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Abstract

After tersely reviewing the various meanings that can be given to the property of a
system of nonlinear ODEs to be solvable, we identify a special case of the system of
two first-order ODEs with homogeneous quadratic right-hand sides which is explicitly
solvable. It is identified by 2 explicit algebraic constraints on the 6 a priori arbitrary
parameters that characterize this system. Simple extensions of this model to cases with
nonhomogeneous quadratic right-hand sides are also identified, including isochronous
cases.

1 Introduction

In this paper we mainly focus on the following system of 2 first-order ODEs with homo-
geneous quadratic right-hand sides:

ẋn (t) = cn1 [x1 (t)]
2 + cn2x1 (t) x2 (t) + cn3 [x2 (t)]

2 , n = 1, 2 . (1)

Notation 1-1. Above and hereafter t is the independent variable, and superimposed
dots indicate differentiation with respect to t. The 2 functions xn (t) are the dependent
variables, and other dependent variables yn (t) are introduced below. Often below the
dependence of these variables on t shall not be explicitly displayed, when this omission
is unlikely to cause any misunderstanding. The 6 (t-independent) parameters cnℓ are
a priori arbitrary, but a posteriori we shall identify 2 constraints on their values; and
other t-independent parameters—such as anm, bnm, etc.—shall be introduced below. All
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variables and parameters can be complex numbers (but of course the subcase in which they
are real numbers is of special interest in applicative contexts); we shall instead generally
think of the independent variable t as time, but analytic continuation to complex values of
t—and of other analogous time-like variables such as τ, see below—shall also be discussed.
Generally each of the 2 indices n and m take the 2 values 1 and 2, and the index ℓ the 3
values 1, 2, 3. �

The system (1) is a prototypical system of nonlinearly-coupled ODEs and as such has
over time been studied in many theoretical investigations and also utilized in an enormous
number of applicative contexts; a much too large research universe to make it possible to
mention all relevant references. Here we limit ourselves to quote the path-breaking papers
by René Garnier [5], and the very recent papers [2] and [3], whose topics are quite close to
those treated in the present paper, as discussed in the last two Sections 6 and 7, where
possible future developments are also tersely outlined; and just one textbook reference [4]
(of course the interested reader can trace additional references from those quoted in these
sources).

The main finding of the present paper is the identification (see Sections 2, 3 and 4)
of a subclass of the model (1)—characterized by 2 explicit algebraic constraints on the 6
coefficients cnℓ (see below the 2 eqs. (36))—which then allows the explicit solution of the
initial-values problem for this system (1), as detailed in Proposition 2-2.

Invariance properties of the system (1) and some simplifications of it are reported in
Section 5.

Some extensions of the model (1) to analogous systems with non-homogeneous quadratic
right-hand sides—including isochronous versions— are discussed in Section 6.

A comparison with previous findings, and a very terse mention of possible future de-
velopments, are provided in Section 7.

Let us complete this introductory Section 1 with a terse review—complementing the
analogous treatment provided in [2]—of the various meanings that can be given to the
property of a system of nonlinear ODEs to be solvable, and more specifically to be explicitly
solvable.

As already noted in [2], the statement that a system of nonlinear ODEs—such as
(1)—is solvable by quadratures is somewhat misleading, when it only implies that the
independent variable t can be identified as a function of an appropriate combination of
the dependent variables represented by an integral which cannot be explicitly performed
or that can be expressed as a named function—such as, say, a hypergeometric function—
which cannot be readily inverted. A less unsatisfactory outcome is when that function
is a polynomial, implying that its inversion yields an algebraic function, since this has
significant implications, especially in terms of the analytic structure of the solution when
considered as a function of complex t; although of course a generic polynomial cannot be
explicitly inverted—i. e., its roots identified—unless its degree does not exceed 4.

In the present paper the statement that a system of nonlinearly-coupled ODEs is ex-
plicitly solvable indicates that the solution of the corresponding initial-values problem can
be exhibited as an elementary function of the independent variable t, involving parameters
themselves expressed, in terms of the original parameters of the model, by explicit for-
mulas only involving elementary functions; the final formulas expressing the parameters
of the solution being nevertheless, possibly, quite complicated, being produced by a finite
(generally short) chain of explicit relations applied sequentially (see examples below).
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2 Main results

The following 2 Propositions are proven in the following Section 3.
Proposition 2-1. The explicit solution of the initial-values problem for the system

ẏ1 (t) = [y1 (t)]
2 , (2a)

ẏ2 (t) = ρ1 [y1 (t)]
2 + ρ2y1 (t) y2 (t) + [y2 (t)]

2 , (2b)

where ρ1 and ρ2 are 2 arbitrary parameters, reads as follows:

y1 (t) = y1 (0) [1− y1 (0) t]
−1 , (3a)

y2 (t) = y1 (0) [1− y1 (0) t]
−1 u (t) , (3b)

u (t) =
u+ [u (0)− u−]− u− [u (0)− u+] [1− y1 (0) t]

−∆

u (0)− u− − [u (0)− u+] [1− y1 (0) t]
−∆

, (3c)

u (0) = y2 (0) /y1 (0) , u± = (1− ρ2 ±∆) /2 , (3d)

∆ =

√

(1− ρ2)
2 − 4ρ1 . (3e)

This solution is valid for arbitrary initial data y1 (0) and y2 (0) , provided y1 (0) 6= 0.
If instead y1 (0) = 0 implying y1 (t) = y1 (0) = 0—in which case some of the formulas
(3) become undetermined—then of course y2 (t) = y2 (0) [1− y2 (0) t]

−1 (see (2b) with
y1 (t) = 0). �

Remark 2-1. Note that this solution is clearly invariant under the assignment of the
sign of ∆ (not defined by eq. (3e)): see (3c) and the definition (3d) of the 2 parameters
u±. �

Proposition 2-2. The initial-values problem—with generic initial data—for the sys-
tem (1) is explicitly solvable provided the 6 a priori arbitrary parameters cnℓ (n = 1, 2;
ℓ = 1, 2, 3) are expressed in terms of the 6 = 2 + 4 a priori arbitrary parameters ρ1, ρ2
and anm or bnm (n = 1, 2; m = 1, 2) by the following formulas:

cn1 = bn1 (a11)
2 + bn2

[

ρ1 (a11)
2 + (ρ2a11 + a21) a21

]

, n = 1, 2 , (4a)

cn2 = 2bn1a11a12 + bn2 [2ρ1a11a12 + ρ2 (a11a22 + a12a21) + 2a21a22] , n = 1, 2, (4b)

cn3 = bn1 (a12)
2 + bn2

[

ρ1 (a12)
2 + (ρ2a12 + a22) a22

]

, n = 1, 2 . (4c)

Here the 4 parameters anm and the 4 parameters bnm are related by the following 4
formulas:

a11 = b22/B , a12 = −b12/B , a21 = −b21/B , a22 = b11/B , (5a)
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or, equivalently,

b11 = a22/A , b12 = −a12/A , b21 = −a21/A , b22 = a11/A , (5b)

where

A = a11a22 − a12a21 = B−1 , (5c)

B = b11b22 − b12b21 = A−1 ; (5d)

obviously implying the possibility to express—via the formulas (4) with n = 1, 2—the 6
coefficients cnℓ in terms of the 2 parameters ρ1, ρ2 and either the 4 a priori arbitrary
parameters anm or the 4 arbitrary parameters bnm.

Then the solution of the initial-values problem for the system (1) is related to the
explicit solution (3) of the corresponding initial-values problem for the system (2) (see
Proposition 2-1) via the following linear relations:

y1 (t) = a11x1 (t) + a12x2 (t) , y2 (t) = a21x1 (t) + a22x2 (t) , (6a)

x1 (t) = b11y1 (t) + b12y2 (t) , x2 (t) = b21y1 (t) + b22y2 (t) , (6b)

which are easily seen to imply the relations (5). �

3 Proofs

3.1 Proof of Proposition 2-1

In this subsection we provide for completeness a proof of Proposition 2-1, although this
finding is rather elementary and by no means new (see for instance [5]).

The fact that (3a) provides the solution of the initial-value problem for the ODE (2a)
is plain.

Hereafter we assume y1 (0) 6= 0.
Then set

y2 (t) = u (t) y1 (t) , u (t) = y2 (t) /y1 (t) , (7a)

hence

u̇ (t) = [ẏ2 (t)− u (t) ẏ1 (t)] /y1 (t) , (7b)

hence, via (2) and (3a),

u̇ (t) = y1 (0) [1− y1 (0) t]
−1

{

[u (t)]2 + (ρ2 − 1) u (t) + ρ1

}

, (8)

and since clearly, via the definition of u± (see (3d)),

[u (t)]2 + (ρ2 − 1) u (t) + ρ1 = [u (t)− u+] [u (t)− u−] , (9)
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the ODE satisfied by u (t) reads as follows:

u̇ (t) {[u (t)− u+] [u (t)− u−]}−1 = y1 (0) [1− y1 (0) t]
−1 ; (10)

hence, again via the definition of u± (see (3d)),

u̇ (t)
{

[u (t)− u+]
−1 − [u (t)− u−]

−1
}

= ∆y1 (0) [1− y1 (0) t]
−1 (11)

which can be immediately integrated, yielding (3c).

The expression of y2 (t) (see (3)) is thereby validated, completing thereby the proof of
Proposition 2-1.

Remark 2.1-1. Of course the expression (3c) of u (t) is valid for generic values of the
relevant parameters. For the special initial values u (0) = u± it yields the trivial result
u (t) = u (0). For the special values of the parameters ρ1 and ρ2 such that ρ1 = (1− ρ2)

2 /4
implying ∆ = 0 (see (3e)) and (see (3d))

u+ = u− = ū = (1− ρ2) /2 , (12)

the expression (3c) of u (t) is replaced by the following formula (implied by (11) with (12)):

u (t) =
u (0) + ū [u (0)− ū] ln [1− y1 (0) t]

1 + [u (0)− ū] ln [1− y1 (0) t]
. � (13)

3.2 Proof of Proposition 2-2

Let us t-differentiate the relations (6b) respectively (6a), getting

ẋ1 = b11ẏ1 + b12ẏ2 , ẋ2 = b21ẏ1 + b22ẏ2 , (14a)

respectively

ẏ1 = a11ẋ1 + a12ẋ2 , ẏ2 = a21ẋ1 + a22ẋ2 . (14b)

Hence, from the first of these 2 pairs of relations, we get, via (2),

ẋn = bn1 (y1)
2 + bn2

[

ρ1 (y1)
2 + ρ2y1y2 + (y2)

2
]

, n = 1, 2 ; (15)

and then, via (6a) and a bit of trivial algebra, the system (1) with the expressions (4) of
the coefficients cnℓ. Proposition 2-2 is thereby proven.

4 Inversion of the equations (4) with (5)

In this Section we discuss the important problem to invert the system of algebraic equations
(4) with (5), i. e. to express the 2 parameters ρ1, ρ2 and the 4 parameters anm—or,
equivalently (see (5)), the 4 parameters bnm—in terms of the 6 parameters cnℓ; and we
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find 2 constraints on the 6 parameters cnℓ which are required in order to fulfill this task,
hence are necessary for the explicit solvability of the system (1) via Proposition 2.2.

As a first step, let us note that the system of 2 ODEs (14b) implies, via the system (1),
the following 2 ODEs:

ẏn = (an1c11 + an2c21) (x1)
2 + (an1c12 + an2c22)x1x2

+(an1c13 + an2c23) (x2)
2 , n = 1, 2 , (16a)

hence, via (6b), the following system of 2 ODEs:

ẏn = (an1c11 + an2c21) (b11y1 + b12y2)
2

+(an1c12 + an2c22) (b11y1 + b12y2) (b21y1 + b22y2)

+ (an1c13 + an2c23) (b21y1 + b22y2)
2 , n = 1, 2 , (16b)

hence

ẏn = γn1 (y1)
2 + γn2y1y2 + γn3 (y2)

2 , n = 1, 2 , (17)

with

γn1 = (an1c11 + an2c21) (b11)
2 + (an1c12 + an2c22) b11b21

+(an1c13 + an2c23) (b21)
2 , n = 1, 2 , (18a)

γn2 = 2 (an1c11 + an2c21) b11b12 + (an1c12 + an2c22) (b11b22 + b12b21)

+2 (an1c13 + an2c23) b21b22 , n = 1, 2 , (18b)

γn3 = (an1c11 + an2c21) (b12)
2 + (an1c12 + an2c22) b12b22

+(an1c13 + an2c23) (b22)
2 , n = 1, 2 . (18c)

And now a comparison of this system of ODEs with the system (2) implies

γ11 = γ23 = 1 , γ12 = γ13 = 0 ; γ2n = ρn, n = 1, 2 , (19)

hence

γ11 = (a11c11 + a12c21) (b11)
2 + (a11c12 + a12c22) b11b21

+(a11c13 + a12c23) (b21)
2 = 1 , (20a)

γ12 = 2 (a11c11 + a12c21) b11b12 + (a11c12 + a12c22) (b11b22 + b12b21)

+2 (a11c13 + a12c23) b21b22 = 0 , (20b)

γ13 = (a11c11 + a12c21) (b12)
2 + (a11c12 + a12c22) b12b22

+(a11c13 + a12c23) (b22)
2 = 0 , (20c)
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γ23 = (a21c11 + a22c21) (b12)
2 + (a21c12 + a22c22) b12b22

+(a21c13 + a22c23) (b22)
2 = 1 , (20d)

γ21 = (a21c11 + a22c21) (b11)
2 + (a21c12 + a22c22) b11b21

+(a21c13 + a22c23) (b21)
2 = ρ1 , (20e)

γ22 = 2 (a21c11 + a22c21) b11b12 + (a21c12 + a22c22) (b11b22 + b12b21)

+2 (a21c13 + a22c23) b21b22 = ρ2 ; (20f)

namely, by setting,

αnℓ = an1c1ℓ + an2c2ℓ , n = 1, 2, ℓ = 1, 2, 3 , (21)

the following 6 equations:

α11 (b11)
2 + α12b11b21 + α13 (b21)

2 = 1 , (22a)

2α11b11b12 + α12 (b11b22 + b12b21) + 2α13b21b22 = 0 , (22b)

α11 (b12)
2 + α12b12b22 + α13 (b22)

2 = 0 , (22c)

α21 (b12)
2 + α22b12b22 + α23 (b22)

2 = 1 , (22d)

α21 (b11)
2 + α22b11b21 + α23 (b21)

2 = ρ1 , (22e)

2α21b11b12 + α22 (b11b22 + b12b21) + 2α23b21b22 = ρ2 . (22f)

Remark 4-1. From the first 3 of these relations—summing the first and the third and
summing or subtracting the second—we get the following 2 relations

α11 (b11 ± b12)
2 + α12 (b11 ± b12) (b21 ± b22) + α13 (b21 ± b22)

2 = 1 , (23)

and summing and subtracting these 2 relations we get the 2 relations

α11

[

(b11)
2 + (b12)

2
]

+ α12 (b11b21 + b12b22) + α13

[

(b21)
2 + (b22)

2
]

= 1 , (24a)

2α11b11b12 + α12 (b11b22 + b12b21) + 2α13b21b22 = 0 . (24b)

But we shall not use these formulas below. �
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Solving the first 3 of the 6 eqs. (22) we get the following formulas for the 3 quantities
α1ℓ (ℓ = 1, 2, 3):

α11 = (b22)
2 /B2 , α12 = −2b12b22/B

2 , α13 = (b12)
2 /B2 , (25)

and likewise solving the last 3 of the 6 eqs. (22) we get the following formulas for the 3
quantities α2ℓ (ℓ = 1, 2, 3):

α21 =
[

(b21)
2 + (b22)

2 ρ1 − b21b22ρ2

]

/B2 , (26a)

α22 = − [2b11b21 + 2b12b22ρ1 − (b11b22 + b12b21) ρ2] /B
2 , (26b)

α23 =
[

(b11)
2 + (b12)

2 ρ1 − b11b12ρ2

]

/B2 ; (26c)

of course, above and below, B is defined in terms of the 4 parameters bnm by eq. (5d).
Next, using the definitions (21) and the relations (5a), we get the following 6 algebraic

equations, which only involve the 6 parameters ρ1, ρ2 and bnm as well as the 6 parameters
cnℓ:

(b22c11 − b12c21)B = (b22)
2 , (27a)

(b22c12 − b12c22)B = −2b12b22 , (27b)

(b22c13 − b12c23)B = (b12)
2 , (27c)

(−b21c11 + b11c21)B = (b21)
2 + (b22)

2 ρ1 − b21b22ρ2 , (27d)

(b21c12 − b11c22)B = 2b11b21 + 2b12b22ρ1 − (b11b22 + b12b21) ρ2 , (27e)

(−b21c13 + b11c23)B = (b11)
2 + (b12)

2 ρ1 − b11b12ρ2 . (27f)

In all these formulas B is of course again defined in terms of the 4 parameters bnm by the
formula (5d).

Solving for ρ1 and ρ2 the 2 linear eqs. (27d) and (27e) we get

ρ1 =
{

(b21)
2 (1− b12c11 − b22c12) + (b11)

2 b22c21

+b11b21 [b12c21 − b22 (c11 − c22)]} / (b22)2 , (28a)

ρ2 = (2b21 − 2b12b21c11 − b21b22c12 + 2b11b12c21 + b11b22c22) /b22 ; (28b)

likewise, solving the 2 linear eqs. (27e) and (27f), we get

ρ1 =
{

b12 (b21)
2 c13 + b11b21 [b22c13 + b12 (c12 − c23)]

+ (b11)
2 (1− b12c22 − b22c23)

}

/ (b12)
2 , (29a)
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ρ2 = [b11 (2− b12c22 − 2b22c23) + b12b21c12 + 2b21b22c13] /b12 ; (29b)

and likewise, solving the 2 linear eqs. (27f) and (27d), we get

ρ1 =
[

(b21)
2 b22c13 + (b11)

2 b12c21 + b11b21 (1− b12c11 − b22c23)
]

/(b12b22) , (30a)

ρ2 = b21/b22 + [b12(−b21c11 + b11c21)] /b22 + (b11 + b21b22c13 − b11b22c23) /b12 . (30b)

Any one of these 3 pairs of formulas provides an explicit expression of the 2 parameters
ρ1 and ρ2 in terms of the 4 parameters bnm and the 6 parameters cnℓ. Hence hereafter
we may only focus on the problem to express the 4 parameters bnm in terms of the 6
parameters cnℓ.

Indeed, by identifying 2 different expressions of the parameter ρ1 or ρ2 as given just
above, we obtain additional formulas involving only the 4 parameters bnm and the 6
parameters cnℓ. In particular by identifying the 2 expressions (28b) and (29b) we get the
following formula:

b12 (2b21 − 2b12b21c11 − b21b22c12 + 2b11b12c21 + b11b22c22)

= b22 [b11 (2− b12c22 − 2b22c23) + b12b21c12 + 2b21b22c13] ; (31a)

and likewise by identifying the 2 expressions (29a) and (30a) we get the following formula:

b22

{

b11b21 [b22c13 + b12 (c12 − c23)] + (b11)
2 (1− b12c22 − b22c23)

}

= b12

[

(b11)
2 b12c21 + b11b21 (1− b12c11 − b22c23)

]

. (31b)

Our final task is to extract as much information as possible on the dependence of the 4
parameters bnm on the 6 parameters cnℓ, from these 2 equations (31) and from the 3 eqs.
(27a), (27b), (27c), or rather from 2 of their 3 ratios, which clearly read as follows:

−2b12 (b22c11 − b12c21) = b22 (b22c12 − b12c22) , (32a)

b12 (b22c12 − b12c22) = −2b22 (b22c13 − b12c23) , (32b)

(b12)
2 (b22c11 − b12c21) = (b22)

2 (b22c13 − b12c23) ; (32c)

each one of these 3 formulas (32) is of course implied by the other 2.
Let us now introduce the auxiliary variable

β = b12/b22 . (33)

Then, by dividing the 2 eqs.(32a) and (32b) by (b22)
2 we get the following 2 quadratic

equations for this quantity:

2c21β
2 + (c22 − 2c11)β − c12 = 0 , (34a)

c22β
2 − (c12 − 2c23) β − 2c13 = 0 . (34b)
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Subtracting the second of these 2 eqs. multiplied by 2c21 from the first itself multiplied
by c22 we get a first-degree equation for β, the solution of which reads

β = (c12c22 − 4c13c21) / [(c22 − 2c11) c22 + 2c21 (c12 − 2c23)] ; (35)

and inserting this determination of β in the 2 eqs. (34) we finally get the following 2
explicit constraints on the 6 coefficients cnℓ:

2c21 (c12c22 − 4c13c21)
2

+(c22 − 2c11) (c12c22 − 4c13c21) [(c22 − 2c11) c22 + 2c21 (c12 − 2c23)]

−c12 [(c22 − 2c11) c22 + 2c21 (c12 − 2c23)]
2 = 0 , (36a)

c22 (c12c22 − 4c13c21)
2

− (c12 − 2c23) (c12c22 − 4c13c21) [(c22 − 2c11) c22 + 2c21 (c12 − 2c23)]

−2c13 [(c22 − 2c11) c22 + 2c21 (c12 − 2c23)]
2 = 0 . (36b)

These 2 constraints on the 6 coefficients cnℓ must be satisfied in order that the initial-
values problem of the system (1) be explicitly solvable as detailed by Proposition 2-2.
Note that each of these constraints is a quintic algebraic equation for the 6 coefficients
cnℓ; but eq. (36a) is only quadratic for c11, c13, c23 and cubic for c12, c21, c22; while eq.
(36b) is only quadratic for c11, c13, c21, c23, cubic for c12 and quartic for c22.

Remark 4.2. The last sentence above suggests the most convenient approaches to
be employed in order to evaluate the implications of the 2 constraints (36) in the special
cases—generally relevant in applicative contexts—when the 6 coefficients cnℓ are all real
numbers. �

Let us now complete the task of this Section, to express the 4 parameters bnm—hence
as well the 4 parameters anm: see (5a) with (5d)—in terms of the 6 coefficients cnℓ. Since
the definition (33) of β clearly implies

b12 = βb22 , (37)

inserting this relation in the 3 eqs. (27a), (31a) and (31b), we get the following 3 algebraic
equations:

(c11 − βc21) (b11 − βb21) = 1 , (38a)

[

1− b22
(

β2c21 + βc22 + c23
)]

b11

+
[

−β + b22
(

β2c11 + βc12 + c13
)]

b21 = 0 , (38b)

b21b22 [c13 + β (c12 − c23)] + (b11)
2 [1− b22 (βc22 + c23)]

−β {βb11b22c21 + b21 [1− b22 (βc11 + c23)]} = 0 . (38c)

The first 2 of these 3 eqs. (38) are a linear system for the 2 quantities b11 and b22,
which can be immediately solved yielding

b11 = B110 + βb21 , (39a)
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b22 = 1/ (B220 +B221b21) , (39b)

with

B110 = 1/ (c11 − βc21) , (39c)

B220 = c23 + βc22 + β2c21 , (39d)

B221 = − (c11 − βc21)
[

c13 + β (c12 − c23) + β2 (c11 − c22)− c21β
3
]

. (39e)

Note that, since β is explicitly expressed in terms of the 6 coefficients cnℓ (see (35)), the 2
formulas (39)—together with (37)—provide explicit expressions of the 3 parameters b11,
b22, b12 in terms of the 6 coefficients cnℓ and the parameter b21. Thus to complete our
task we must express also this parameter b21 in terms of the 6 coefficients cnℓ. This task
can be fulfilled by solving the algebraic equation (38c), which—after the replacement of
the 3 parameters b11, b22, b21 via their expressions (37) and (39) in terms of b21 and the
6 parameters cnℓ—only features the still unknown parameter b21 (of course in addition to
the 6 parameters cnℓ). And it can be shown—via elementary if tedious calculations, which
can be checked by Mathematica—that the eq. (38c) takes then the following form:

C0 + C1b21 + C2 (b21)
2 + C3 (b21)

3 = 0 , (40a)

with

C0 = β2c21 (1− c11 + βc21) , (40b)

C1 = (c11 − βc21)
{

β3c21 − (1− c11 + βc21) ·
·
[

c13 + β (c12 − c23) + β2 (c11 − c22)− 2β3c21
]}

, (40c)

C2 = −β (c11 − βc21)
2
{

c13 + β (c12 − c23) + β2 (c11 − c22)− 2β3c21

+(1− c11 + βc21)
[

c13 − β (c23 − c12) + β2 (c11 − c22)− β3c21
]}

, (40d)

C3 = −β2 (c11 − βc21)
3
[

c13 + β (c12 − c23) + β2 (c11 − c22)− β3c21
]

. (40e)

Since these 4 coefficients Ck (k = 0, 1, 2, 3) are all explicitly expressed—via these for-
mulas: see (35) and (40)—in terms of the 6 coefficients cnℓ, it seems that to complete our
task all that still needs to be done is to solve the cubic equation (40a), which can of course
be explicitly solved via the Cardano formulas.

But the situation is a bit more tricky, and in fact more simple.
The point is that, as we know, the 6 parameters cnℓ cannot be assigned freely; the

success of the entire treatment requires that they satisfy the 2 constraints (36); and, as
it happens, this requirement seems to imply that the coefficient C3 vanishes, C3 = 0. We
have been unable to prove this result explicitly : note that the expression of C3 in terms
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of the 6 coefficients cnℓ is quite complicated, also due to the complicated dependence of β
on the coefficients cnℓ (see (35)); and the 2 constraints (36) are as well fairly complicated.
But quite convincing evidence of this fact is provided by the numerical examples reported
below, see Subsection 4.1.

Hence, the third-degree equation (40a) can be replaced by the second-degree equation

C0 + C1b21 + C2 (b21)
2 = 0 , (41a)

the 2 solutions of which read of course as follows:

b21 = b21± ≡
(

−C1 ±
√

(C1)
2 − 4C0C2

)

/2 . (41b)

This finding seems to complete our task to determine—in terms of 6 coeffcients cnℓ,
arbitrarily assigned except for the requirement to satisfy the 2 constraints (36)— the 6
parameters ρn and bnm (n,m = 1, 2): see (35), (29), (37), (39) and (41b). Hence to
provide the explicit solution of the initial-values problem of the system (1), as detailed by
Proposition 2-2 in terms of the 6 parameters ρn and bnm.

But a doubt should still linger in the mind of the alert reader: the solution of the
initial-values problem of the system (1) should be unique; but we just found 2 different
values for the parameter b21 (see (41b)), hence as well for the other 3 parameters bnm
(see the eqs. (39) and (37)), and as well for the parameters ρn (see the eqs. (29)). This
means that, if our treatment is correct, these different values must end up yielding the
same solution for the variables xn (t). This ”miracle” is indeed validated by a check of
many specific examples, as reported in the following Subsection 4.1; with the added
observation that—as implied by the observation that the eqs. (39e) and (40e) clearly
imply B221 = C3 [β (c11 − βc21)]

−2—we may conclude that the vanishing of the parameter
C3 also implies the vanishing of the parameter B221: B221 = 0; implying (via (39d)) the
replacement of the expression (39b) of b22 by the simple expression

b22 = 1/
(

c23 + βc22 + β2c21
)

, (42a)

and as a consequence also the replacement of (37) with

b12 = β/
(

c23 + βc22 + β2c21
)

. (42b)

These simpler formulas expressing the 2 parameters b22 and b12 directly via the parameters
cnℓ (recall (35)) imply that the values of these 2 parameters are not affected by the 2-valued
indeterminacy affecting the other 2 parameters b11 and b21 (see (39a) and (41b)) as well
as the values of the 2 parameters ρn (see (29)).

4.1 Specific solvable examples

Let us introduce this Subsection by emphasizing that—due to the explicit character of the
formulas (4) expressing the 6 coefficients cnℓ in terms of the 6 parameters ρn and bnm (or,
equivalently, anm: see (5))—it is quite easy to manufacture examples of the system (1)
which are explicitly solvable via our treatment: all one has to do is to input an arbitrary
assignment of these 6 parameters ρn and bnm in these formulas (4).
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In this Subsection we report only 3 examples of the system (1) which are explicitly
solvable via the technique described in the present paper. But we also tested several
other such examples, which are not reported here; they all confirmed the assertion (that
C3 = 0) mentioned in the last part of Section 4. Of course it shall be likewise easy for
the interested reader to identify in this manner other systems (1) explicitly solvable via
the technique introduced in this paper (see Propositions 2- 2 and 2-1).

By inserting the values of the parameters cnℓ—obtained by the simple procedure de-
scribed in the first paragraph of this Subsection—in the relevant formulas written above
(see Section 4), we verified that they of course do satisfy the 2 constraints (36); that they
always do yield a vanishing value for the parameter C3 (and also for the parameter B221);
we obtained specific values for each of the 2 parameters b22 and b12 (of course, the same
as those originally employed to determine the set of coefficients cnℓ); while we obtained
instead 2 alternative determinations for the couple of parameters b11 and b21 and also for
the couple of parameters ρ1 and ρ2. And moreover—remarkably: although this ”miracle”
was expected—we verified that these 2 different determinations yield—via the relevant
formulas of Proposition 2-2 and 2-1 (see eqs. (6b), (3), (42), (41b), (39a), (29))—the
same, unique, solution of the initial-values problem of the system (1).

The first example is identified by the following assignments of the 6 coefficients cnℓ:

c11 = 7/3, c12 = 2, c13 = 3 , c21 = −1, c22 = −2 , c23 = −3 . (43a)

The corresponding values of the parameters β, b12 and b22 are

β = −3 , b12 = 1/2 , b22 = −1/6 , (43b)

while for the values of the parameters b11, b21, ρ1, ρ2 and ∆ (see (3e)) we get

b11 = 0 , b21 = −1/2, ρ1 = 3/2 , ρ2 = 0 , ∆ = i
√
5 , (43c)

or

b11 = 1 , b21 = −5/6, ρ1 = 7/2 , ρ2 = 4 , ∆ = i
√
5 ; (43d)

note the equality of the 2 determinations of the parameter ∆, which are of course essential
for the final outcome, namely the following unique explicit solution of the initial-values
problem of the system (1) with (43a):

x1 (t) = i
{

3 [x1 (0) + 3x2 (0)]
[

(2− i
√
5)x1 (0) + 3x2 (0)

−
[

(2 + i
√
5)x1 (0) + 3x2 (0)

]

[1 + (2/3) t(x1 (0) + 3x2 (0)]
i
√
5
]}

/D1 (t) , (43e)

x2 (t) =
{

3 [x1 (0) + 3x2 (0)]
[

−3x1 (0)− 2x2 (0)− i
√
5x2 (0)

+
[

3x1 (0) + (2− i
√
5)x2 (0)

]

{1 + (2/3) t [x1 (0) + 3x2 (0)]}i
√
5
]}

/D1 (t) ,

(43f)
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D1 (t) = {3 + 2t [x1 (0) + 3x2 (0)]}
[

(−7− i
√
5)x1 (0) + (−3− 3i

√
5)x2 (0)

+
[

(7− i
√
5)x1 (0) + 3(1 − i

√
5)x2 (0)

]

{1 + (2/3) t [x1 (0) + 3x2 (0)]}i
√
5
]

.

(43g)

The second example is identified by the following assignments of the 6 coefficients cnℓ:

c11 = c12 = c13 = 1 , c21 = 1/8 , c22 = 2 , c23 = −1 . (44a)

The corresponding data read then as follows:

β = 2 , b12 = 4/7 , b22 = 2/7 , (44b)

and

b11 = 0 , b21 = −2/3, ρ1 = 7/9 , ρ2 = −4/3 , ∆ =
√

7/3 , (44c)

or

b11 = 1 , b21 = −1/6, ρ1 = −35/144 , ρ2 = 13/6 , ∆ =
√

7/3 ; (44d)

yielding the following unique explicit solution of the initial-values problem of the system
(1) with (44a):

x1 (t) =
{

4 [x1 (0)− 2x2 (0)]
[(

5−
√
21
)

x1 (0) + 4x2 (0)
]

−
[(

5 +
√
21

)

x1 (0) + 4x2 (0)
]

{1− (3/4) [x1 (0)− 2x2 (0)] t}
√

7/3
}

/D2 (t) ,

(44e)

x2 (t) =
{

4 [x1 (0)− 2x2 (0)]
[

−x1 (0)−
(

5 +
√
21

)

x2 (0)
]

+
[

x1 (0) +
(

5−
√
21

)

x2 (0)
]

{1− (3/4) [x1 (0)− 2x2 (0)] t}
√

7/3
}

/D2 (t) ,

(44f)

D2 (t) = {−4 + 3 [x1 (0)− 2x2 (0)] t}
{(

−7 +
√
21

)

x1 (0)− 2
(

7 +
√
21

)

x2 (0)

+
[(

7 +
√
21

)

x1 (0) + 2
(

7−
√
21

)

x2 (0)
]

{1− (3/4) [x1 (0)− 2x2 (0)] t}
√

7/3
}

.

(44g)

The third example is identified by the following assignments of the 6 coefficients cnℓ:

c11 = −19/169 , c12 = −265/507 , c13 = 110/1521 ,

c21 = −27/169 , c22 = −1/169 , c23 = −36/169 . (45a)

The corresponding data read then as follows:

β = 5/3 , b12 = −5/2 , b22 = −3/2 , (45b)
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and

b11 = 0 , b21 = −39/10, ρ1 = −11/25 , ρ2 = 17/10 , ∆ = 3/2 , (45c)

or

b11 = 1 , b21 = −33/10, ρ1 = −14/25 , ρ2 = 9/10 , ∆ = 3/2 ; (45d)

yielding the following unique explicit solution of the initial-values problem of the system
(1) with (44a):

x1 (t) = {[3x1 (0)− 5x2 (0)] {3861x1 (0)− 858x2 (0)

+78 [9x1 (0) + 11x2 (0)] {1− (2/39) [3x1 (0)− 5x2 (0)] t}3/2
}

/D3 (t) , (45e)

x2 (t) = −{9 [3x1 (0)− 5x2 (0)] {351x1 (0)− 78x2 (0)

−39 [9x1 (0) + 11x2 (0)] {1− (2/39) [3x1 (0)− 5x2 (0)] t}3/2
}

/D3 (t) , (45f)

D3 (t) = {39− 2 [3x1 (0)− 5x2 (0)] t} {702x1 (0)− 156x2 (0)

−39 [9x1 (0) + 11x2 (0)] {1− (2/39) [3x1 (0)− 5x2 (0)] t}3/2
}

. (45g)

5 Invariance property and simplifications

In this short section we report for completeness a rather obvious invariance property and
some possible trivial simplifications of the system (1). They amount to the elementary
observation that the 2 dependent variables

x̂n (τ) ≡ (µn/λ) xn (t) , t̂ ≡ λ t , (46a)

with λ and µn a priori arbitrary nonvanishing parameters, satisfy—mutatis mutandis—
essentially the same system (1) as the 2 dependent variables xn (t):

x̂′n
(

t̂
)

≡ d x̂n
(

t̂
)

/dt̂ = ĉn1
[

x̂1
(

t̂
)]2

+ ĉn2x̂1
(

t̂
)

x̂2
(

t̂
)

+ ĉn3
[

x̂2
(

t̂
)]2

, n = 1, 2 , (46b)

with

ĉn1 = µn (µ1)
−2 cn1 , ĉn2 = µn (µ1µ2)

−1 cn2 , ĉn3 = µn (µ2)
−2 cn3 , n = 1, 2 . (46c)

For µ1 = µ2 = 1 this property identifies the invariance of the system (1) under a
simultaneous rescaling of the independent and dependent variables: see (46).

Remark 5-1. Both constraints (36) are invariant under the transformation (46c). �

The simplifications correspond to the possibility to replace—by an appropriate rescaling
of dependent variables—1 of the 3 parameters c1ℓ and 1 of the 3 parameters c2ℓ by an
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arbitrary number (of course, nonvanishing; for instance, just unity); thereby reducing the
number of a priori arbitrary coefficients cnℓ from 6 to 4. For instance the assignment

µ1 = c11 , µ2 = c23 , (47a)

implies

ĉ11 = 1 , ĉ12 = c12/c23 , ĉ13 = c11c13 (c23)
−2 ,

ĉ21 = c21c23 (c11)
−2 , ĉ22 = c22/c11 , ĉ23 = 1 . (47b)

Remark 5-2. The simplification (47) applied to the 3 examples characterized by the
assignments (43), (44) respectively (45) yields 3 models (see (46)) characterized by the
following assignments of the coefficients cnℓ:

ĉ12 = −2/3 , ĉ13 = 7/9 , ĉ21 = 27/49 , ĉ22 = −6/7 , (48)

respectively

ĉ12 = −1 , ĉ13 = 1 , ĉ21 = −1/8 , ĉ22 = 2 , (49)

respectively

ĉ12 =
265

108
, ĉ13 = −1045

5832
, ĉ21 =

972

361
, ĉ22 =

1

19
; (50)

of course in all 3 cases with ĉ11 = ĉ23 = 1. �

6 Extensions and isochronous models

In this Section we tersely outline some simple extensions of the system (1) to the case with
non-homogeneous quadratic right-hand sides, as well as some related systems obtained by
a well-known change of variables—see for instance [1]—which allows the identification of
analogous systems featuring the remarkable property to be isochronous.

An elementary way to extend the autonomous system (1) featuring ODEs with homo-
geneous quadratic right-hand sides to an, also autonomous, system with non-homogeneous
quadratic right-hand sides is via the following—easily invertible—change of independent
variables:

zn (t) = exp (ηt) xn
(

t̃
)

+ z̄n , t̃ = [exp (ηt)− 1] /η , n = 1, 2 , (51)

where the 3 parameters z̄1, z̄2 and η are a priori arbitrary. Thereby the system (1) gets
transformed into the following system:

żn (t) = cn1 [z1 (t)]
2 + cn2z1 (t) z2 (t) + cn3 [z2 (t)]

2

+ηzn (t) + dn1z1 (t) + dn2z2 (t) + dn3 , n = 1, 2 , (52a)

with the 6 ”new” parameters dnℓ expressed in terms of the 6 ”old” parameters cnℓ and of
the 3 ”new” parameters z̄1, z̄2 and η as follows:

dn1 = −2cn1z̄1 − cn2z̄2 , dn2 = −2cn1z̄2 − cn2z̄1 ,

dn3 = −ηz̄n + cn1 (z̄1)
2 + cn2z̄1z̄2 + cn3 (z̄2)

2 , n = 1, 2 . (52b)
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Of course the solvability properties of the original system (1) carry over to the system
(52).

Moreover—if the solvability of the system (52a), via (51) and Propositions 2-2 and
2-1—features a parameter ∆ (see (3e)) which is a real rational number (∆ = k1/k2 with
k1 an arbitrary integer and k2 an arbitrary positive integer), then clearly the system (52a),
with

η = iω , (53)

—where i is the imaginary unit, i2 = −1, and ω is an arbitrary nonvanishing real number—
features the remarkable property to be isochronous: namely all its solutions zn (t) are
periodic with the same period T = 2πk2/ |ω|,

zn (t+ T ) = zn (t) , n = 1, 2 . (54)

Readers wondering about the validity of this—rather obvious: see (51), (6), (3c) and
(53)—conclusion are advised to have a look, for instance, at the book [1].

Remark 6-1. Of course the presence of the imaginary parameter η = iω in the right-
hand side of the system (52a) with (53) implies that its solutions are necessarily complex,
zn (t) ≡ Re [zn (t)] + iIm [zn (t)]; entailing a corresponding doubling, from 2 to 4, of the
number of nonlinearly-coupled ODEs for the real version of this system, satisfied by the 4
real dependent variables Re [zn (t)] and Im [zn (t)], n = 1, 2; and clearly in this case it would
be natural to also consider the 6 parameters cnℓ (as well of course as the 6 parameters ρn
and bnm related to them) and the 2 parameters z̄n to be themselves complex numbers. �

Remark 6-2. The interested reader might wish to compute the relevant formulas for
the isochronous case associated to the third example reported in Subsection 4.1. �

7 Comparison with previous findings and outlook

The system (1) treated in this paper is identical to the system treated in the recent paper
[2]; it is therefore appropriate to compare the approach and the findings reported in that
paper with those reported in the present paper.

The methodologies used in [2] and in the present paper have much in common, but
there is a significant difference. In the present paper we started from the simpler, explic-
itly solvable model (2) and we then investigated in which cases the general system (1)
with 6 a priori arbitrary coefficients cnℓ can be reduced—via a time-independent linear
transformation of the 2 dependent variables, see (6)—to the simpler, explicitly solvable
system (2). We found that this is indeed possible, but only if the 6 a priori arbitrary
coefficients cnℓ satisfy the 2 constraints (36). This allowed us to conclude that the special
subclass of the systems (1) identified by these 2 constraints is explicitly solvable in terms
of elementary functions, and to display the solution of their initial-values problem.

The methodology employed in [2] took as point of departure the general system (1) with
6 arbitrary coefficients cnℓ, but then immediately proceeded to reduce it to a canonical
form—featuring at most only 2 coefficients—via a time-independent linear transformation
of the 2 dependent variables (such as (6)); it then focussed on the discussion of the solv-
ability (by quadratures) of those reduced systems, and moreover on the identification of
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a specific subclass of such systems the solutions of which are algebraic, i. e. identified as
roots of explicitly time-dependent polynomials. The procedure of reduction to canonical
form is a bit complicated, but it has been shown by François Leyvraz that the first exam-
ple treated in Subsection III.B of [2] (see eqs. (38-41 there) is essentially equivalent—up
to notational changes—to the model treated in the present paper. We also take this op-
portunity to mention a trivial misprint in eq. (10b) of [2], which identifies the Newtonian
equation ζ̈ = ζk as algebraically solvable if k = −(2n + 1)/ (2n− 1) or k = −(n + 1)/n
with n a positive integer : the first of these 2 equalities should instead read k = −(n+2)/n
yielding k = −3, −2, −5/3,−3/2, ... (note that the values of k yielded by the definition
k = −(2n + 1)/ (2n− 1) with n an arbitrary positive integer coincide with those yielded
by the definition k = −(m+ 2)/m only if m is an odd positive integer).

Let us conclude by expressing the wishful hope that the type of approach used in the
present paper be also applicable to other systems of nonlinear ODEs or PDEs—possibly
also with discrete rather than continuous independent variables.
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77(2), 123-144 (1960).


	1 Introduction
	2 Main results
	3 Proofs
	3.1 Proof of Proposition 2-1
	3.2 Proof of Proposition 2-2

	4 Inversion of the equations (4) with (5)
	4.1 Specific solvable examples

	5 Invariance property and simplifications
	6 Extensions and isochronous models
	7 Comparison with previous findings and outlook
	8 Acknowledgements

