
Open Communications in Nonlinear Mathematical Physics Special Issue: Hietarinta, 2025

ocnmp:16648 pp 13–34

A Special OCNMP Issue in Honour of Jarmo Hietarinta

on the Occasion of his 80th Birthday

On discrete Painlevé equations associated with

the affine Weyl group E7

Alfred Ramani 1, Basil Grammaticos 1, Ralph Willox 2 and Adrian Stefan Carstea 3
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de Paris, IJCLab, 91405 Orsay France

2 Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba,
Meguro-ku, 153-8914 Tokyo, Japan

3Department of Theoretical Physics, NIPNE, Magurele 077125, Romania

Received October 6, 2025; Accepted November 17, 2025

Citation format for this Article:
Alfred Ramani, Basil Grammaticos, RalphWillox and Adrian Carstea, On discrete Painlevé
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Abstract

We derive a class of discrete Painlevé equations associated with the affine Weyl group

E
(1)
7 . The method used is the deautonomisation of a QRT mapping belonging to the

canonical form VI (according to the classification of said mappings). An equation of
such a form was the first instance of a symmetric – in QRT parlance – discrete analogue
of the Painlevé VI equation. In this paper we present an exhaustive derivation of all
the discrete Painlevé equations of this class. This is made possible thanks to previous
studies that established the proper lengths of singularity patterns that are compatible
with integrablity, and which were already successfully applied to the study of discrete

Painlevé equations associated to the affine Weyl group E
(1)
8 . Given that, from the

latter, one can obtain by degeneration the equations related to E
(1)
7 , we decided to

link the results of the present study to those of the aforementioned ones. It turns out

that a bridge from E
(1)
8 to E

(1)
7 exists in almost all cases, with one exception where,

while in the former case a discrete Painlevé equation does exist, in the latter we find
a mapping with only periodic coefficients, devoid of secular dependence.
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1 Introduction

Among all the discrete analogues of the Painlevé equations the discrete analogue to the
Painlevé VI equation proved to be particularly elusive. While the remaining discrete
Painlevé equations, analogues to PIII, PIV and PV were promptly derived [1] once it be-
came clear that they were objects of interest, initially, no analogue was identified for PVI.
In fact its derivation took quite some time, despite some early progress based on the de-
sired singularity structure [2]. The first discrete analogue to PVI was identified by Jimbo
and Sakai [3] who analysed in the proper way an equation known as the ‘asymmetric’
q-PIII (already derived in [1]). The term asymmetric here is a direct reference to the
QRT [4] terminology (see the appendix in [5] for a definitive classification of said map-
pings). In this terminology, mappings that can be written as a single equation, involving
one dependent variable, are dubbed ‘symmetric’, while the asymmetric ones involve two
dependent variables. In the initial, pioneering, studies on discrete Painlevé equations it
was (unjustifiably) assumed that any term proportional to (−1)n would not play any role
in the continuum limit and was therefore discarded (resulting also in a parameter loss).
The correct approach would have been to consider the even and odd numbered variables
as two distinct variables and thus cast the equation into an asymmetric form. If one takes
q-PIII keeping the (−1)n-dependent terms, casting the equation into an asymmetric form,
one obtains indeed q-PVI as derived by Jimbo and Sakai.

Starting from the equation

ynyn−1 =
a3a4(xn − λnb1)(xn − λnb2)

(xn − b3)(xn − b4)
(1a)

xn+1xn =
b3b4(yn − λna1)(yn − λna2)

(yn − a3)(yn − a4)
, (1b)

where a1, . . . , b4 are constants constrained by a1a2/a3a4 = λb1b2/b3b4, Jimbo and Sakai
introduced a continuum limit and showed that the system went over to the sixth Painlevé
equation. Equation (1) can be obtained through the application of the singularity con-
finement criterion [6] for the non-autonomous mapping

xn+1xn =
gn(xn − an)(xn − bn)

(xn − cn)(xn − dn)
. (2)

It turns out that the coefficients an, bn, cn, dn have an even-odd dependence and by rewrit-
ing the equation as a system for variables of even and odd indices one recovers equation
(1).

Once it became clear that any even-odd dependence of the parameters of a discrete
Painlevé must be dealt with by casting the equation into asymmetric form, it was straight-
forward to derive more analogues to PVI. In particular, in [7] we presented the equation

(xn+1 + yn)(yn + xn) =
(yn − a)(yn − b)(yn − c)(yn − d)

(yn − zn − α/2)2 − e2
(3a)

(yn + xn)(xn + yn−1) =
(xn + a)(xn + b)(xn + c)(xn + d)

(xn − zn)2 − f2
(3b)
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with a constraint a+ b+ c+ d = 0, and zn = αn+β, which is a difference analogue of PVI

(Jimbo and Sakai’s equation being a multiplicative one). Introducing the continuum limit
a = 1/2 + ϵα, b = 1/2− ϵα, c = −1/2 + ϵβ, d = −1/2− ϵβ, e = ϵγ,f = ϵδ, x = w − 1/2,
z = ζ +1/2, y = w(ζ − 1)/(w− ζ)+ 1/2+ ϵu we find that at the limit ϵ→ 0 (3) goes over
to the equation

d2w

dζ2
=

1

2

(
1

w
+

1

w − 1
+

1

w − ζ

)(
dw

dζ

)2

−
(
1

ζ
+

1

ζ − 1
+

1

w − ζ

)
dw

dζ

+
w(w − 1)(w − ζ)

2ζ2(ζ − 1)2

(
A+

Bζ

w2
+
C(ζ − 1)

(w − 1)2
+
Dζ(ζ − 1)

(w − ζ)2

)
(4)

with A = 4γ2, B = −4α2, C = 4β2, D = 1− 4δ2, i.e. precisely Painlevé VI.

While at this point the matter of finding a discrete version of PVI could be considered
settled, it was frustrating that no ‘symmetric’ form for the PVI analogue could be derived.
Finally, guided by some work on folding transformations [8], two of the present authors
derived the equation [9]

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − azn)(xn − zn/a)(xn − bzn)(xn − zn/b)

(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)
,

(5)
where zn = z0λ

n for some arbitrary constants z0 and λ. Putting λ = eϵ, a = −eϵα, b = eϵβ,
c = −eϵγ , d = eϵδ we obtained at ϵ→ 0 the continuum limit

d2x
dz2

= 1
2

(
1

x+1 + 1
x−1 + 1

x+z + 1
x−z

) (
dx
dz

)2 − (
1
z + 1

z−1 + 1
z+1 + 1

x−z − 1
x+z

)
dx
dz

+ (x2−z2)(x2−1)
z2(z2−1)

(
(α2−1/4)z
(x+z)2

− (β2−1/4)z
(x−z)2

− γ2

(x+1)2
+ δ2

(x−1)2

)
, (6)

which is indeed Painlevé VI albeit in non canonical form. (It suffices to introduce the
change of variables z = (1 +

√
ζ)/(1−

√
ζ) and x = (

√
ζ +w)/(

√
ζ −w) in order to bring

(6) to the canonical PVI form).

In the same work, it was shown that the additive equivalent of (5),

(xn+xn+1−zn−zn+1)(xn+xn−1−zn−zn−1)
(xn+xn+1)(xn+xn−1)

= (xn−zn−a)(xn−zn+a)(xn−zn−b)(xn−zn+b)
(xn−c)(xn+c)(xn−d)(xn+d) ,

(7)
where zn = αn+β, does not have PVI as continuum limit but is rather a discrete analogue
of PV.

With hindsight, it is clear that the delay in discovering a symmetric form of the Painlevé
VI discrete analogue was due to the absence of a proper classification of the QRT canonical
forms. Once the latter were obtained [10] it was clear that the derivation of discrete
Painlevé equations, through deautonomisation, should not have been limited to forms
that led to analogues of PIII, PIV and PV but should have been extended to mappings of
the classes V and VI [5], namely equations of the forms (7) and (5).

Equation (5) is known to possess the so-called self-duality property [11]. For a large
class of discrete Painlevé equations (which includes all the equations of difference-type)
the evolution equations in the independent variable, on the one hand, and the evolution
equations for the parameters generated by the Schlesinger transformations of the discrete
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Painlevé equations on the other hand, are the same. The explanation of self-duality for
difference Painlevé equations can be given from their relation to the continuous Painlevé
equations as, in fact, some difference Painlevé equation are obtained from the Schlesinger
transformations of the parameters of a continuous one. When the latter possesses several
parameters, which, in general, play the same role, one can consider the evolution as defined
by the contiguity relations along any of these parameters while the Schlesinger transfor-
mations for the remaining parameters carry over as Schlesinger transformationss for the
discrete equation. Since all these transformations are equivalent, it is natural to obtain the
same difference equation as a recurrence from the application of the Schlesinger’s. However
there exist difference Painlevé equations which are not contiguity relations of continuous
ones, having more parameters than the maximum number that can be associated to a
continuous equation. Still these equations possess the property of self-duality [12] . The
self-duality of q-Painlevé equations is more of a surprise and, in fact not all of q-discrete
Painlevé equations are self-dual [13].

In the approach presented in [11] and [14] we showed that the discrete Painlevé equa-
tions can be described by a single τ -function which is a function of several variables.
Moreover, in perfect parallel to Okamoto’s Toda equation for τ -sequences [15], the evo-
lution of the τ -function is given by a non-autonomous Hirota-Miwa equation [16], [17],
which is the fully discrete analogue of the Toda equation. What is most important in this
approach is the fact that one can describe the evolution of the (multivariable) τ -function
in purely geometrical terms. The affine Weyl groups, which play an important role in the
description of continuous Painlevé equations, are present also here.

Sakai’s monumental work [18] on the classification of a class of rational surfaces asso-
ciated with affine root systems allowed one to put this approach on a more rigorous basis,
linking the geometry of the discrete Painlevé equations to that of affine Weyl groups and
allowing an organisation of the equations in the degeneration cascade pictured in Figure
1.

Figure 1. The degeneration cascade of affine Weyl groups associated to discrete
Painlevé equations.

Following Sakai’s work, the point of view concerning discrete Painlevé equations shifted
markedly. The latter were no longer attached to their differential brethren but were con-
sidered as the more fundamental entities. To put it naively, since the discrete Painlevé
equations could involve up to 8 parameters, compared to the 4 contained in the richest
differential system, the sixth Painlevé, any continuum limit would entail an impoverish-
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ment. Thus a new definition of what is a discrete Painlevé equation was introduced, one
that did away with references to differential systems:

a discrete Painlevé equation is a birational mapping on P1×P1 obtained by translations
on the periodic repetition of a non-closed pattern on a lattice contained in the weight lattice
associated to one of the affine Weyl groups belonging to the degeneration cascade starting

from E
(1)
8 .

Moreover, this geometrical description made it clear that the number of discrete Painlevé
equations was infinite [19], and in fact, there exist infinitely many associated with every

affine Weyl group in the degeneration cascade (except, of course, for the four A
(1)
1 where

there is not sufficient freedom). Finding all the discrete Painlevé equations is therefore
not something conceivable. However, finding equations representative of a given class (in
the QRT sense) and associated with some affine Weyl group is a well-defined task and an
interesting application of the deautonomisation procedure. In this paper, we shall derive

q-discrete Painlevé equations associated to the affine Weyl group E
(1)
7 of the class VI QRT

canonical form, i.e. an equation the left-hand side of which is identical to that of (5).
In [20] we addressed a similar question but the approach used there did not allow an ex-
haustive search. Moreover, the application of the deautonomisation was based on ansätze
that did not always allow to obtain the full complement of parameters (namely 7) in the
equation. These are points that will be remedied in the present work.

2 The Method

The main bulk of the discrete Painlevé equations were derived using a method called deau-
tonomisation. Starting with an integrable autonomous mapping, this method consists in
treating the free parameters in the mapping as functions of the independent variable, the
precise expressions of which are to be determined with the help of a suitable criterion for
integrability (usually the singularity confinement criterion). The standard practice is to
require that singularities be confined at the very first opportunity, a ‘late’ confinement
leading to non-integrable systems. In [21] some of the present authors, in collaboration
with T. Mase, used an algebro-geometrical analysis and showed through some selected
examples of discrete Painlevé equations, how their regularisation through blow-up yields
exactly the same conditions on the parameters in the mapping as the singularity con-
finement criterion. A rigorous justification of the approach called ‘full-deautonomisation’,
which uses the singularity structure of a mapping to deduce its dynamical degree was
obtained by some of the present authors in collaboration with T. Mase and A. Stokes in
[22].

One important conclusion of [21] was that the regularisation of a generic discrete
Painlevé equation (of the QRT-symmetric type, involving a single dependent variable)
requires precisely 8 blow-ups in P1 × P1. And linking the number of blow-ups to the
overall length of the singularity patterns made it possible to address systematically the
question of derivation of discrete Painlevé equations associated to the affine Weyl group

E
(1)
8 . In [23] two of the authors, in collaboration with Y. Ohta, studied two mappings

aiming at the derivation, by means of the deautonomisation approach, of the first example
of an explicit elliptic discrete Painlev´e equation, the existence of which had been shown
by Sakai who had only presented an example as a bi-rational map on P2. Both mappings
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were of the form that the authors called ‘trihomographic’

xn+1 − an
xn+1 − bn

xn−1 − cn
xn−1 − dn

xn − en
xn − fn

= 1 (8)

The two mappings had two singularities with pattersn of lengths 2 and 6 for the first and
4 and 4 for the second. For the first we found the form

xn+1 − (4tn − α+ an)
2

xn+1 − (α+ bn)2
xn−1 − (4tn + α+ cn)

2

xn−1 − (α+ dn)2
xn − (2tn + en)

2

xn − (6tn + fn)2
= 1, (9)

where tn = αn+ β. The an, · · · , fn are given by

an = 2ωn−1 + ωn+1 + ωn+2, bn = ωn+2 − ωn+1, cn = ωn−1 + ωn + 2ωn+2,

dn = ωn − ωn−1, en = ωn + ωn+1, fn = 2ωn−1 + ωn + ωn+1 + 2ωn+2 (10)

where
ωn = ϕ4(n) + ϕ5(n). (11)

We have introduced here the function ϕm with period m, i.e. ϕm(n+m) = ϕm(n),

ϕm(n) =

m−1∑
l=1

δ
(m)
l exp

(
2iπln

m

)
(12)

(Note that the sum starts at 1 instead of 0, excluding 1 from the roots of unity, and
introducing m− 1 degrees of freedom). For the second we had

xn+1 − (2tn − α+ an)
2

xn+1 − (2tn − α+ bn)2
xn−1 − (2tn + α+ cn)

2

xn−1 − (2tn + α+ dn)2
xn − (4tn + en)

2

xn − (4tn + fn)2
= 1. (13)

The an, · · · , fn are given by

an = ωn + ψn, bn = ωn − ψn, cn = ωn+1 + ψn, dn = ωn+1 − ψn, en = ωn + ωn+1 − ψn,

fn = ωn + ωn+1 + ψn (14)

where
ωn = ϕ2(n) + ϕ3(n), and ψn = γ + ϕ4(n). (15)

Having obtained two equations with total length of singularity patterns 8, split into 2+6
and 4+4, led readily to the question about the existence of integrable cases with singularity
pattern lengths split into 1+7 and 3+5. It turned out that both such systems exist [24].
For the first we obtained the equation

xn+1−(un+1+2un+2un−1)2

xn+1−u2
n+1

xn−1−(2un+1+2un+un−1)2

xn−1−u2
n−1

xn−u2
n

xn−(2un+1+3un+2un−1)2
= 1,

(16)
where

un = tn + ωn, and ωn = ϕ2(n) + ϕ3(n) + ϕ5(n). (17)

For the second we found

xn+1 − (un+2 + un+1 − un + 2un−2)
2

xn+1 − (un + un+1 − un+2)2
xn−1 − (2un+2 − un + un−1 + un−2)

2

xn−1 − (un + un−1 − un−2)2
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× xn − (un+1 + un + un−1)
2

xn − (2un+2 + un+1 − un + un−1 + 2un−2)2
= 1, (18)

where

un = tn + ωn and ωn = ϕ2(n) + ϕ7(n). (19)

While it was shown in [25] that all discrete Painlevé equations can be cast into a trihomo-
graphic form provided one introduces a sufficient number of auxiliary variables, the use of
coupled trihomographic forms can easily become cumbersome. Fortunately, an alternative

approach does exist and it made the study of E
(1)
8 associated discrete Painlevé equations

perfectly tractable. It is based on the introduction of what we called an ‘ancillary’ variable
[26], which replaces the dependent variable and allows a compact expression for the gen-

eral E
(1)
8 discrete Painlevé equation. Let us show how this works in the case of the general

additive (difference) symmetric discrete Painlevé equation associated with the affine Weyl

group E
(1)
8 . In [14] we derived the form

(xn − xn+1 + (zn + zn+1)
2)(xn − xn−1 + (zn + zn−1)

2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= R(xn),

(20)
where zn is equal to αn + β and R is a ratio of two specific polynomials of x, quartic in
the numerator and cubic in the denominator. Its precise form is

R(xn) = 2
x4n + S2x

3
n + S4x

2
n + S6xn + S8

S1x3n + S3x2n + S5xn + S7
, (21)

where the Sk are the elementary symmetric functions of the quantities zn + κin, in eight
parameters κi which are, generically, functions of the independent variable. Introducing
the substitution

xn = ξ2n, (22)

and the quantity Π(ξn) =
∏8

i=1(zn + κin + ξn) one finds that

R(xn) = 2ξn
Π(ξn) + Π(−ξn)
Π(ξn)−Π(−ξn)

. (23)

Rearranging equation (20) so that the ratio of Π(−ξn)/Π(ξn) appears on the right-hand
side, we find finally

xn+1 − (ξn − zn − zn+1)
2

xn+1 − (ξn + zn + zn+1)2
xn−1 − (ξn − zn − zn−1)

2

xn−1 − (ξn + zn + zn−1)2
=

∏8
i=1(κ

i
n + zn − ξn)∏8

i=1(κ
i
n + zn + ξn)

. (24)

Note that both the left and right hand sides of (24) are expressed in a factorised form
thanks to the introduction of the ancillary variable ξ.

Ancillary variable substitutions exist also for multiplicative- and elliptic-type equations.
In the former case the substitution is x = ξ+1/ξ while the latter involves theta functions:
x = θ21(ξ)/θ

2
0(ξ).

At this point one may wonder why we are insisting on the E
(1)
8 case since the aim

of the present paper is to study a selection of E
(1)
7 -associated systems. The answer is



20 ]ocnmp[ A Ramani, B Grammaticos, R Willox and A Carstea

simple. From the degeneration cascade one sees readily that the E
(1)
7 -associated equations

can be obtained as a limit of the E
(1)
8 -associated ones. Now, as explained above, the

E
(1)
8 equations were studied systematically and we believe that the obtained results are

complete and exhaustive. Thus they would allow a verification of the results we intend

to obtain, by deautonomisation, for the E
(1)
7 -associated systems by checking whether they

correspond indeed to a limit of an already studied E
(1)
8 -associated equation with the same

singularity pattern.
Having explained the method we shall employ, we can now proceed to the study of the

PVI q-discrete analogues.

3 The E7 equations

Before presenting the calculations that will lead to the various discrete Painlevé equations
we must introduce a most convenient function. In section 2 above we introduced the peri-
odic function ϕm(n) with period m, which was suitable in the case of difference equations.
Since in what follows we shall deal with multiplicative equations, we must introduce the
‘multiplicative’ analogue of ϕm(n), by defining φm(n) = exp(ϕm(n)). Notice that while
ϕ2(n) + ϕ2(n + 1) = 0 we have now φ2(n)φ2(n + 1) = 1 and analogous relations for the
higher periods.

A. The quartic over quartic case

As explained in [20] the generic E
(1)
7 -associated multiplicative symmetric equation is

obtained from the deautonomisation of the class-VI QRT mapping

(xnxn+1 − z2)(xnxn−1 − z2)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − a)(xn − b)(xn − c)(xn − d)

(xn − p)(xn − r)(xn − s)(xn − t)
, (25)

where the parameters appearing in the equation are subject to the constraint abcd =
z4prst. Note that (25) is invariant under the transformations

x→ 1

x
, z → 1

z
, a→ 1

a
, · · · t→ 1

t
,

and
x→ z

x
, z → z, a→ z

p
, · · · t→ z

d
.

The deautonomisation of (25) is readily obtained if one assumes that the singularity pat-
tern has lengths (1,1,1,1,1,1,1,1), which is shorthand way to indicate that there exist 8
singularity patterns with length 1 each. We start from

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − an)(xn − bn)(xn − cn)(xn − dn)

(xn − pn)(xn − rn)(xn − sn)(xn − tn)
. (26)

The constraint
anbncndn
pnrnsntn

= zn−1z
2
nzn+1 (27)

ensures that xn = 0 is not a singularity. Requiring that all patterns have length 1 means
that if one enters the singularity at some step one must exit it at the very next step.



]ocnmp[ On discrete Painlevé equations and the affine Weyl group E7 21

Supposing we enter a singularity at xn = an, we find readily that xn+1 = znzn+1/an which
must then be equal to an+1. So for the terms on the numerator we have confinement
conditions of the form

anan+1 = znzn+1, bnbn+1 = znzn+1, cncn+1 = znzn+1, dndn+1 = znzn+1. (28)

Similarly, for the denominators, if we enter a singularity through xn = pn we find xn+1 =
1/pn which must be equal to pn+1 in order to exit the singularity in one step. Thus for
the factors in the denominator we have the confinement condition

pnpn+1 = 1, rnrn+1 = 1, snsn+1 = 1, tntn+1 = 1. (29)

Multiplying the constraint (27) by its upshift we find

anan+1bnbn+1cncn+1dndn+1

pnpn+1rnrn+1snsn+1tntn+1
= zn−1z

3
nz

3
n+1zn+2, (30)

and, using the confinement conditions we find that zn must obey

znzn+1 = zn−1zn+2. (31)

The solution of (31) is zn = κλnφ2(n) but the period-2 term can be neglected here since
only the products znzn±1 appear in (26) where the periodic function cancels out. The
solution of the confinement conditions is straightforward. For the terms of the numerator
we have an = znφ2(n) and similarly for b, c, d which introduce four distinct period-2
functions φ2(n), while for the denominator we find that p, r, s, t are just period-2 functions.
Clearly all 8 φ2(n) functions are not free. First, from (27) we find that the product of
the φ2(n) of the numerator must be equal to the product of those of the denominator.
Second, a gauge in xn by a period-2 term is always possible since it leaves the left-hand
side invariant. But such a gauge allows to absorb one of the periodic functions φ2(n).
Thus out of a total of 8 functions only 6 are really independent, introducing 6 genuine
degrees of freedom and since zn has one genuine degree of freedom, κ, we have in all 7

degrees of freedom, as is expected for an equation associated to the group E
(1)
7 . Thus the

generic E
(1)
7 -associated discrete Painlevé equation is richer than the form (5). As one can

readily understand, the form of the latter has been chosen so as to contain just the five
degrees of freedom that survive at the continuum limit towards PVI in the most symmetric
form possible.

While (26) gives a generic form of the E
(1)
7 -associated multiplicative symmetric discrete

Painlevé equation it is, and by far, not the only one. All the equations obtained by
successive simplifications of the right-hand side of (25) and subsequent deautonomisation

possess 7 degrees of freedom and are also associated to E
(1)
7 (and could be shown to possess

PVI as continuum limit).

B. The cubic over cubic case

When one factor of the right-hand side of (25) is simplified out one gets the mapping,

(xnxn+1 − z2)(xnxn−1 − z2)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − a)(xn − b)(xn − c)

(xn − p)(xn − r)(xn − s)
, (32)
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where the parameters obey the constraint abc = z4prs. Two singularity patterns are
possible in this case with corresponding lengths (1,1,1,1,2,2) and (1,1,1,1,1,3). We shall
refer to them as cases B.i and B.ii. We deautonomise (32) to

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − an)(xn − bn)(xn − cn)

(xn − pn)(xn − rn)(xn − sn)
. (33)

where the constraint
anbncn
pnrnsn

= zn−1z
2
nzn+1 (34)

guarantees that xn = 0 is not a singularity.

B.i) For the singularities of odd number of steps this means that if one enters the
singularity at the numerator (respectively the denominator) of the right-hand side one
must exit again at the numerator (respectively the denominator). An even number of
steps means that one enters the numerator/denominator and exits at the opposite side.
Following these considerations we find the confinement constraints

rnrn+1 = 1, snsn+1 = 1, bnbn+1 = znzn+1, cncn+1 = znzn+1,

an+2 = zn+1zn+2pn, an = znzn+1pn+2. (35)

Multiplying the constraint (34) by its upshift we find, after simplifications,

anan+1 = zn−1znzn+1zn+2pnpn+1. (36)

From the last two constraints in (35), multiplied by their own downshift, we find an+1an+2 =
znz

2
n+1zn+2pn−1pn and an−1an = zn−1z

2
nzn+1pn+1pn+2. Comparing these to the up- and

downshift of (36), we find the equation for zn

znzn+1 = zn−2zn+3, (37)

with solution zn = κλnφ2(n)φ3(n).

Going back to equation (36), we can solve it as an = zn−1zn+1pnφ̃2(n) (where the
tilde indicates that this is a period-2 function different from the previously introduced
φ2(n)) and multiplying it by its double upshift we can compare the result to the product
of the two last constraints in (35) and find the relation φ̃2(n)

2φ2(n + 1)2 = φ2(n)
2.

Since only the product znzn±1 appears in the equation we can freely choose φ2(n) = 1,
which, in the present case, entails φ̃2(n) = 1. Next, multiplying the two confinement
conditions involving an and pn we find an+2pn+2/zn+2 = anpn/zn, which can be integrated
to anpn = γ2zn ˜̃φ2(n)

2 In order to solve for an and pn we introduce the square root of zn
through, zn = q2n. We can now readily solve for an, obtaining an = γqn−1qnqn+1

˜̃φ2(n) and
remark that the period-3 term drops out from the right-hand side. Once an is obtained
we can solve for pn and find pn = γqn ˜̃φ2(n)/(qn−1qn+1).

Counting the degrees of freedom we find that b, c, r, s introduce four period-2 functions
but only three genuine degrees of freedom since (34) must be satisfied. One more degree
of freedom is introduced by ˜̃φ2(n). However a gauge of xn allows to reduce the number
of parameters by one. Finally we have 2 degrees of freedom associated to φ3(n) to which
one must add κ and γ. This gives a total of 7 degrees of freedom as expected.
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B.ii) The confinement constraints are

pnpn+1 = 1, rnrn+1 = 1, snsn+1 = 1, bnbn+1 = znzn+1, cncn+1 = znzn+1,

anan+3 = znzn+1zn+2zn+3. (38)

From (34) we obtain anan+1 = zn−1znzn+1zn+2 and solving we find an = zn−1zn+1φ2(n).
Using the expression of an in the confinement constraint we obtain for zn the equation

znzn+3 = zn−1zn+4, (39)

the solution of which is zn = κλnφ4(n). However, since, as we pointed out, a φ2 factor
does not play any role in zn it is better to give the expression of zn as zn = κλnψ4(n),
where ψ2m is a periodic function obeying the equation ψ2m(n + m)ψ2m(n) = 1. It has
period 2m while involving only m parameters and can be expressed in terms of roots of
unity as ψ2m = exp(χ2m(n)) where χ2m(n) is the periodic function introduced in [27] by

χ2m(n) =
m∑
ℓ=1

η
(m)
ℓ exp

(
iπ(2ℓ− 1)n

m

)
. (40)

and obeying the relation χ2m(n+m) + χ2m(n) = 0. Thus zn introduces three degrees of
freedom κ and two parameters of ψ4. We have 6 more parameters introduced by the φ2

of a, ..., s but they are constrained by the condition (34). Finally, given the form of the
equation, it is possible to introduce a gauge and eliminate one, say the φ2 factor of an,
and, in the end, only 7 genuine degrees of freedom survive.

C. The quadratic over quadratic case

When two factors of the right-hand side of (25) are simplified out one gets the mapping,

(xnxn+1 − z2)(xnxn−1 − z2)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − a)(xn − b)

(xn − p)(xn − r)
, (41)

where the parameters obey the constraint ab = z4pr. We have now five possible singularity
patterns with lengths (1,1,1,5), (1,1,2,4), (1,1,3,3), (1,2,2,3) and (2,2,2,2). We shall refer
to them as cases C.i to C.v. We deautonomise (41) to

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)

(xnxn+1 − 1)(xnxn−1 − 1)
=

(xn − an)(xn − bn)

(xn − pn)(xn − rn)
. (42)

where the constraint that guarantees that xn = 0 is not a singularity becomes now

anbn
pnrn

= zn−1z
2
nzn+1. (43)

C.i) The singularity confinement constraints in the case (1,1,1,5) are

pnpn+1 = 1, rnrn+1 = 1, bnbn+1 = znzn+1, anan+5 = znzn+1zn+2zn+3zn+4zn+5.
(44)

Multiplying the constraint (43) by its upshift we find

anan+1 = zn−1z
2
nz

2
n+1zn+2, (45)
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which can be readily integrated to an = φ2(n)zn−1znzn+1. Combining this expression with
the confinement constraint for an we find that zn must satisfy

zn+2zn+3 = zn−1zn+6, (46)

and integrating the latter we find zn = κλnφ3(n)ψ4(n), neglecting as usual, a period-
2 factor. From (44) we find that bn = znφ̃2(n) and two more period-2 functions are
introduced by pn and rn. However the four period-2 functions are constrained by (45)
and, moreover, a gauge of xn allows to eliminate one more. So in the end there remain
precisely 7 degrees of freedom.

C.ii) The singularity confinement constraints with singularity lengths (1,1,2,4) are

pnrn+1 = 1, bnbn+1 = znzn+1, rnzn+1zn+2 = an+2, an = znzn+1zn+2zn+3pn+4. (47)

From the second of these constraints we find readily zn = bnφ̃2(n), but the period-2
freedom is again immaterial. Replacing zn by bn in the constraint (43) we have an =
bn−1bnbn+1pnrn. Eliminating an we obtain for pn, rn the relations rn = bn+3pn+2rn+2 and
pnrn = bn+2bn+3pn+4/bn−1, which can be further simplified using the relation pn = 1/rn+1.
We remark that the former can be solved for bn yielding bn = rnrn−3/rn−1. We find finally
that rn must satisfy

rn−4rn+5 = rn−2rn+3, (48)

with solution rn = κλnφ7(n)φ2(n). A simpler expression for an involving only rn is
an = rnrn−3rn−4. Thus an, bn and pn inherit a φ2(n) from rn. As a consequence this
common period-2 term can be removed by a gauge of xn and only 7 parameters remain.

The case C.iii is more complicated. In fact there are two distinct ways to satisfy
confinement for singularities of lengths (1,1,3,3): either the long and the short patterns
are related to singularities in the numerator and the denominator respectively (case a) or
they concern singularities present in both the top and bottom parts of the right-hand side
(case b).

C.iii.a) The singularity confinement constraints are

pnpn+1 = 1, rnrn+1 = 1, anan+3 = znzn+1zn+2zn+3, bnbn+3 = znzn+1zn+2zn+3.
(49)

Multiplying the constraint (43) by its upshift we find

anan+1bnbn+1 = zn−1z
3
nz

3
n+1zn+2. (50)

Next, we introduce the auxiliary quantities An = anbn and Bn = an/bn. Constraint (50)
can be rewritten as AnAn+1 = zn−1z

3
nz

3
n+1zn+2, whereas from (49) we have AnAn+3 =

z2nz
2
n+1z

2
n+2z

2
n+3. Combining the two, we obtain for zn the equation

zn+1zn+2 = zn−1zn+4, (51)

with solution zn = κλnφ3(n), neglecting, as usual, a period-2 factor. Dividing the last
two constraints in (49) we find BnBn+3 = 1 with solution Bn = ψ6(n). Integrating
(50) we find An = zn−1z

2
nzn+1φ2(n) and using the expression of Bn we obtain finally

a2n = zn−1z
2
nzn+1φ2(n)ψ6(n) from which we can obtain an, whereupon bn = an/ψ6(n).
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Counting the degrees of freedom, we find that pn = φ̃2(n) and rn = ˜̃φ2(n) introduce two,
zn introduces three more and the ψ6(n) appearing in an and bn brings three more free
parameters. A gauge of xn is always possible and can be used to remove one superfluous
parameter bringing the total down to 7, as expected.

C.iii.b) The singularity confinement constraints now become

rnrn+1 = 1, bnbn+1 = znzn+1, pnpn+3zn+1zn+2 = 1, anan+3 = znzn+1zn+2zn+3.
(52)

Multiplying the constraint (43) by its upshift we find

anan+1

pnpn+1
= zn−1z

2
nz

2
n+1zn+2, (53)

From (52) we find readily anan+3/(pnpn+3) = znz
2
n+1z

2
n+2zn+3 and combining it with (53)

we obtain for zn the equation

zn+1zn+2 = zn−1zn+4, (54)

which is identical to (51), and leads to the same solution zn = κλnφ3(n), where we
neglected a period-2 factor. Next we introduce the auxiliary quantity Cn = anpn/zn and,
using (52), find that it satisfies CnCn+3 = 1. The solution of the latter is Cn = ψ6(n) and
integrating (53) to an/pn = zn−1znzn+1φ2(n) which leads to a2n = zn−1z

2
nzn+1ψ6(n)φ2(n).

This is just a local relation from which we obtain an whereupon pn is given by pn =
an/(zn−1znzn+1φ2(n)). From (52) we have bn = znφ̃2(n) and rn = ˜̃φ2(n). The constraint
(43) leads to the relation ˜̃φ2(n) = φ2(n)φ̃2(n), meaning that we have only 8 degrees of
freedom, one of which can be removed by the proper gauge of xn bringing the total down
to 7, as expected.

C.iv) The singularity confinement constraints with singularity lengths (1,2,2,3) are

rnrn+1 = 1, an = znzn+1pn+2, an+2 = zn+1zn+2pn, bnbn+3 = znzn+1zn+2zn+3, (55)

and from the constraint (43) we find

anan+1bnbn+1

pnpn+1
= zn−1z

3
nz

3
n+1zn+2, (56)

We introduce again the quantity
Cn = anpn/zn

and, using (55), find that it satisfies Cn = Cn+2. Thus

anpn = γznφ2(n)

Using (56) and its upshifts we can eliminate bn and obtain anan+3/(pnpn+3) = zn−1znzn+3zn+4.
Using the latter together with (55), which gives directly the ratio anan+2/(pnpn+2), we
obtain anan+1/(pnpn+1) = z3nz

3
n+1/(zn−2zn+3) and finally the equation for zn:

znzn+3 = zn−2zn+5. (57)

The solution of the latter is zn = κλnφ5(n), where a period-2 term has been neglected.
From equation relating an, pn to their upshifts we find, using (57), an/pn = zn−1z

2
nzn+1/(zn−2zn+2)
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and since anpn = γznφ2(n) we have a2n = γzn−1z
3
nzn+1φ2(n)/(zn−2zn+2) from which one

can compute an. Finally from (43) we can obtain bn = rnzn−2zn+2 where rn = φ̃2(n).
Again, a gauge on xn can be used in order to eliminate one parameter and bring the total
down to 7.

C.v) The final case for a quadratic over quadratic right-hand side corresponds to sin-
gularity lengths (2,2,2,2) leading to singularity constraints

an = znzn+1pn+2, an+2 = zn+1zn+2pn, bn = znzn+1rn+2, bn+2 = zn+1zn+2rn. (58)

Multiplying the constraint (43) by its double upshift we find

anan+2bnbn+2

pnpn+2rnrn+2
= zn−1z

2
nz

2
n+1z

2
n+2zn+3. (59)

Integrating the relations between an, bn and pn, rn we find anpn = γznφ̃2(n) and bnrn =
δzn ˜̃φ2(n). Combining (58) and (59) we obtain the equation for zn:

zn−2zn+2 = z2n, (60)

with solution zn = κλnφ2(n)
n (neglecting a period-2 term, for the usual reasons).

Multiplying the first two conditions (58) we find anan+2 = γznzn+1zn+2φ̃2(n), after

elimination of pn. The condition can be integrated to an = z
1/4
n−1znz

1/4
n+1(γφ̃2(n))

1/2ψ4(n).
A similar expression can be obtained for bn involving an a priori different period-4 function
ψ̃4(n). However using the constraint (43) we find readily that ψ̃4(n)ψ4(n) = 1. This leaves
8 parameters (κ, φ2(n), φ̃2(n), ˜̃φ2(n), γ, δ and the 2 parameters of ψ4(n), but a gauge of
xn removes one and the total is 7 as expected.

D. The linear over linear case

When three factors are simplified in the right-hand side of (25) we find the mapping

(xnxn+1 − z2)(xnxn−1 − z2)

(xnxn+1 − 1)(xnxn−1 − 1)
=
xn − a

xn − p
, (61)

where the parameters obey the constraint a = z4p. There are four possible singularity
patterns with lengths (1,7), (2,6), (3,5) and (4,4) to which we shall refer as cases D.i to
D.iv. We deautonomise (61) to

(xnxn+1 − znzn+1)(xnxn−1 − znzn−1)

(xnxn+1 − 1)(xnxn−1 − 1)
=
xn − an
xn − pn

. (62)

and the constraint that guarantees that xn = 0 is not a singularity is simply

an
pn

= zn−1z
2
nzn+1. (63)

D.i) The singularity confinement constraints in the case (1,7) are

pnpn+1 = 1, anan+7 = znzn+1zn+2zn+3zn+4zn+5zn+6zn+7, (64)

while the condition (63), combined with its upshift leads to

anan+1 = zn−1z
3
nz

3
n+1zn+2. (65)
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Iterating (65) and using (64) we obtain for zn the equation

zn+9zn+8zn+1zn = zn+6zn+5zn+4zn+3, (66)

the solution of which is zn = κλnφ5(n)φ3(n) and where a period-2 term has been ne-
glected, as usual. From (64) we have pn = φ2(n) and integrating (65) we obtain an =
zn−1z

2
nzn+1φ2(n) where the period-2 term is the same for both an, pn. This leads to a

parametrisation of (62) involving precisely 7 parameters once the adequate gauge of xn
has been implemented.

D.ii) The case of the singularity with lengths (2,6) is special. The confinement con-
straints are

an = znzn+1pn+2, an+6 = zn+1zn+2zn+3zn+4zn+5zn+6pn, (67)

and we can use (63) to eliminate an in terms of pn. From the confinement conditions we
obtain for zn the equation

zn−1znzn+6zn+7 = 1 (68)

the solution of which is zn = ψ14(n)φ2(n) where the period-2 factor must be neglected since
zn enters only through products involving consecutive indices. We thus have 7 genuine
parameters. We remark that not only there is no secular dependence on n and thus the
equation cannot be a discrete Painlevé, but there is not even a constant term in zn. Thus
the resulting integrable system makes sense only as a non-autonomous QRT mapping with
periodic coefficients [28].

D.iii) In this case the singularity lengths are (3,5), leading to the confinement con-
straints

pnpn+3zn+1zn+2 = 1, anan+5 = znzn+1zn+2zn+3zn+4zn+5. (69)

Again, since the variable zm enters only through the combination zmzm+1, the first of
these conditions allows to express zn in terms of pn as znzn+1 = 1/(pn−1pn+2). Using
condition (63) we can express an in terms of pn as an = pn/(pn+2pn+1pn−1pn−2). From
the second condition (69) we find that pn must satisfy the equation

pn−2pn+7 = pnpn+5. (70)

the solution of which is pn = κλnφ2(n)φ7(n), introducing 8 parameters, one of which can
be removed by a choice of gauge for xn.

D.iv) The last case corresponds to singularities with lengths (4,4), leading to the con-
finement conditions

an = znzn+1zn+2zn+3pn+4, an+4 = zn+1zn+2zn+3zn+4pn, (71)

Again, using (63), we eliminate an and use the two constraints for pn to obtain the equation
for zn. We find

zn−1znzn+4zn+5 = zn+1z
2
n+2zn+3, (72)

with solution zn = κλnφ3(n)φ2(n)
n (where we have neglected a period-2 term for the

usual reasons). Introducing the auxiliary quantity Cn = anpn/zn and combining the two
relations (71) we find the constraint Cn+4 = Cn that can be integrated to Cn = γφ4(n).
This allows, using (63), to compute an from a2n = Cnzn−1z

3
nzn+1 and then pn = Cnzn/an.

Eight parameters enter the solution, one of which can be removed by the adequate gauge
of xn.
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4 From E8 to E7 equations

From the degeneration pattern presented in Figure 1, it is clear that it should be possible

to link the equations we have just obtained to equations associated to the E
(1)
8 group,

obtained from them by some limiting procedure. For reasons that will become clear later
in this section, we shall work with the most general, QRT-asymmetric form of the generic,

multiplicative, q-equation associated to E
(1)
8 .

We introduce the notation Zn = κλn and Hn = Zn/
√
λ and eight constants Di. The

M1, · · · ,M8 are the elementary symmetric functions constructed from the Di and we
assume M8 =

∏
iDi = 1. The equation is:

(Yn+1Hn+1Zn −Xn)(YnHnZn −Xn)− (H2
n+1Z

2
n − 1)(H2

nZ
2
n − 1)

(Yn+1/(Hn+1Zn)−Xn)(Yn/(HnZn)−Xn)− (1− 1/(H2
n+1Z

2
n))(1− 1/(H2

nZ
2
n))

=

X4
n−M1ZnX3

n+(M2Z2
n−3−Z8

n)X
2
n+(M7Z7

n−M3Z3
n+2M1Zn)Xn+Z8

n−M6Z6
n+M4Z4

n−M2Z2
n+1

X4
n−M7X3

n/Zn+(M6/Z2
n−3−1/Z8

n)X
2
n+(M1/Z7

n−M5/Z3
n+2M7/Zn)Xn+1/Z8

n−M2/Z6
n+M4/Z4

n−M6/Z2
n+1

(73a)

(Xn−1HnZn−1 − Yn)(XnHnZn − Yn)− (H2
nZ

2
n−1 − 1)(H2

nZ
2
n − 1)

(Xn−1/(HnZn−1)− Yn)(Xn/(HnZn)− Yn)− (1− 1/(H2
nZ

2
n−1))(1− 1/(H2

nZ
2
n))

=

Y 4
n−M7HnY 3

n+(M6H2
n−3−H8

n)Y
2
n+(M1H7

n−M5H3
n+2M7Hn)Yn+H8

n−M2H6
n+M4H4

n−M6H2
n+1

Y 4
n−M1Y 3

n /Hn+(M2/H2
n−3−1/H8

n)Y
2
n+(M7/H7

n−M3/H3
n+2M1/Hn)Yn+1/H8

n−M6/H6
n+M4/H4

n−M2/H2
n+1

(73b)

In order to go from this equation to an E
(1)
7 -associated one we introduce X = Ωx, Y = Ωy,

and take the limit Ω → ∞. The terms containing the secular dependence, Zn and Hn

remain finite, but for uniformity, we shall represent them as zn and ηn. Among the 8
quantities Di we assume that four (say, D1 to D4) will go to infinity like Ω, the remaining
four (D5 to D8) going to zero like 1/Ω so as to ensure that M8 = 1. Keeping just the
dominant terms, the first three symmetric functions M1, M2, M3 divided by Ω1, Ω2, Ω3

respectively, become, at the limit Ω → ∞ the elementary symmetric functions m1, m2, m3

of the four Di/Ω, (i = 1, · · · , 4). Similarly M7, M6 M5 divided by Ω1, Ω2, Ω3 respectively,
become, at the limit the elementary functions p1, p2, p3 of the inverse of the four ΩDi,
(i = 5, · · · , 8). The function M4 divided by Ω4, at the limit, gives rise to m4 = p4, i.e. the
common value of

∏4
1Di/Ω and

∏8
5(ΩDi)

−1.
At the limit Ω → ∞ we keep only the dominant terms and (73) becomes

(yn+1ηn+1zn − xn)(ynηnzn − xn)

(yn+1/(ηn+1zn)− xn)(yn/(ηnzn)− xn)
=

x4n −m1znx
3
n +m2z

2
nx

2
n −m3z

3
nxn +m4z

4
n

x4n − p1x3n/zn + p2x2n/z
2
n − p3xn/z3n + p4/z4n

(74a)
(xn−1ηnzn−1 − yn)(xnηnzn − yn)

(xn−1/(ηnzn−1)− yn)(xn/(ηnzn)− yn)
=

y4n − p1ηny
3
n + p2η

2
ny

2
n − p3η

3
nyn + p4η

4
n

y4n −m1y3n/ηn +m2y2n/η
2
n −m3yn/η3n +m4/η4n

(74b)

We remark that this form of the E
(1)
7 -associated equation is one that, as we have shown,

can be obtained by deautonomisation of a QRT mapping belonging to the class VI′ of the
classification [10] . However, as is well-known, a VI′ form can be transformed to a VI one
[29]. To this end we introduce the change of variables xn → xn/zn, yn → ηn/yn and find,
using the fact that η2n = znzn−1, and after inverting both sides of the equation obtained
from (74b):

(xnyn+1 − z2nη
2
n+1)(xnyn − z2nη

2
n)

(xnyn+1 − 1)(xnyn − 1)
=
x4n −m1z

2
nx

3
n +m2z

4
nx

2
n −m3z

6
nxn +m4z

8
n

x4n − p1x3n + p2x2n − p3xn + p4
(75a)
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(xn−1yn − z2n−1η
2
n)(xnyn − z2nη

2
n)

(xn−1yn − 1)(xnyn − 1)
=
m4y

4
n −m3η

2
ny

3
n +m2η

4
ny

2
n −m1η

6
nyn + η8n

p4y4n − p3y3n + p2y2n − p1yn + 1
(75b)

It is possible to give an even more interesting form to these equations by deciding that the
four Di that go to infinity are those for i = 1, . . . , 4 and introduce Di = diΩ, while those
for i = 5, . . . , 8 go to zero, so we put Di = di/Ω. We find thus that the right-hand side of
(75) factorises leading to

(xnyn+1 − z2nη
2
n+1)(xnyn − z2nη

2
n)

(xnyn+1 − 1)(xnyn − 1)
=

(xn − d1z
2
n)(xn − d2z

2
n)(xn − d3z

2
n)(xn − d4z

2
n)

(xn − 1/d5)(xn − 1/d6)(xn − 1/d7)(xn − 1/d8)
(76a)

(xn−1yn − z2n−1η
2
n)(xnyn − z2nη

2
n)

(xn−1yn − 1)(xnyn − 1)
=

(yn − η2n/d1)(yn − η2n/d2)(yn − η2n/d3)(yn − η2n/d4)

(yn − d5)(yn − d6)(yn − d7)(yn − d8)
(76b)

where we have used the fact that
∏

i di = 1. Equation (76) is precisely the equation we
introduced in [9] under the name of asymmetric q-PVI.

Since the E
(1)
8 -associated equations have been classified in [26] it is edifying to establish

the correspondence between the results of that paper and the ones obtained above. One
should bear in mind that the results of [26] were obtained in the ancillary formulation
and concerned additive rather than multiplicative equations. Still the limiting process

is straightforward: one can consider the limit from E
(1)
8 to E

(1)
7 in an additive setting

and then transcribe the results to the multiplicative one that we are focusing on here.
We are not going to present the details, lest this becomes tedious, and we just give the
correspondence. The generic case, equation (26) is obtained from the generic equation (6)
of [26]. The two equations B.i and B.ii are obtained from 5.2.1 and 5.1.1 of [26]. The
equations of the list C, i to v, are obtained from 4.5.1, 4.4.3, 4.3.1, 4.2.1 and 4.1, in that
order. Finally the equations of the list D, corresponding to a linear over linear right-hand
side are obtained from the equations we have called trihomographic, D.i coming from 3.1,
D.iii from 3.3 and D.iv from 3.4. Another equation was present in [26], obtained from
singularity patterns of lengths 6 and 2, just as we posited for the case D.ii and there it
led to a discrete Painlevé equation with coefficients with periods 4 and 5. In order to

understand why in the case of E
(1)
7 no discrete Painlevé results from the deautonomisation

approach it is instructive to go back to the limit from E
(1)
8 to E

(1)
7 .

The equations of the subcase D, i.e. those with linear over linear right-hand side are

what we call trihomographic equations. For E
(1)
8 -associated equations, starting from the

general form
xn+1 − an
xn+1 − bn

xn−1 − cn
xn−1 − dn

xn − en
xn − fn

= 1, (8)

we have, in the multiplicative case,

an = knznzn−1 +
1

knznzn−1
, bn =

znzn−1

kn
+

kn
znzn−1

, cn = knznzn+1 +
1

knznzn+1
,

dn =
znzn+1

kn
+

kn
znzn+1

, en = −z
2
nzn−1zn+1

kn
− kn
z2nzn−1zn+1

,

fn = −knz2nzn−1zn+1 −
1

knz2nzn−1zn+1
, (77)
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corresponding to an equation of the form

(xn+1zn+1zn − xn)(xn−1zn−1zn − xn)− (z2n+1z
2
n − 1)(z2n−1z

2
n − 1)

(xn+1 − zn+1znxn)(xn − zn−1znxn)− (z2n+1z
2
n − 1)(z2n−1z

2
n − 1)/(zn+1z2nzn−1)

=
xn + zn+1z

2
nzn−1(kn + 1/kn)

xnzn+1z2nzn−1 + kn + 1/kn
. (78)

The E
(1)
7 case is obtained by assuming that xn and kn go to infinity resulting to the

equation

xn+1 − knznzn−1

xn+1 − kn
znzn−1

xn−1 − knznzn+1

xn−1 − kn
znzn+1

xn + kn
z2nzn−1zn+1

xn + knz2nzn−1zn+1
= 1, (79)

the equation thus obtained is of the form VI′

(xn+1znzn+1 − xn)

(xn+1 − znzn+1xn)

(xn−1znzn−1 − xn)

(xn−1 − znzn−1xn)
=
xn + knzn+1z

2
nzn−1

xnzn+1z2nzn−1 + kn
. (80)

However the limiting procedure must be adapted to the details of every specific realisation

of the E
(1)
8 -associated discrete Painlevé equations.

In the paragraph that follows we shall show how to implement the limit while keeping
the secular and periodic dependence of the coefficients. Our aim is just to show how this
limit does not exist in the D.ii case, but it is instructive to start with cases where the limit

does exist. In the case of singularity patterns with lengths (4,4) the E
(1)
8 discrete Painlevé

equation has znzn−1 = κλnφ2(n)φ3(n) and kn = γφ4(n). It suffices in this case to let γ

and xn go to infinity together in order to obtain the corresponding E
(1)
7 discrete Painlevé

equation.

xn+1 − znzn−1φ4(n)

znzn−1xn+1 − φ4(n)

xn−1 − znzn+1φ4(n)

znzn+1xn−1 − φ4(n)
=
xn + φ4(n)zn−1z

2
nzn+1

zn−1z2nzn+1xn + φ4(n)
, (81)

We remark that this leads to an equation of the same form as equation (80) where kn is
replaced by φ4(n).

The case of singularity patterns of lengths (1,7) and (3,5) is more delicate. We have,
for instance in the former case, znzn−1 = κλnφ3(n)φ5(n) while kn is a product of a secular
term, a term of period 5 and a φ2(n). The latter is a term of the form γ(−1)n and the

limit to E
(1)
7 is obtained by taking γ together with xn to infinity. We put kn = gnφ2(n)

and, using the expressions (77) we find, for n = 2m, the terms of the an, · · · , fn surviving
at the limit are the ones having kn at the numerator, resulting to the equation

x2m+1 − g2mz2mz2m−1

z2mz2m−1x2m+1 − g2m

x2m−1 − g2mz2mz2m+1

z2mz2m+1x2m−1 − g2m
=
x2m + g2mz2m−1z

2
2mz2m+1

z2m−1z22mz2m+1x2m + g2m
. (82)

On the other hand, for n = 2m+ 1, the terms of the an, · · · , fn surviving at the limit are
in this case those having kn at the denominator, resulting in the equation

z2mz2m+1x2m+2 − g2m+1

x2m+2 − g2m+1z2mz2m+1

z2m+2z2m+1x2m − g2m+1

x2m − g2m+1z2m+2z2m+1
=
z2mz

2
2m+1z2m+2x2m+1 + g2m+1

x2m+1 + g2m+1z2mz22m+1z2m+2
.

(83)
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which, once inverted, is just the upshift of (82). Again, this leads to an equation of the
form of (80) where kn is replaced by gn. A similar result can be obtained in the case (3,5).

However the case (2,6) is different. Here the various quantities can be expressed in
terms of an auxiliary object of the form un = κλnφ4(n)φ5(n). The quantity znzn+1 can
be expressed as znzn−1 = un−1un+1 = κ2λ2nφ4(n − 1)φ4(n + 1)φ5(n − 1)φ5(n + 1) Note
that the periodic function φ4(n) can be rewritten as φ2(n)ψ4(n) so znzn−1 = κ2λ2nφ5(n−
1)φ5(n+ 1)/φ2(n)

2. The expression of kn in terms of un is in this case kn = un−1un+2 =
κ2λ2n+1φ4(n−1)φ4(n+2)φ5(n−1)φ5(n+2) and the φ2(n) “hidden” in φ4(n) disappears
in kn. Infinite values for ψ4 or φ5 cannot be used to obtain a limit of the form we are
seeking. Moreover, in order to obtain an equation like (80), znzn−1 must remain finite
in the limit we are seeking, so κ and φ2(n) must remain finite. So, there is no way to

implement the limit leading to an E
(1)
7 equation while preserving the discrete Painlevé

character.

5 Conclusion

The systematic derivation of discrete Painlevé equations can be traced back to a paper
of two of the present authors in collaboration with J. Hietarinta. In that paper the
newfangled discrete integrability criterion of singularity confinement was used in order to
produce discrete analogues of the Painlevé equations for I to V. The discrete forms of
PI and PII had already been derived using a different approach, but our study showed
that the singularity approach could not only reproduce said forms but, in fact, obtain
degrees of freedom in the form of periodic functions that had eluded the previous studies.
An interesting, and at the time unexpected, result was the discovery of multiplicative,
q-discrete, forms of Painlevé equations, in particular for PIII and PV.

The method used in that paper was the one that came to be known as ‘deautonomi-
sation’. As explained above, the deautonomisation method consists in, starting from an
integrable autonomous mapping, to seek non-autonomous extensions that preserve the
integrable character. In the case of discrete Painlevé equations the starting point is a
mapping belonging to the QRT family. The rationale behind this choice is that the QRT
mapping is integrated in terms of elliptic functions. Thus, in parallel to the differential
case where the autonomous limit of Painlevé equations are equations integrated by ellip-
tic functions, one expects the deautonomisation of the QRT mapping to lead to discrete
analogues of Painlevé equations. This was indeed verified in the study in question (and in
subsequent ones) by the direct calculation of the continuum limit of the obtained system,
which did indeed lead to differential Painlevé equations.

The deautonomisation approach introduced in that pioneering work made possible the
derivation of a slew of integrable systems. The proper way of applying the procedure was
presented in an algrebrogeometric setting by some of the present authors in collaboration
with T. Mase. The notions of ‘late’ and ‘early’ confinement emerged from that study.
When applying the singularity confinement criterion it is often possible to eschew the
application of the confinement constraints when they first appear only to apply them at
some later occurence. This invariably results in non-integrable systems. (The possibility
of ‘early’ confinement is less frequent, possible only when the structure of the mapping
allows it. Contrary to the ‘timely’ confinement the constraints of the early one lead to
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trivial results, usually periodic mappings).

It is worth pointing out that the analysis of the deautonomisation procedure led to
an intriguing discovery. When studying the confinement constraints in the case of late
confinement, it turned out that the root of the characteristic polynomial coincided with
the dynamical degree of the mapping. This is not a mere coincidence. In [22], some of the
present authors in collaboration with T. Mase and A. Stokes, presented a rigorous justifica-
tion of this. And the extension of the approach to what was dubbed ‘full-deautonomisation’
led to an integrability criterion, based on singularity confinement, which covers all cases
where a näıve application of confinement would lead to false positive results.

The application of deautonomisation for the derivation of discrete Painlevé equations,
while undeniably successful, was plagued by a certain empiricism. Given a discrete system,
the choice of the ‘timely’ confinement constraints was, in some cases, a question of expe-
rience and/or intuition. This changed with the advent of the algebro-geometric methods
which aimed at the regularisation of integrable mappings through a series of blow-ups but
also by the push of the study towards more and more complicated systems, culminating

with equations associated with the affine Weyl group E
(1)
8 . The latter systems are pretty

complicated and the use of an empirical deautonomisation approach was out of the ques-

tion. We shall not enter here into any detail concerning our results on E
(1)
8 -associated

systems. (The interested reader is invited to consult our papers [24, 27,26]). The main
tool for the study of these equations is one offered by the algebro-geometric analysis which
showed that in all discrete Painlevé equations examined the number of blow-ups is equal to
8. While linking the number of blow-ups to the length of the singularity pattern required

some leap of faith, it turned out that it was a fair prescription in the case of E
(1)
8 -associated

systems.

In this paper we set out to deautonomise a selection of mappings which are expected
to lead, when non-autonomous, to discrete Painlevé equations associated with the affine

Weyl group E
(1)
7 . This work complements (and corrects) results obtained in [20] by the

same authors in collaboration with J. Satsuma. Fixing the length of the singularity pat-
terns simplify the calculations to a point that no computer algebra is needed. Given the

degeneration pattern that links equations of the affine Weyl groups E
(1)
8 and E

(1)
7 , it was

interesting to establish the relations between the equations obtained here and those of
[26]. (To be fair, the equations of the latter were of additive type, whereas here we have
dealt with multiplicative equations. However this does not constitute a problem. First
the results obtained here can be directly transposed to an additive setting, provided one
works with a mapping of the form (7) and takes the logarithm of the parameters depend-

ing on the independent variable. Vice versa, the results obtained for the E
(1)
8 additive

equations can be directly transformed to ones idoneous for q-systems, by simple exponen-

tiation. One interesting result is that while in the E
(1)
8 case all singularity lengths led to

discrete Painlevé equations, in the E
(1)
7 case we found one instance, equation D.ii, where

the application of singularity confinement does not lead neither to secular nor to constant
terms, and thus merely yields a QRT mapping with periodic coefficients and not a discrete
Painlevé equation.

The method presented in this paper has wide applicability and we expect it to be at
the core of future works of ours.
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affine Weyl group E8, J. Phys. A 48 (2015) 355204.

[25] B. Grammaticos, A. Ramani, On a novel representation of discrete Painlevé equa-
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