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Abstract

A novel extension of the canonical solitonic mKdV equation is introduced which ad-
mits hybrid Ermakov-Painlevé II symmetry reduction. Application of the latter is
made to obtain exact solution of Airy-type to a class of moving boundary problems
of Stefan kind for this extended mKdV equation. A reciprocal transformation is then
applied to the latter to generate an associated exactly solvable class of moving bound-
ary problems for an extension of a base Casimir member of a compacton hierarchy.
The extended mKdV equation is shown to be embedded in a range of nonlinear evo-
lution equations with temporal modulation as determined via the action of a class of
involutory transformations with origin in Ermakov theory. Associated temporal mod-
ulation for the hybrid mKdV and KdV equation as embedded in the classical solitonic
Gardner equation is delimited.

© The author(s). Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:2

51
1.

03
35

6v
2 

 [
m

at
h.

A
P]

  2
5 

N
ov

 2
02

5

https://arxiv.org/abs/2511.03356v2


]ocnmp[ Moving boundary problems for a novel extended mKdV equation 117

1 Introduction

The mKdV equation has diverse physical applications, notably, in the analysis of nonlinear
Alfvén waves in collisionless plasma [18] and of acoustic wave propagation in an anhar-
monic lattice [70]. Its connection to the canonical Korteweg-de Vries equation of soliton
theory due to Miura [22] was shown in [26] to constitute the spatial part of Bäcklund trans-
formation with classical geometric origins. The property of invariance under Bäcklund
transformations and application of iterated associated nonlinear superposition principles
has established importance in modern soliton theory [36]. In a geometric context, the
mKdV equation can be derived in connection with the motion of an extensible curve of
zero torsion.

Moving boundary problems of Stefan-type in continuum mechanics arise importantly
in the analysis of the melting of solids and freezing of liquids (qv. [2, 14, 15, 17, 20, 55, 64]
and literature cited therein). The heat balance condition on the moving boundary which
separates the phases characteristically provides a nonlinear boundary boundary condition.
Reciprocal-type transformations have been applied in [28] to derive novel analytic solu-
tions to moving boundary problems associated with heat conduction in a range of metals
as detailed by Storm [61] which have temperature-dependent specific heat and thermal
conductivity. Conditions for the onset of melting in such metals subject to applied bound-
ary flux may be thereby determined [31]. The threshold melting conditions as previously
derived by Tarzia [63] and Solomon et al [60] for analogous moving boundary problems
for the classical linear heat equation were thereby extended.

In modern soliton theory, a Painlevé II symmetry reduction was applied in [41] to
derive exact solution to a class of moving boundary problems for the canonical Harry Dym
equation [65]. The latter arises notably in connection with analysis of the evolution of the
interface in Hele-Shaw problems [16]. A novel sequence of analytically solvable moving
boundary problems with interface of the type x = γtn was generated in [41] via iterated
action of a Bäcklund transformation. Exact solutions were derived in terms of Yablonski-
Vorob’ov polynomials [66, 69]. Therein the index n adopted a sequence of values of the
Painlevé II parameter. In [45] such Yablonski-Vorob’ov polynomials solutions for moving
boundary problems were shown to extended to a generalised solitonic Dym equation. The
latter was derived in a geometric context in [59] and has physical application to the analysis
of peakon solitonic phenomena in hydrodynamics [11].

In subsequent work [51] -[54] a series of moving boundary problems of Stefan-type
has been shown to be amenable to exact solution via Painlevé II symmetry reduction.
In [53] it was established that action of a reciprocal transformation links the solitonic
Korteweg- de Vries equation to a novel nonlinear evolution equation which incorporates
a source term. Moving boundary problems for the latter were thereby shown to admit
exact solution. It is remarked that in [10] a reciprocal transformation has been applied
to reduce to canonical form a class of moving boundary problems involving a source term
relevant in a soil mechanics context.

Reciprocal transformations as introduced in a modern solitonic setting in [21] constitute
a class of auto- Bäcklund transformations which act on admitted conservation laws. In [21]
conjugation with the classical geometric nonlinear superposition principle (permutability
theorem) of Bianchi was set down which allows iterative generation of multi-soliton solu-
tions in an algorithmic manner.
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Reciprocal transformations have been applied in [27] in the linkage of the canonical
AKNS and WKI inverse scattering schemes of [1] and [68] respectively. Invariance of
the 1+1-dimensional Dym solitonic hierarchy under a class of reciprocal transformations
was established in [29]. Reciprocal transformations in 2+1 dimensions [30] were shown
in [24] to connect the Kadomtsev- Petviashvili, modified Kadomtsev- Petviashvili and
2+1-dimensional Dym triad of S-integrable hierarchies.

Hybrid Ermaov-Painlevé II systems were originally derived in [40] via a symmetry re-
duction of an n+1-dimensional Manakov-type NLS system. Therein, in particular, analysis
of certain transverse wave motions in a generalised Mooney- Rivlin hyperelastic material
was shown to lead to a novel base canonical Ermakov-Painlevé II reduction. The latter
has been subsequently derived and applied in such diverse areas as cold plasma physics
[47], Korteweg capillarity theory [45] and in connection with Dirichlet-type boundary value
problems for a multi-ion Nernst-Planck electrolytic system [3]. A link with the classical
Painlevé XXXIV equation was established in [43]. Here, a novel extension of the solitonic
mKdV equation is introduced which admits Ermakov-Painlevé II symmetry reduction.
The latter is applied to derive exact solution to a class of moving boundary problems for
this generalised mKdV equation. A reciprocal transformation is then used to derive an ex-
tension of a base Casimir member of the compacton hierarchy as set down in [25]. A class
of reciprocally associated exactly solvable moving boundary problems for the extended
Casimir reciprocal associate is delimited.

2 An Extended mKdV Equation: Ermakov-Painlevé II Sym-
metry Reduction

Here, a novel mKdV equation with temporal modulation is introduced, namely

ut − 6u2ux + uxxx + λ(t+ a)µu−4ux = 0, λ, µ ∈ R (1)

and a symmetry reduction to the canonical Ermakov-Painlevé II equation established via
the ansatz

u = (t+ a)mΨ

(
x

(t+ a)n

)
. (2)

Thus, insertion of the latter into (1), on reduction, produces

mΨ−nξΨ′−6(t+a)2m−n+1Ψ2Ψ′+(t+a)−3n+1Ψ′′′+λ(t+a)µ−4m−n+1Ψ−4Ψ′ = 0, (3)

whence m = −1
3 , n = 1

3 together with µ = −2 so that

Ψ′′′ − 6Ψ2Ψ′ − 1

3
(ξΨ)′ + λΨ−4Ψ′ = 0 (4)

where, in the preceding, ξ = x/(t+ a)n.

Integration of the latter yields

Ψ′′ − 2Ψ3 − 1

3
ξΨ− λ

3
Ψ−3 = ζ, (5)



]ocnmp[ Moving boundary problems for a novel extended mKdV equation 119

with ζ ∈ R. On introduction of the scalings Ψ = δw∗, ξ = ϵζ with

δ2ϵ2 = 1, ϵ3/3 = 1 (6)

the canonical Ermakov-Painlevé II equation

w∗
zz = 2w∗3 + zw∗ +

δ

w∗3 (7)

results with δ = −3λ if ζ = 0.

3 A Class of Moving Boundary Problems

Here a class of Stefan-type moving boundary problems for the extended mKdV equation
(1) is introduced, namely

ut − 6u2ux + uxxx + λ(t+ a)−2u−4ux = 0, 0 < x < S(t), t > 0, (8)

uxx − 2u3 − λ

3
(t+ a)−2u−3 = LmṠSi, on x = S(t), t > 0, (9)

u = PmSj , on x = S(t), t > 0, (10)

together with

uxx − 2u3 − λ

3
(t+ a)−2u−3 = H0(t+ a)k, on x = 0, t > 0, (11)

S(0) = S0. (12)

In the sequel, the moving boundary x = S(t) = γ(t + a)1/3 is adopted so that the initial
condition requires S0 = γa1/3.

Boundary conditions

(I)

uxx(S(t), t)− 2u3(S(t), t)− (λ/3)(t+ a)−2u−3(S(t), t) = LmSi(t)Ṡ(t), t > 0

Insertion of the symmetry ansatz (2) into the preceding yields

Ψ′′(γ)− 2Ψ3(γ)− (λ/3)Ψ−3(γ) = LmSi(t)Ṡ(t)(t+ a) =
1

3
Lmγi+1(t+ a)(i+1)/3 (13)

whence i = −1 together with

Ψ′′(γ)− 2Ψ3(γ)− (λ/3)Ψ−3(γ) =
1

3
Lm, (14)

so that Lm = γΨ(γ) by virtue of (5) with ζ = 0.
(II)

u(S(t), t) = PmSj(t), t > 0
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Accordingly,

(t+ a)−1/3Ψ(γ) = Pmγj(t+ a)j/3, t > 0 (15)

so that j = −1 and

Pm = γΨ(γ). (16)

(III)

uxx(0, t)− 2u3(0, t)− (λ/3)(t+ a)−2u−3(0, t) = H0(t+ a)k, t > 0.

This yields

Ψ′′(0)− 2Ψ3(0)− (λ/3)Ψ−3(0) = H0(t+ a)k+1 (17)

so that k = −1 and H0 is determined by

Ψ′′(0)− 2Ψ3(0)− (λ/3)Ψ−3(0) = H0. (18)

Accordingly H0 = 0 in view of Ermakov-Painlevé II reduction (5) with ζ = 0 and ξ = 0.

An Airy reduction

The Ermakov-Painlevé II equation (5) with the alternative scalings Ψ = δw∗, ξ = ϵz
wherein

δ2 = − c3
2ϵ2

, ϵ3 = −3c2, σ =
λ

3
ϵ2δ−4 (19)

produces symmetry reduction

w∗
zz + c3w

∗3 + c2zw
∗ − σ

w∗3 = α∗ (20)

with α∗ = ςϵ2/δ ̸= 0 if ζ ̸= 0.

This avatar of the Ermakov-Painlevé II equation has been applied in a Korteweg cap-
illarity system context in [45] with zero parameter α∗. It is remarked that a detailed
analysis of aspects of the canonical Painlevé II equation with zero Painlevé parameter was
conducted in [9].

On setting w∗ = ρ1/2 and with α∗ = 0 in (20), there results

ρzz =
1

2ρ
(ρz)

2 − 2c3ρ
2 − 2c2zρ+

2σ

ρ
(21)

which with the specifications [46]

c2 = −1

2
, c3 = −1, σ = −1

4

(
α+

1

2

)2

(22)
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admits the solution

ρ(z) = wz + w2 + 1
2z (23)

whence

Ψ = δw∗ = δ[wz + w2 +
1

2
z]1/2 (24)

with w(z) governed by the classical Painlevé II equation

wzz = 2w3 + zw + α. (25)

It is remarked that (21) is equivalent to the classical integrable Painlevé XXXIV equation
in ρ on appropiate re-scaling.

The latter admits an important particular class of solutions when α = 1/2, namely

w = −Φ′(z)

Φ(z)
(26)

with Φ(z) governed by de Airy equation

Φ′′ +
1

2
zΦ = 0 (27)

whence (24) yields

Ψ = δ

[
2

(
Φ′(z)

Φ(z)

)2

+ z/2

]1/2

(28)

with

Φ = aAi(−2−
1
3 z) + bBi(−2−

1
3 z), a, b ∈ R. (29)

It is remarked that, in [8] the seed Airy-type solution (26) and the subsequent class of
solutions of (25) generated by the iterated action of an admitted Bäcklund transformation
has been applied in the solution of certain boundary value problems for the classical
Nernst-Planck electrolytic system. Here, use of the Airy-type representation of Ψ in the
moving boundary problem determines the parameters Lm, Pm and H0 in the boundary
conditions.

An Extended Casimir Equation with Temporal Modulation.
A Class of Reciprocal Moving Boundary Problems

Moving boundary problems of Stefan-type have recently been shown to admit exact so-
lution via Painlevé II symmetry reduction for a range of canonical solitonic equations
[41, 44, 51, 52, 53, 54]. The original investigation of such nonlinear nonlinear moving
boundary problems was motivated by aspects of the classical Saffman -Taylor problem
with surface tension [57] and a link to the solitonic Dym equation. Moving boundary
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problems of a Stefan kind for an extended Dym equation which arises in both hydro-
dynamics and geometric contexts [59] have subsequently been shown to be solvable by
Painlevé II reduction.

Here, a reciprocal transformation is introduced, namely

dx∗ = udx+ [−uxx + 2u3 +
λ

3
(t+ a)−2u−3]dt, t∗ = t, u∗ =

1

u
, R∗ (30)

which is applied to the extended mKdV equation (1) and to the class of moving boundary
problems (8)-(12). Thus, under R∗ there results

dx = u∗dx∗ +

[
∂

∂x∗

(
1

u∗
∂

∂x∗

)(
1

u∗

)
− 2

u∗2
− λ

3
u∗4(t∗ + a)−2

]
dt∗, (31)

which compatibility condition

∂u∗

∂t∗
=

∂

∂x∗

[
∂

∂x∗

(
1

u∗
∂

∂x∗

)(
1

u∗

)
− 2

u∗2
− λ

3
u∗4(t∗ + a)−2

]
, (32)

By virtue of the reciprocal connection of the latter via R∗ to the extended mKdV equation
(1), it inherits a variant of its Airy-type symmetry reduction. The reciprocal associate
(32) of the extended mKdV equation (1) constitutes a novel extendion of the base Casimir
member of the compacton hierarchy of [25]. In [52] the reciprocal version of the moving
boundary problem (8) for the standard Casimir equation corresponding to λ = 0 has been
solved via Painlevé II symmetry reduction. Here, the class of moving boundary problems
determined by application of R∗ to (8)-(12) is determined by the reciprocal system

∂u∗

∂t∗ = ∂
∂x∗

[
∂

∂x∗

(
1
u∗

∂
∂x∗

(
1
u∗

))
− 2

u∗2 − λ
3u

∗4(t∗ + a)−2
]
, x∗

∣∣
x=0

< x∗ < x∗
∣∣
x=S(t)

, t∗ > 0,

∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
− 2

u∗2
− λ

3
u∗4(t∗+a)−2 = LmSiṠ, on x∗|x=S(t), t∗ > 0, (33)

1

u∗
= PmSj(t), on x∗

∣∣
x=S(t)

, t∗ > 0,

∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
− 2

u∗2
− λ

3
u∗4(t∗ + a)−2 = H0(t

∗ + a)k, on x∗|x=0, t∗ > 0

wherein S(t) = γ(t+ a)1/3. In the preceding

dx∗
∣∣
x=0

= [−uxx + 2u3 + (λ/3)u−3(t+ a)−2]dt
∣∣
x=0

(34)

= (t+ a)−1[−Ψ′′ + 2Ψ3 + (λ/3)Ψ−3]dt
∣∣
x=0

= 0

by virtue of (5) with ζ = 0 corresponding to the Ermakov-Painlevé II reduction (20).
Accordingly, x∗|x=0 is constant. In addition

dx∗
∣∣
x=S(t)

= dx∗
∣∣
x=γ(t+a)1/3

= [(t+ a)−1/3Ψ(γ)Ṡ(t)− LmSiṠ(t)]dt

= (t+ a)−1[Ψ(γ)− Lmγ−1]
γ

3
dt (35)
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whence

x∗
∣∣
x=S(t)

=
γ

3
[Ψ(γ)− Lmγ−1] ln |t∗ + a| = S∗(t∗) (36)

upto an additive constant and the reciprocal initial condition on the moving boundary
becomes

S∗(0) = (γ/3)[Ψ(γ)− Lmγ−1] ln |a|. (37)

4 Modulation

In [49], combined action of a reciprocal and integral-type transformation have been applied
sequentially to solve a class of Stefan-type moving boundary problems involving spatial
heterogeneity. The latter arise notably as a model of percolation of liquid through porous
media in soil mechanics [32]. Physical systems which incorporate spatial or temporal
modulation arise naturally in both physics and continuum mechanics (qv [5, 6, 42, 71] and
[7, 12, 19, 50] respectively together with literature cited therein). Thus, in physics such
modulated systems have importance notably in the theory of Bose-Einstein condensates
and Bloch wave propagation. In continuum mechanics, modulated systems arise ’inter
alia’ in elastodynamics [19], visco-elastodynamics [7] and the analysis of crack problems
in elastostatics [12, 50].

In recent work [50], spatially modulated coupled systems of sine-Gordon, Demoulin and
Manakov-type have been systematically reduced to their unmodulated canonical counter-
parts via classes of involutory transformations. The temporal analogue of the latter to
be applied here had their origin in a procedure introduced in [4], in connection with the
Ermakov-Ray-Reid coupled systems [39]. The latter has extensive physical applications
[48]. The transformations are of the type

dt∗ = ρ−2(t)dt, u∗ = ρ−1(t)u, T ∗ (38)

and augmented by the relation ρ∗ = ρ−1 admit the key involutory property T ∗∗ = I.
Application of T ∗ to (1) results in a wide novel class of extended mKdV equations with
temporal modulation, namely

∂

∂t∗

(
u∗

ρ∗

)
− 6ρ∗−5u∗2u∗x∗ + ρ∗−3u∗x∗x∗x∗ + λ(t∗ + a)µρ∗u∗−4u∗x∗ = 0 (39)

with

dt = ρ∗−2dt∗. (40)

Application of T ∗ to the moving boundary problems (8)-(12) produces associated Stefan-
type problems for (39) which inherit the key property of exact solution via Ermakov-
Painlevé II symmetry reduction.

In [50] modulated versions of established solitonic systems were derived via the spatial
analogue of the involutory transformation (38). Therein modulation with ρ determined by
hybrid Ermakov-Painlevé II, Ermakov-Painlevé III or Ermakov-Painlevé IV as set down in
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[44] were applied. Here, the modulation term ρ(t) in the class of involutary transformations
T ∗ is taken to be determined by the classical Ermakov equation

ρtt + w(t)ρ = k/ρ3 (41)

which admits the nonlinear superposition principle

ρ =
√

c1Ω2
1 + 2c2Ω1Ω2 + c3Ω2

2 (42)

wherein Ω1, Ω2 constitute a pair of linearly independent solutions of the auxiliary linear
equation

Ωtt + w(t)Ω = 0 (43)

with constants k together with ci, i = 1, 2, 3 such that

c1c3 − c22 =
k

W 2
(44)

where W = Ω1Ω2t − Ω1tΩ2 is the constant Wronskian of Ω1,Ω2. The nonlinear superpo-
sition principle (42) can be derived via Lie group invariance as in [33]. Therein, appli-
cation was made to the analysis of moving boundary shoreline evolution hydrodynamics
with an underlying rigid basin. In general terms, the classical Ermakov equation (41)
has diverse physical applications, notably, ’inter alia’, in the nonlinear elastodynamics of
boundary-loaded hyperelastic tubes [58, 34], oceanographic pulsrodon eddy evolution [35],
magnetogasdynamics [37] and the analysis of rotating gas cloud phenomena [38].

5 An Extended Solitonic Gardner Equation with Temporal
Modulation

A hybrid mKdV and KdV equation, namely the Gardner equation was originally intro-
duced in a now classical paper [23]. It has subsequently had diverse physical applications,
notably in plasma physics [56], optical lattice theory [67] and most recently elastodynamics
[13].

In [62], Slyunyaav and Palinovsky established a novel link between the mKdV equation
and the canonical Gardner equation

vτ + 6v(1− v)vy + vyyy = 0. (45)

Thus, on introduction of

u = v − 1

2
(46)

together with

x = −(3/2)τ + y, t = τ (47)

the mKdV equation

ut − 6u2ux + uxxx = 0 (48)
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results.
Moving boundary problems of Stefan-type for both the solitonic Gardner equation and

a reciprocally associated 3rd order nonlinear evolution incorporating a source term have
recently been shown to be amenable to exact solution via a Painlevé II symmetry reduction
[54]. In the present context, the result of [62] may be used to establish that the extended
Gardner equation

vτ + 6v(1− v)vy + vyyy + λ(τ + a)−2(v − 1

2
)−4vy = 0 (49)

together with the temporally-modulated class in which it is embedded via application
of the involutory transformations T ∗ admit Ermakov-Painlevé II symmetry reduction.
Application of the latter can be made to construct exact solution of associated nonlinear
moving boundary problems with temporal modulation.

6 Conclusion

Investigation of exact solution of Stefan- type moving boundary problems for a range
of canonical 1+1- dimensional solitonic equations via Painlevé II symmetry reduction as
initiated in [41] has been detailed in [45], [51]-[54]. In the present work, a class of extended
mKdV equations has been introduced which admit solution via hybrid Ermakov-Painlevé
II symmetry reduction. Currently under investigation is exact solution of novel moving
boundary problems by means of the latter procedure for certain 2+1- dimensional solitonic
equations and their reciprocal associates.
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