and tj (no “alien derivatives” in the terminology of [29]).
In addition, assume that Lij can be written as the sum of terms that each contain at most
one derivative with respect to ti (if i > 1) or tj . In particular, Lij does not contain higher
derivatives with respect to ti (if i > 1) or tj , but mixed derivatives with respect to t1 and
ti or t1 and tj are allowed. There is no restriction on the amount of t1-derivatives.

To get a Hamiltonian description of the evolution along the time direction tj from the
Lagrangian Lij , we should consider both t1 and ti as space coordinates. Hence we will
work on the space

V
/

(∂1V + ∂iV) .
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For i > 1, consider the momenta

p[i][u] =
δ1iLij
δuj

.

From the assumption that each term of Lij contains at most one time-derivative it follows
that p[i] only depends on u and its x-derivatives. Note that p[i] is independent of j because
of the multi-time Euler-Lagrange equation (6). The variational derivative in the definition
of p[i] is in the directions 1 and i, corresponding to the formal integral, whereas the
Lagrangian coefficient has indices i and j. However, we can also write

p[i][u] =
δ1Lij
δuj

because of the assumption on the derivatives that occur in Lij , which excludes mixed
derivatives with respect to ti and tj .

As Hamilton function we can take

Hij = p[i]uj − Lij .

Its formal integral
∫
Hij dx ∧ dti does not depend on any tj-derivatives. Since we are

working with 2-dimensional integrals, we should take a (2, 2)-form as symplectic form. In
analogy to Equation (13) we take

ωi = −δp[i] ∧ δu ∧ dx ∧ dti.

A Hamiltonian vector field X = χ ∂
∂u satisfies∫

ιXωi =

∫
δHij ∧ dx ∧ dti

hence

Ep[i]χ =
δ1iHij

δu
,

where Ep[i] is the differential operator

Ep[i] =
∞∑
k=0

(
(−1)k∂kx

∂p[i]

∂uxk
− ∂p[i]

∂uxk
∂kx

)

The corresponding (nonlocal) Poisson bracket is{∫
f dx ∧ dti,

∫
g dx ∧ dti

}
i

= −
∫
δ1if

δu
E−1
p[i]

δ1ig

δu
dx ∧ dti.

Note that H is not skew-symmetric, Hij 6= Hji.
The space of functionals V

/
(∂1V + ∂iV), on which the Poisson bracket {·, ·}i is defined,

depends on i and is different from the space of functionals for the bracket {·, ·} from
Equation (25). Hence no pair of these brackets are compatible with each other in the
sense of a bi-Hamiltonian system.

As before, we can relate Poisson brackets between the Hamilton functionals to coeffi-
cients of dL.
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Proposition 4.14. Assume that for all i, j > 1, Lij does not depend on any second or
higher derivatives with respect to ti and tj. On solutions of the Euler-Lagrange equations
there holds that, for i, j, k > 1,∫ (

dLij
dtk
− dLik

dtj

)
dx ∧ dti =

∫ (
p

[i]
j uk − p

[i]
k uj

)
dx ∧ dti

=
{∫
Hij dx ∧ dti,

∫
Hik dx ∧ dti

}
i
.

(28)

Proof. Analogous to the proof of Proposition 4.9. �

Example 4.15. For the potential KdV equation (see Example 2.5) we have

p[2] =
δ1L23

δu3
=

3

2
u111 +

3

2
u2

1,

hence

Ep[2] = −∂1
∂p[i]

∂u1
− ∂3

1

∂p[i]

∂u111
− ∂p[i]

∂u1
∂1 −

∂p[i]

∂u111
∂3

1

= −3∂1u1 −
3

2
∂3

1 − 3u1∂1 −
3

2
∂3

1

= −3∂3
1 − 6u1∂1 − 3u11.

We have

H23 = p[2]u3 − L23

= −3u5
1 +

15

2
u2

1u
2
11 − 10u3

1u111 + 5u3
1u3 −

7

2
u2

11u111 − 3u1u
2
111 + 6u1u11u1111

− 3

2
u2

1u11111 − 10u1u11u12 +
5

2
u2

11u2 + 5u1u111u2 +
1

2
u2

1111 −
1

2
u111u11111

+
1

2
u111u112 −

1

2
u1u113 − u1111u12 +

1

2
u11u13 +

1

2
u11111u2 + u111u3,

where the terms involving t3-derivatives cancel out when the Hamiltonian is integrated.
Its variational derivative is

δ12H23

δu
= 60u3

1u11 + 75u3
11 + 300u1u11u111 + 75u2

1u1111 − 30u2
1u12 − 30u1u11u2

+ 120u111u1111 + 72u11u11111 + 24u1u111111 − 30u1u1112 − 45u11u112

− 25u111u12 − 5u1111u2 + 2u11111111 − 5u111112.

On solutions this simplifies to

δ12H23

δu
= −210u3

1u11 − 195u3
11 − 690u1u11u111 − 150u2

1u1111 − 210u111u1111

− 123u11u11111 − 36u1u111111 − 3u11111111

= Ep[2]
(
10u3

1 + 5u2
11 + 10u1u111 + u11111

)
= Ep[2]u3.

Hence

d

dt3

∫
udx ∧ dt2 =

∫
E−1
p[2]

δ12H23

δu
dx ∧ dt2 =

{∫
H23 dx ∧ dt2,

∫
udx ∧ dt2

}
2
.
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4.6 Comparison with the covariant approach

In Section 4.5 we derived Poisson brackets {·, ·}i, associated to each time variable ti. This
was somewhat cumbersome because we had a priori assigned x = t1 as a distinguished
variable. The recent work [6] explores the relation of pluri-Lagrangian structures to co-
variant Hamiltonian structures. The meaning of “covariant” here is that all variables are
on the same footing; there is no distinguished x variable. More details on covariant field
theory, and its connection to the distinguished-variable (or “instantaneous”) perspective,
can be found in [13]. The main objects in the covariant Hamiltonian formulation of [6]
are:

• A “symplectic multiform” Ω, which can be expanded as

Ω =
∑
j

ωj ∧ dtj ,

where each ωj is a vertical 2-form in the variational bicomplex.

• A “Hamiltonian multiform” H =
∑

i<j Hij dti ∧ dtj which gives the equations of
motion through

δH =
∑
j

dtj ∧ ξjyΩ, (29)

where δ is the vertical exterior derivative in the variational bicomplex, ξj denotes
the vector field corresponding to the tj-flow, and y denotes the interior product.
This equation should be understood as a covariant version of the instantaneous
Hamiltonian equation δH = ξyω. On the equations of motion there holds dH = 0
if and only if dL = 0.

Since the covariant Hamiltonian equation (29) is of a different form than the in-
stantaneous Hamiltonian equation we use, the coefficients Hij of the Hamiltonian
multiform H are also different from the Hij we found in Sections 4.3–4.5. Our Hij

are instantaneous Hamiltonians where t1 and ti are considered as space variables
and the Legendre transformation has been applied with respect to tj .

• A “multi-time Poisson bracket” {|·, ·|} which defines a pairing between functions or
(a certain type of) horizontal one-forms, defined by

{|F,G|} = (−1)rξF δG,

where ξF is the Hamiltonian (multi-)vector field associated to F , and r is the hori-
zontal degree of F (which is either 0 or 1). The equations of motion can be written
as

dF =
∑
i<j

{|Hij , F |}dti ∧ dtj .

Single-time Poisson brackets are obtained in [6] by expanding the multi-time Poisson
bracket as{∣∣∣∑jFj dtj ,

∑
jGj dtj

∣∣∣} =
∑
j

{Fj , Gj}j dtj
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where

{f, g}j = −ξjfy δg and ξjfyωj = δf. (30)

These are fundamentally different from the Poisson brackets of Sections 4.3–4.5 because
they act on different function spaces. Equation (30) assumes that δf lies in the image of
ωj (considered as a map from vertical vector fields to vertical one-forms). For example,
for the potential KdV hiararchy one has ω1 = δv ∧ δv1, hence the Poisson bracket {·, ·}1
can only be applied to functions of v and v1, not to functions depending on any higher
derivatives. Similar conditions on the function space apply to the higher Poisson brackets
corresponding to ωj , j ≥ 2. On the other hand, the Poisson brackets of Sections 4.3–4.5
are defined on an equivalence class of functions modulo certain derivatives, without further
restrictions on the functions in this class.

In summary, the single-time Poisson brackets of [6] are constructed with a certain
elegance in a covariant way, but they are defined only in a restricted function space. They
are different from our Poisson brackets of Section 4.3–4.5, which have no such restrictions,
but break covariance already in the definition of the function space as an equivalence class.
It is not clear how to pass from one picture to the other, or if their respective benefits can
be combined into a single approach.

5 Conclusions

We have established a connection between pluri-Lagrangian systems and integrable Hamil-
tonian hierarchies. In the case of ODEs, where the pluri-Lagrangian structure is a 1-form,
this connection was already obtained in [26]. Our main contribution is its generalization
to the case of 2-dimensional PDEs, described by Lagrangian 2-forms. Presumably, this
approach extends to Lagrangian d-forms of any dimension d, but the details of this are
postponed to future work.

A central property in the theory of pluri-Lagrangian systems is that the Lagrangian
form is (almost) closed on solutions. We showed that closedness is equivalent to the
corresponding Hamilton functions being in involution.

Although one can obtain several Poisson brackets (and corresponding Hamilton func-
tions) from one Lagrangian 2-form, these do not form a bi-Hamiltonian structure and it
is not clear if a recursion operator can be obtained from them. Hence it remains an open
question to find a fully variational description of bi-Hamiltonian hierarchies.
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A Pluri-Lagrangian systems and the variational bicomplex

In this appendix we study the pluri-Lagrangian principle using the variational bicomplex,
described in Section 4.1. We provide proofs that the multi-time Euler-Lagrange equations
from Section 2 are sufficient conditions for criticality. Alternative proofs of this fact can
be found in [28] and [23, Appendix A].

Proposition A.1. The field u is a solution to the pluri-Lagrangian problem of a d-form
LJuK if locally there exists a (1, d− 1)-form Θ such that δLJuK = dΘ.

Proof. Consider a field u such that such a (1, d − 1)-form Θ exists. Consider any d-
manifold Γ and any variation v that vanishes (along with all its derivatives) on the bound-
ary ∂Γ. Note that the horizontal exterior derivative d anti-commutes with the interior
product operator ιV , where V is the prolonged vertical vector field V = pr(v∂/∂u) defined
by the variation v. It follows that∫

Γ
ιV δL = −

∫
Γ

d (ιV Θ) = −
∫
∂Γ
ιV Θ = 0,

hence u solves the pluri-Lagrangian problem. �

If we are dealing with a classical Lagrangian problem from mechanics, L = L(u, ut) dt,
we have Θ = − ∂L

∂ut
δu, which is the pull back to the tangent bundle of the canonical 1-form∑

i pi dqi on the cotangent bundle.
Often we want the Lagrangian form to be closed when evaluated on solutions. As we

saw in Theorems 3.7 and 4.11, this implies that the corresponding Hamiltonians are in
involution. We did not include this in the definition of a pluri-Lagrangian system, because
our definition already implies a slightly weaker property.

Proposition A.2. The horizontal exterior derivative dL of a pluri-Lagrangian form is
constant on connected components of the set of critical fields for L.

Proof. Critical points satisfy locally

δL = dΘ ⇒ dδL = 0 ⇒ δdL = 0.

Hence for any variation v the Lie derivative of dL along its prolongation V = pr(v∂/∂u)
is ιV δ(dL) = 0. Therefore, if a solution u can be continuously deformed into another
solution ū, then dLJuK = dLJūK. �

Now let us prove the sufficiency of the multi-time Euler-Lagrange equations for 1-forms
and 2-forms, as given in Theorems 2.2 and 2.4. For different approaches to the multi-time
Euler-Lagrange equations, including proofs of necessity, see [28] and [23].

Proof of sufficiency in Theorem 2.2. We calculate the vertical exterior derivative δL
of the Lagrangian 1-form, modulo the multi-time Euler-Lagrange Equations (1) and (2).
We have

δL =
N∑
j=1

∑
I

∂Lj
∂uI

δuI ∧ dtj

=
N∑
j=1

∑
I

(
δjLj
δuI

+ ∂j
δjLj
δuItj

)
δuI ∧ dtj .
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Rearranging this sum, we find

δL =

N∑
j=1

∑
I 63tj

δjLj
δuI

δuI ∧ dtj +
∑
I

(
δjLj
δuItj

δuItj ∧ dtj +

(
∂j
δjLj
δuItj

)
δuI ∧ dtj

) .
On solutions of Equation (2), we can define the generalized momenta

pI =
δjLj
δuItj

.

Using Equations (1) and (2) it follows that

δL =
N∑
j=1

∑
I

(
pIδuItj ∧ dtj +

(
∂jp

I
)
δuI ∧ dtj

)
= −d

(∑
I

pIδuI

)
.

This implies by Proposition A.1 that u solves the pluri-Lagrangian problem. �

Proof of sufficiency in Theorem 2.4. We calculate the vertical exterior derivative δL,

δL =
∑
i<j

∑
I

∂Lij
∂uI

δuI ∧ dti ∧ dtj

=
∑
i<j

∑
I

(
δijLij
δuI

+ ∂i
δijLij
δuIti

+ ∂j
δijLij
δuItj

+ ∂i∂j
δijLij
δuItitj

)
δuI ∧ dti ∧ dtj (31)

We will rearrange this sum according to the times occurring in the multi-index I. We have∑
I

δijLij
δuI

δuI =
∑
I 63ti,tj

δijLij
δuI

δuI +
∑
I 63tj

δijLij
δuIti

δuIti

+
∑
I 63ti

δijLij
δuItj

δuItj +
∑
I

δijLij
δuItitj

δuItitj ,

∑
I

∂i
δijLij
δuIti

δuI =
∑
I 63tj

∂i
δijLij
δuIti

δuI +
∑
I

∂i
δijLij
δuItitj

δuItj ,

∑
I

∂j
δijLij
δuItj

δuI =
∑
I 63ti

∂j
δijLij
δuItj

δuI +
∑
I

∂j
δijLij
δuItitj

δuIti .

Modulo the multi-time Euler-Lagrange equations (5)–(7), we can write these expressions
as ∑

I

δijLij
δuI

δuI =
∑
I 63tj

pIj δuIti −
∑
I 63ti

pIi δuItj +
∑
I

(nIj − nIi ) δuItitj ,

∑
I

∂i
δijLij
δuIti

δuI =
∑
I 63tj

∂ip
I
j δuI +

∑
I

∂i(n
I
j − nIi ) δuItj ,

∑
I

∂j
δijLij
δuItj

δuI =
∑
I 63ti

−∂jpIi δuI +
∑
I

∂j(n
I
j − nIi ) δuIti ,

∑
I

∂i∂j
δijLij
δuItitj

δuI =
∑
I

∂i∂j(n
I
j − nIi )δuI .



]ocnmp[ Hamiltonian structures for hierarchies of Lagrangian PDEs 125

where

pIj =
δ1jL1j

δuIt1
for I 63 tj ,

nIj =
δ1jL1j

δuIt1tj
.

Note that here the indices of p and n are labels, not derivatives. Hence on solutions to
equations (5)–(7), Equation (31) is equivalent to

δL =
∑
i<j

[∑
I 63tj

(
pIj δuIti + ∂ip

I
j δuI

)
−
∑
I 63ti

(
pIi δuItj + ∂jp

I
i δuI

)
+
∑
I

(
(nIj − nIi ) δuItitj + ∂j(n

I
j − nIi ) δuIti

+ ∂i(n
I
j − nIi ) δuItj + ∂i∂j(n

I
j − nIi ) δuI

)]
∧ dti ∧ dtj .

Using the anti-symmetry of the wedge product, we can write this as

δL =
N∑

i,j=1

[∑
I 63tj

(
pIj δuIti + ∂ip

I
j δuI

)
+
∑
I

(
nIj δuItitj + ∂jn

I
j δuIti + ∂in

I
j δuItj + ∂i∂jn

I
j δuI

)]
∧ dti ∧ dtj

=
N∑
j=1

[∑
I 63tj

−d
(
pIj δuI ∧ dtj

)
+
∑
I

−d
(
nIj δuItj ∧ dtj + ∂jn

I
j δuI ∧ dtj

) ]
.

It now follows by Proposition A.1 that u is a critical field. �
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