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Abstract

In 1+1-dimensions, an extension of the canonical solitonic Dym equation has previ-
ously been derived both in a geometric torsion evolution context and in the analysis
of peakon solitonic phenomena in hydrodynamics. Here, a novel 2+1-dimensional
S-integrable extended Dym-type equation is introduced. A Lax pair is constructed
and an associated O-dressing scheme detailed. Integrable modulated versions of the
2+1-dimensional extended Dym equation are generated via application of a class of
involutory transformations with genesis in classical Ermakov theory.
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1 Introduction

The extended 1+41-dimensional Dym equation, namely

g + 20, (1 — Opy) <u11/2> =0 (1)

has its origin in the seminal study of peaked solitonic phenomena in hydrodynamics by
Camassa and Holm [1]. In [2], the nonlinear evolution equation

ar/9b =0 [i(f—l/z)ss — 32y 57_1/2} /0s (2)

was derived via an intrinsic geometric representation in a description of the evolution of

the torsion 7(s,b) of an inextensible curve of constant curvature  which executes purely

binormal motion. Therein 9/0b and 0/0s indicate derivatives in binormal and arcwise

directions respectively. It is remarked that such a geometric formalism had been previously

applied in magnetohydrodynamics to uncover certain underlying geodesic structure in [3].
The canonical Dym equation

OT/0b 4 2[17 1?40 = 0 (3)

and extended Dym equation (1) may both, in turn, be retrieved via (2) on application of
appropriate scaling and limiting processes.
It is noted that, the reciprocal transformation

dz* = udx — 2(1 — Opp) (u™V/?)dt, t*=t,

applied to the extended Dym equation (1) results in the conservation law
W — 20, (WY o e + 32 = 0. (5)

The latter, like the Dym and extended Dym equations, may be obtained via appropriate
reduction as a specialisation of the torsion evolution equation (2). Moreover, with u* = v,
and a temporal scaling, (5) yields a basic conservation law for the Cavalcante-Tenenblat
equation [4]

v = (0 P pear + 022 (6)
which, in turn, may be set in the context of the pseudo-spherical surface theory of Chern
and Tenenblat [5].

That the general torsion evolution equation (2) is S-integrable in the sense of Calogero
[6] was established by means of a novel reciprocal link in [2] to the solitonic m?KdV
equation as originally introduced by Fokas [7].

Nonlinear moving boundary problems of Stefan-type for the extended Dym equation (1)
have been shown in [8] to be amenable to exact solution via Painlevé I symmetry reduction
and iterated application of a Backlund transformation. The procedure adopted involved
linkage of this class of moving boundary problems to an associated exactly solvable class



]OCI’] m p[ On an integrable 2+1-dimensional extended Dym equation 3

for the canonical solitonic Dym equation. Moving boundary problems for the latter and
its reciprocal associates has previously been analysed in [9]. Reciprocal transformations
linking the canonical AKNS and WK1 inverse scattering schemes have been set down
in [10]. Therein, in addition, novel invariance of the Dym equation under a reciprocal
transformation was established. This result was extended to the integrable Dym hierarchy
in [11]. The reciprocal invariance admitted by the Dym equation, in principle, may be
applied to generate additional associated classes of solvable nonlinear boundary problems
for the extended Dym equation.

A 241-dimensional integrable version of the canonical Dym equation was originally
introduced by Konopelchenko and Dubrovsky in [12]. It was subsequently linked in [13]
via a 2+1-dimensional reciprocal-type equation [14] to a singularity manifold equation
which results from a Painlevé integrability test to the Kadomtsev-Petviashvili equation of
shallow water hydrodynamics ([15]).

In 1+1-dimensions, the canonical integrable Dym equation and extended Dym equation
(1) were shown in [16] to be linked via a change of dependent and independent variables.
Here, an analogous procedure applied to the 2+1-dimensional Dym equation of [12] leads
to a novel integrable 24+1-dimensional extension of the latter, namely

up 4 20, (1 — Orz) (J/z) + 6u2[u_13;1(ul/2)y]y =0. (7)

It is established here that an appropriate avatar of the latter is amenable to a variant of
the standard O-bar dressing method as originally introduced by Zakharov and Shabat [17]
and with extensions detailed in [18].

2 On Variants of the 24 1-Dimensional Dym Equation: As-
sociated Linear Representations

The 2+1-dimensional Dym equation as introduced in [12], namely

3 r
re =100 + = (r28; ' (%)) =0 ®)
r T Y

, admits a corresponding Lax pair
v, + 2V, =0,
U, — 430, — 612 [rz — 8;1 (:—g)} v,, =0.
Under the change of variables z — z, r — V with
z=e " (10)
r=e “V(x,y,t) (11)
the 2+1-dimensional Dym equation (8) and linear representation (9) become, in turn

1
V2ot ()
V Y

V;f - V3(Vx - Vx;vz) + i

= (12)

Y
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and

¢t + V2(¢zz + d)m) =0,

1 (13)
¢t + 4V3(¢ma:x + 3¢mx + 2¢z) - 6V2 V- Vz - 8;1 (V) (¢zm + ¢m) =0
y
wherein ¢(z,y,t) = V(t, z,y). In terms of the variable
1

(12) constitutes the 2+1-dimensional extended Dym equation (7) which generalises explic-
itly the 1+1-dimensional Camassa-Holm equation (1).
It is now convenient to rewrite (12) as the system

3
Vi = Vs(‘/;c — Vawa) + V(V2P)y (15a)

V, = -V?p, (15b)
and the linear representation (13) as
¢y + V2(¢x:p + ¢x) = 07

The conservation form

b - (;) 0 (17)

of (15a) allows the introduction of the potential W such that

1
In terms of W, the 2+1-dimensional Dym equation admits the potential representation

Wmt:_ ng’ +6 WIQ +W£’_6W£’

+ 6W, Wy — 3W, Wy, (19)

It is remarked that W is analogous to potentials previously introduced in 2+1-dimensional
soliton theory, notably for the canonical Kadomtsev-Petviashvili equation. The potential
equation in W is seen to be invariant under the scaling x — 2/ = Az, A € R.

3 Linear Representation Analysis
The linear representation (16) is now considered with the ansatz

d(x,y,t;\) = p(z,y, t; A)el @vHE) (20)
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wherein e is the solution of the system (16) in the limit z?+y? — oo while y is normalized
according to the condition u(z,y,t;\) — 1 as A — oco. In addition, in order to proceed,
conditions

V(Jl‘,y,t) — ‘/07 p(xaya t) — 0 (21)
%7 po € R (22)
are imposed as 22 + y? — co. In terms of the potential W this requires that
1
W(z,y,t) — (va: + pgy) —0 as 22 +y?— oo (23)
0

1
It is noted that A + poy is an admissible time-independent solution of (19).
0

As 22 + 3% — 00, the system (16) becomes
boy + Vi (b0ze + boa) = 0,

b0t + 4V§ Gozze + 6V5 + 2V b0x + 6V P0(Gozz + Poz) = 0 24
where ¢ — ¢g as 22 + y?> — co. In the ¢(z,y,t; \) representation (20), the relation
F—zia:+)\12y+4z <>\13>~ (25)
is introduced wherein
i=x—Vdy—2Vi(Vo+3po)t, 7= Viy+6VE(Vo+ polt, 26)
t =Vt
In the sequel, with specialisations V) = 1, pp = —1 one has
F_)\x+(;2—;>y+<;l;+4;>t (27)
and
T=x—y+4t, g=vy, t=t. (28)
The ¢ representation requires that
Vi LVt 3 L2V 20, — i1 — V2] + py + VE(ptan + 1) = 0. (29)
It is now assumed that, in a neighbourhood of A = 0, u(z,y,t; A\) adopts the form
wx,y,t; A) Z Ay (z,y, 1) (30)

for some positive integer N. On substitution of the Laurent series (30) into (29) it is
readily shown that p necessarily has an essential singularity at A = 0. This impediment
can be overcome by introducing the ansatz

4

1 1

where f satisfies the necessary smoothness requirements.
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4 The 0-Dressing Procedure

The O-dressing method had its genesis in the nonlocal d-problem
ox _ A N/ ARV /
™ AN AN x (N, N)R(N,N) (32)
C

wherein x and R are scalar functions. It is assumed that equation (32) is uniquely solvable

and that y is normalised canonically, that is, x — 1 as A — oco. A range of S-integrable

equations correspond to various dependences of the d-data on the independent variables.
It is assumed here that

RN N A A2,y 1)

33
— RO(/\,, 5\/; )\’ 5\)eF(}J,x,y,t)—F()\,z,y,t) ( )
where F' is given by (31).
The operators D, D, D; are now introduced according to
D, =20 +£f D, =29 +i+if
xr — Yx )\Ia y‘— y‘ )\2 )\ya (34)
i i
Dy =0, +4F + Xft'

The principal step in the O-dressing method is the construction of operators of the form
L= ULmaDiDyDf (35)
L,m,n
which obey the condition
[Bi, L1] x=0 (36)
together with
Lix(A) -0 as X — oo. (37)
Such operators yield linear equations
Lix=20 (38)

the compatibility conditions for which are equivalent to nonlinear integrable PDEs for the
coefficients therein.

It is remarked that the operators D, D, and D; in (34) adopt the same form as those
that are used in connection with the standard 2+1-dimensional Dym equation. However, in
the present extended 2+1-dimensional Dym context another class of f therein is required.
In terms of D,, D, and D; one obtains the pair

Dyx + V*(D2x + Dyx) =0,

39
Dyx +4V3D3x 4+ 6V3D2x 4 2V3D,x + 6V2(Vx + p)(D2x + Dyx) = 0 39
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which, with ¢ = ye!’, coincides with that in (16). Here, these equations admit solutions
regular at A = 0, that is, with

X(A) = xo(@,y, 1) + Ax1(z,y, ) + N2xa(z, y,t) + ...

40
as A—0 (40)

These, in turn, may be shown to provide relations between f and the variables V, p. Thus,
on use of the expressions (34) the linear system (39), in extenso yields

1 7 9 7 21
Xy + ﬁX + XfyX +V [sz + szxX + Xfox

. (41)
L ! _
_ﬁfmx + Xz + )\f:vX:| =0,
it fix +4v3 + Ef
Xt /\3X b\ tX Xzxz b\ zzx X
3i 3i 3 3, i
] 27 1 1
6V3 T N Jxx 7mx_72 2V3 x —Jz
+ {x + feax + 5 fax Agfxx}r (Xa + 1 faX)
+6V2 Xt 2 fuxe — = P2 xa o~ fex| =0
Absence of poles in the preceding pair (41), (42) leads to the relations
1
V=, 43
7. (4
p="ty (44)
together with
1 fx:c 2X0$
ot —+ 5+ =0, 45
Y Jz f:% JzXo ( )
9 2 1 fa:mc 3]2:1: —1
Je — Efy +27f§+ 73 —573%4‘381 (fafy)y = 0. (46)
1 1
It is noted that the latter two equations contain additional terms A in (45) and 27 in

(46), respectively, to the corresponding system obtained for the standard 2+1-dimensional
Dym equation of [12]. Here, the pair (45), (46) completely characterizes the function
f(x,y,t) associated with the d-dressing procedure for the 2+41-dimensional extended Dym
equation (12).

It is of interest to note that (45), (46) together imply that

ftx - 6fyf:1:y + 3fxfyy + fmmx:p/fg - 6fx:1:f:mx/f§

which, with f = W, is nothing but the 24 1-dimensional extended Dym potential equation
(19). Indeed, (47) may be regarded as a novel alternative avatar of the 2+1-dimensional
extended Dym equation as derived in connection with its associated 0-dressing procedure.

(47)
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5 Modulation

5.1 A Class of 24 1-Dimensional Involutory Transformations

In [21], a conjugation of reciprocal and gauge transformations was applied to link the 2+1-
dimensional Dym, modified Kadomtsev-Petviashvili and Kadomtsev-Petviashvili canoni-
cal triad of solitonic hierarchies and their S-integrability properties. Invariance of the
canonical base 2+1-dimensional Dym equation was shown in [22] to encode a linear rep-
resentation for an associated eigenfunction. This result was applied therein to analyse
initial-boundary value problems for classes of 2+1-dimensional evolution equations via a
procedure originally introduced in [23].

In modern soliton theory, reciprocal-type Bécklund transformations associated with
admitted conservation laws were originally introduced in [24]. Conjugation was made
therein with the classical Bianchi theorem of pseudo-spherical surface theory whereby
multi-soliton solutions may be generated iteratively in an algorithmic manner. Reciprocal
transformations have subsequently proved to have extensive applications in soliton theory
[qv [25], [26] and literature cited therein]. In nonlinear continuum mechanics, reduction to
analytically tractable canonical systems via reciprocal transformations has been detailed
in [27, 28]. In relativistic gasdynamics novel invariance under multi-parameter reciprocal
transformations of canonical systems has recently been derived in [29, 30, 31].

Here, novel modulated versions of both the 2+1-dimensional Dym and the Kadomtsev-
Petviashvili equations are derived which are reducible to their unmodulated canonical
S-integrable counterparts via a class of involutory-type transformations. The type of in-
volutory transformation applied has its genesis in an autonomisation procedure for the
coupled Ermakov-Ray-Reid system as detailed in [32]. Ermakov-type systems have di-
verse physical applications in such areas as, inter alia, nonlinear optics, oceanographic
eddy theory and pulsrodic phenomena in magneto-gasdynamics, (q.v. [33] and literature
cited therein).

5.2 Modulation via Involutory Transformations
5.2.1 Spatial Modulation

The S-integrable 2+1-dimensional Dym equation [12]
(r™2); + 2rppe + 604 20, 1 (ry/r?) ], =0 (48)
on introduction of the transformation with

da* = p~2(x)dw , 1% =p ),
* * * —1 (R*)
y =y, tU=t, pr=p

produces a class of associated spatially modulated 2+1-dimensional Dym equations, namely

(72 + 272520/ 00) (p"20/ 02 (620 00) o* )
+6r*4 [r*28;*1 <pl*r;; /r*2>] =0.

,y*

(49)



]OC nm p[ On an integrable 2+1-dimensional extended Dym equation 9

It is seen that, under R*

d.’I)** — p*72d£1?* — d.CL‘ , T** — p*flr* =7

yr=y, t™=t, (50)

whence, the key involutory property (R*)? = I holds.
The canonical solitonic Kadomtsev-Petviashvili equation, namely [15]

Op| ut + 6uty + Upgy | + € Uy =0 (51)

on application of a class of involutory transformations analogous to R* but with u* =
p~Y(z)u determines an associated system of S-integrable spatially modulated Kadomtsev-
Petviashvili equations with

8[ p*—luz* + 6p*u*8(p*_1u*)/8az*
+(p*20/02*) (92002 (p*20/0a*) | /O (52)

*—3, %

+e p" U

yry* T

Modulated versions of 2+1-dimensional nonlinear evolution equations reciprocally re-
lated to canonical S-integrable equations may be generated by conjugation with classes
of involutory transformations as embodied in R*. Thus, in particular, it was established
in [13] that the S-integrable 2+1-dimensional Dym equation is linked via a reciprocal
transformation to the 2+1-dimensional Krichever-Novikov equation

0 0 1
@(@//@c) + %[ bt/ P + {0, 2} + §(¢y/¢x)2 ]=0 (53)

wherein

0 (uz) 1 (6w
o, x} = — ( —— (== 54
b2} = o~ o) "2\ o, (54)
denotes the Schwarzian derivative of ¢. Conjugation of this reciprocal link with the appli-
cation of a class of involutory transformations connects the 2+1-dimensional Krichever-
Novikov equation. It is remarked that invariance of the 241-dimensional Dym equation

under a novel reciprocal transformation has been applied in [34] to solve classes of initial
/ boundary value problems for the 2+1-dimensional Krichever-Novikov equation.

5.2.2 Temporal Modulation

The 2+1-dimensional extended Dym equation

s+ 20: (1 — Ouy) <u11/2> +6u[ ut oy (u!/?), ]y =0, (55)
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under the action of the class of involutory transformations
dt* = p~2(t)dt , dz*=dx, dy* =dy
ut=u/p(t), p"=1/p(t)

produces an associated class of S-integrable equations with temporal modulation, namely

(Z%)

1
8/(‘%*( p*—lu*) + 2p*_3/28x*(1 - a:c*:(}*) <u*1/2> (56)
0

+6p*75/2u*2[ u*flaz—*l(u*lﬂ)y* ]y* —

In the case of the Kadomtsev-Petviashvili equation (52), application of the involutory
transformations Z* results in an associated S-integrable class with temporal modulation,
namely

8/0a*[ p*20/0t*(w /o )+ 6(u* [p* ) /o Ve + (00" Vorarar |

+ (€/p* gy = 0.

(57)

It is remarked that, in [35] involutory and reciprocal-type transformations have been ap-
plied in conjunction to reduce a wide class of nonlinear moving boundary problems incor-
porating heterogeneity to analytically tractable classical Stefan-type problems. Therein,
application was made to the analysis of the evolution of seepage fronts in soil mechanics.

5.3 Ermakov Modulation

Temporal modulation is set down here of the present 241-dimensional extended Dym
equation with p*(¢*) in the class of involutory transformations Z* governed by the classical
Ermakov equation

with its admitted nonlinear superposition principle
p* = (19?4 20010y + ¢303)1/2 (59)
where €21, {29 constitute a pair of linearly independent solutions of the auxilliary equation
Qt*t* + w(t*)Q =0. (60)
Here, the constants ¢;, i = 1,2, 3 are such that
2 _ 2
cies —c; =E/W (61)

with W = Q1 Qo+« — Q1409 the constant Wronskian of €7, Q.

The nonlinear equation (49) has established physical applications, notably, in the analy-
sis of initial-boundary value problems descriptive of the large amplitude radial oscillations
of thin shells composed of Mooney-Rivlin hyperelastic materials and subject to various
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boundary loadings [28]. The nonlinear superposition principle (59) may be retrieved via
a Lie group procedure as in [36]. Therein, application was made to solve an initial value
problem for moving shoreline evolution in shallow water hydrodynamics. Lie theoretical
generalisation and discretisation of Ermakov-type equations which preserve admittance of
nonlinear superposition principles were subsequently derived in [37].

Here, with p*(¢*) in the class of involutory transformations Z* determined by the clas-
sical Ermakov equation (58), the corresponding class of 2+1-dimensional extended Dym
equations with temporal modulation is given by, in extenso

8/8t*[ (CIQ% + 2629192 + CgQ%)l/Qu* ]

1
+ 2(019% + 2029192 + 0395)3/48/833*(1 - ax*x*) (u*l/2> (62)

+ 6(01Q% + 2902109 + 6393)5/4?1*2[ u*flax* (U*1/2)y*]y* =0.

5.4 Ermakov-Painlevé Modulation

Hybrid Ermakov-Painlevé systems were originally derived in [38] via symmetry reduction
of a multi-dimensional nonlinear Schrodinger system which incorporates a de Broglie-Bohm
potential. Application was made therein via Ermakov Painlevé II symmetry reduction to
the analysis of certain transverse wave motions in generalised Mooney-Rivlin hyperelastic
materials. Ermakov-Painlevé II structure and integrable reduction has subsequently had
physical application in such areas as cold plasma physics [39], Korteweg capillarity theory
[40] and the analysis of Nernst-Planck electrolytic system boundary value problems [41].

Ermakov-Painlevé TI-IV integrable modulation of coupled 1+1-dimensional solitonic
systems of sine-Gordon, Demoulin and Manakov-type was subsequently detailed in [42].
Integrable Ermakov-Painlevé modulation of established 2+1-dimensional solitonic systems
can likewise be derived.
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