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Abstract

We review studies on the application of Lie group methods to delay ordinary differ-
ential equations (DODEs). For first- and second-order DODEs with a single delay
parameter that depends on independent and dependent variables, the group clas-
sifications are performed. Classes of invariant DODEs for each Lie subgroup are
written out. The symmetries allow us to construct invariant solutions to such equa-
tions. The application of variational methods to functionals with one delay yields
DODEs with two delays. The Lagrangian and Hamiltonian approaches are reviewed.
The delay analog of the Legendre transformation, which relates the Lagrangian and
Hamiltonian approaches, is also analysed. Noether-type operator identities relate the
invariance of delay functionals with the appropriate variational equations and their
conserved quantities. These identities are used to formulate Noether-type theorems
that give first integrals of second-order DODEs with symmetries. Finally, several open
problems are formulated in the Conclusion.
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1 Introduction

Since its inception in the classical works of Sophus Lie [1, 2], Lie group analysis has proven
to be a powerful and effective tool for studying both ordinary and partial differential
equations. The Lie group symmetries of a differential equation map solutions to other
solutions, enabling the generation of new solutions from known ones and facilitating the
classification of equations into equivalence classes. Moreover, these symmetries can be
used to derive exact analytical solutions that remain invariant under specific subgroups of
the symmetry group, commonly referred to as group-invariant solutions.

The application of Lie group theory to differential equations has been extensively de-
veloped in numerous books and research articles [3, 4, 5, 6, 7, 8]. Following the seminal
contribution of E. Noether [9], symmetry groups have also served as a fundamental tool for
deriving first integrals and conservation laws in systems with Lagrangian or Hamiltonian
formulations. Furthermore, the connection between symmetry groups and conservation
laws for differential equations that lack a variational structure – hence without an associ-
ated Lagrangian or Hamiltonian – was established in [10, 8].

The application of Lie group transformations has been successfully extended beyond
continuous systems to encompass finite-difference, discrete, and differential-difference equa-
tions [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] as well as integro-differential equa-
tions [23]. In addition, exact solutions of delay partial differential equations (PDEs) have
been investigated in [24, 25, 26].

The present article reviews the extension of Lie group analysis methods to delay or-
dinary differential equations (DODEs). In earlier studies, DODEs with one delay were
considered. A Lie group classification of first-order delay ordinary differential equations
was presented in [27], while linear first-order delay ordinary differential equations were
examined in [28]. Furthermore, a Lie group classification of second-order delay ordinary
differential equations was developed in [29]. Results concerning the possible dimensionality
of the admitted Lie algebras were generalized to DODEs of arbitrary order in [30].

A Lagrangian approach to DODEs and a Noether-type theorem for invariant varia-
tional problems were recently presented in [31]. Corresponding results for a Hamiltonian
approach to DODEs were suggested in [32, 33]. We remark that Lagrangian and Hamil-
tonian formalisms for difference equations were discussed in [34] (see also [35, 36]).

A variational approach to delay differential equations was introduced long ago in [37,
38, 39, 40, 41]; however, the symmetries of the corresponding variational equations were
not investigated until recently. For simplicity, we restrict our attention to the scalar
case, considering functions involving a single delay, which correspond to two time points:
the current time point t and the delayed time point t − τ , where τ denotes the delay
parameter. Such functionals give rise to variational delay ordinary differential equations
of second order (in terms of the order of differentiation) that involve two delays: for each
time point t, two delayed arguments t − τ and t − 2τ appear. Consequently, the initial
data must be specified over an interval of length 2τ .

The Noether theorems for variational delay ordinary differential equations represent
generalizations of Noether’s classical theorems for both variational ordinary differential
equations and variational ordinary difference equations. The DODE analogues of Noether’s
theorems provide a systematic method for deriving first integrals directly from the La-
grangian and Hamiltonian functions. When a sufficient number of first integrals is ob-
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tained, they can be employed to construct explicit solutions of the corresponding DODEs.
The structure of the paper is as follows. In the next section, we review results concern-

ing Lie group symmetries of DODEs with one delay. Section 3 introduces second-order
delay ordinary differential equations involving two delays. Section 4 presents the applica-
tion of Lie point symmetry generators to DODEs. Sections 5 and 6 provide Lagrangian
and Hamiltonian approaches for DODEs. They review the variational equations in the
continuous case and their generalizations for DODEs, invariance of delay functions, and
Noether-type theorems. The final section provides a concise summary of the main results
and lists several directions for future research.

2 Delay ordinary differential equations with one delay

2.1 First-order DODEs

The adaptation of Lie group and Lie algebra theory to the study of delay ordinary differ-
ential equations started in [27, 28]. In these articles, we restricted ourselves to the case of
first-order DODEs, supplemented by a general delay equation. Thus, we consider a delay
ordinary differential system (DODS) of the from

u̇ = f(t, u, u−), t ∈ I,
∂f

∂u−
̸≡0, (2.1a)

t− = g(t, u, u−), t− < t, g(t, u, u−)̸≡const. (2.1b)

Here, I is a finite or semi-finite interval and f and g are arbitrary smooth functions.
Sometimes it is convenient to rewrite (2.1b) in the equivalent form

∆t = t− t− = g̃(t, u, u−), g̃(t, u, u−) = t− g(t, u, u−).

In most of the existing literature, the delay parameter ∆t is considered to be constant

∆t = τ > 0, τ = const. (2.2)

An alternative is to impose a specific form of the function (2.1b) to include some physical
features of the delay ∆t.

We are interested in group transformations that leave the Eqs. (2.1) invariant (Gen-
erators of Lie group transformations are described in section 4, where DODEs with two
delays are considered). That means that the transformation will transform solutions of the
DODS into other solutions. They leave the set of all solutions invariant. Let us stress that
we need to consider two equations (2.1) together. It makes our approach similar to one of
the approaches for considering symmetries of discrete equations (see, for example, [18]),
where invariance is required for both the discrete equation and the equation specifying
the lattice on which it is considered. Here, we have the DODE (2.1a) instead of a discrete
equation and the delay relation (2.1b) instead of a lattice equation.

The main results were the following:

1. We classified DODSs of the form (2.1) into conjugacy classes under arbitrary Lie
point transformations and found that their Lie point symmetry groups can have
dimensions n = 0, 1, 2, 3 or n = ∞.



]ocnmp[ Symmetries and Integration of ODEs with Retarded Argument 19

2. The symmetry algebras for genuinely nonlinear DODEs have dimensions n ≤ 3.

3. If n = ∞, the DODE is linear and we have a solution-independent delay equa-
tion given by g = g(t), or it can be transformed into this linear form by a point
transformation.

4. If the symmetry algebra of a DODS contains a 2-dimensional subalgebra realized
by linearly connected vector fields, then this DODS is linearizable (or already linear
with g = g(t)).

5. We presented a method for obtaining particular solutions for DODSs with symme-
tries. Exact analytical solutions of invariant DODSs can be obtained using symmetry
reduction.

Example. Let us consider a DODE with a constant delay parameter

u̇ =
u− u−
t− t−

+ C1e
t, t− t− = C2, C2 > 0. (2.3)

These equations admit symmetries

X1 =
∂

∂u
, X2 = t

∂

∂u
, X3 =

∂

∂t
+ u

∂

∂u
. (2.4)

One can easily see that the corresponding Lie group transformations

X1 : t̄ = eεX1(t) = t, ū = eεX1(u) = u+ ε,
X2 : t̄ = eεX2(t) = t, ū = eεX2(u) = u+ εt,
X3 : t̄ = eεX3(t) = t+ ε, ū = eεX3(u) = eεu

do not change the form of the DODE, nor the delay relation.
We can find a particular solution of (2.3), which is an invariant solution for the sym-

metry X3. It has the form

u = Aet, t− = t−B, (2.5)

where A and B are constants. This solution form is invariant with respect to the group
transformation generated by the symmetry X3. Substituting the form (2.5) into the
DODS (2.3), we obtain the conditions on the constants

A =
C1C2

C2 − 1 + e−C2
, B = C2.

Other examples of invariant solutions can be found in [27, 28, 30].

2.2 Second-order DODEs

Second-order delay ordinary differential equations with one delay were examined in [29].
These DODSs have the form

ü = f(t, u, u−, u̇, u̇−), t ∈ I,

(
∂f

∂u−

)2

+

(
∂f

∂u̇−

)2

̸≡0, (2.6a)

t− = g(t, u, u−, u̇, u̇−), t− < t, g(t, u, u−, u̇, u̇−)̸≡const. (2.6b)

Here f and g are arbitrary smooth functions.

The following results were obtained:
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1. A second-order genuinely nonlinear DODS of the type (2.6) can have a Lie point
symmetry algebra of dimension 0 ≤ n ≤ 6 or n = ∞.

2. Genuinely nonlinear DODEs have symmetry algebras with dimensions n ≤ 6.

3. If we have n = ∞, then the DODS is linearisable by an invertible transformation.
The delays of linear DODEs with n = ∞ are solution-independent, i.e., given by
g = g(t).

4. To show that a DODS (2.6) is linearisable (and its delay equation can be brought
to the form g = g(t)), it is sufficient to show that it admits a four-dimensional
symmetry algebra realized by pairwise linearly connected vector fields.

5. Particular solutions of invariant DODSs can be obtained using symmetry reduction.

2.3 Higher order DODEs

In [30], some results obtained for the first- and second-order DODSs in [27, 28, 29] were
generalized for DODEs of arbitrary order with one delay. Such systems of order N have
the form

u(N) = f(t, u, u−, u̇, u̇−, ..., u
(N−1), u

(N−1)
− ), t ∈ I,

N−1∑
k=0

(
∂f

∂u
(k)
−

)2

̸≡0, (2.7a)

t− = g(t, u, u−, u̇, u̇−, ..., u
(N−1), u

(N−1)
− ), t− < t, g ̸≡const. (2.7b)

The dimension of a symmetry algebra admitted by a DODS of order N can satisfy
0 ≤ n ≤ 2N + 2 or n = ∞. Genuinely nonlinear DODS can admit symmetry algebras
of dimension 0 ≤ n ≤ 2N + 2. If n = ∞, the DODS consists of a linear DODE and
a solution-independent delay relation, or it can be transformed into such a form by an
invertible transformation.

For invariant DODSs, we obtained several theoretical results. Namely, if the symmetry
algebra has 2N pairwise linearly connected symmetries, it provides a delay differential sys-
tem which can be transformed into a linear DODE supplemented by a solution-independent
delay relation. Such linear DODSs admit infinite-dimensional symmetry groups since they
allow linear superposition of solutions.

3 Delay ordinary differential equations with two delays

In sections 5 and 6, we consider variations of delay functionals with one delay. Such
variations provide delay ordinary differential equations with two delays. In the Lagrangian
framework, we obtain second-order DODEs. For this reason, we describe the second-order
DODEs with two delays.

3.1 Second-order DODEs

Second-order DODEs with two delays have the form

ü+ = F (t+, t, t−, u+, u, u−, u̇+, u̇, u̇−, ü, ü−), t ∈ I, (3.1a)

t+ − t = τ, t− t− = τ, τ = const. (3.1b)
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where I ⊂ R is some finite or semifinite interval. The independent variable t varies
continuously over the entire region, where Eq. (3.1) is defined2. We emphasize that the
delay parameter takes the same value τ at all points. It is convenient to use the right and
left shift operators, defined for a function f = f(t, u) as

f+ = S+(f) = f(t+ τ, u(t+ τ)), f− = S−(f) = f(t− τ, u(t− τ)). (3.2)

For example,

t+ = S+(t) = t+ τ, t− = S−(t) = t− τ

and

u+ = S+(u) = u(t+ τ), u− = S−(u) = u(t− τ).

The shifts for first- and second-order derivatives are defined similarly:

u̇+ = S+(u̇) = u̇(t+ τ), u̇− = S−(u̇) = u̇(t− τ),

ü+ = S+(ü) = ü(t+ τ), ü− = S−(ü) = ü(t− τ).

In order to provide a DODE with two delays, the function F is required to satisfy(
∂F

∂u−

)2

+

(
∂F

∂u̇−

)2

+

(
∂F

∂ü−

)2

̸≡0. (3.3)

DODEs (3.1) have to be supplemented by initial conditions. In contrast to the case of
ordinary differential equations, which have initial conditions at a point, initial conditions
for DODE (3.1) are given on an initial interval of length 2τ , e.g.,

u(t) = φ(t), u̇(t) = φ̇(t), ü(t) = φ̈(t), t ∈ [t0 − τ, t0 + τ ]. (3.4)

For simplicity, we assume that the function φ(t) is twice differentiable on the interval
[t0−τ, t0+τ ], although this requirement can be relaxed. One of the procedures for solving
DODEs either analytically or numerically is called the method of steps [39].

3.2 First integrals of DODEs

A DODE (3.1) may contain a dependent variable and its derivatives at three points t+, t,
and t−. Two types of conserved quantities can be introduced: differential first integrals
and difference first integrals.

Definition. A quantity

I(t+, t, t−, u+, u, u−, u̇+, u̇, u̇−) (3.5)

is called a differential first integral of DODE (3.1) if it holds constant on solutions of the
DODE.

2In the literature on DODEs with two delays, it is standard to consider three points t, t− τ , and t−2τ .
We prefer to use three points t+ = t+ τ , t, and t− = t− τ , as this choice is more suitable for variational
delay equations.
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The differential first integral (3.5) satisfies the equation

D(I) = It+ + It + It− + Iu+ u̇+ + Iuu̇+ Iu− u̇− + Iu̇+ ü+ + Iu̇ü+ Iu̇− ü− = 0, (3.6)

which should hold for any solution of the considered DODE (3.1).

In addition to the differential first integral, one can define a difference integral.

Definition. Quantity

J(t, t−, u, u−, u̇, u̇−, ü, ü−) (3.7)

is called a difference first integral of DODE (3.1) if satisfies the equation

(S+ − 1)J = 0 (3.8)

on the solutions of the DODE.

We illustrate the definitions of the first integrals with a simple example.

Example. The DODE

ü+ = ü−

has the differential first integral

I = u̇+ − u̇−

and the difference first integral

J = ü− ü−.

The differential first integral is constant on DODE solutions. In contrast, the difference
first integral need not be constant on DODE solutions: it can be a periodic function with
period τ , where τ is the delay parameter.

4 Lie point symmetries and invariant DODEs

4.1 Lie point symmetries

Consider an infinitesimal transformation group

t→ t∗ = f(t, u, a) ≈ t+ ξ(t, u)a, u→ u∗ = g(t, u, a) ≈ u+ η(t, u)a, (4.1)

where a is the group parameter. Such transformations are represented by a generator in
the standard form [3]:

X = ξ(t, u)
∂

∂t
+ η(t, u)

∂

∂u
+ · · · (4.2)
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For group analysis of second-order DODE with two delays (3.1), generators should be
prolonged to all variables included in the DODE: derivatives u̇ and ü, and variables at
shifted points (t−, u−, u̇−, ü−) and (t+, u+, u̇+, ü+). This leads to

X = ξ
∂

∂t
+ η

∂

∂u
+ ζ1

∂

∂u̇
+ ζ2

∂

∂ü

+ ξ−
∂

∂t−
+ η−

∂

∂u−
+ ζ−1

∂

∂u̇−
+ ζ−2

∂

∂ü−

+ ξ+
∂

∂t+
+ η+

∂

∂u+
+ ζ+1

∂

∂u̇+
+ ζ+2

∂

∂ü+
, (4.3)

where

ξ = ξ(t, u), η = η(t, u),

the coefficients

ζ1 = ζ1(t, u, u̇) = D(η)− u̇D(ξ), ζ2 = ζ2(t, u, u̇, ü) = D(ζ1)− üD(ξ)

are found according to the standard prolongation formulas [3, 4, 5], and the coefficients

ξ− = S−(ξ) = ξ(t−, u−), η− = S−(η) = η(t−, u−),

ζ−1 = S−(ζ1) = ζ1(t
−, u−, u̇−), ζ−2 = S−(ζ2) = ζ2(t

−, u−, u̇−, ü−);

ξ+ = S+(ξ) = ξ(t+, u+), η+ = S+(η) = η(t+, u+),

ζ+1 = S+(ζ1) = ζ1(t
+, u+, u̇+), ζ+2 = S+(ζ2) = ζ2(t

+, u+, u̇+, ü+)

are obtained by the left and right shift operators S− and S+, defined in (3.2). Here, the
operator

D =
∂

∂t
+u̇

∂

∂u
+ü

∂

∂u̇
+· · ·+ ∂

∂t−
+u̇−

∂

∂u−
+ü−

∂

∂u̇−
+· · ·+ ∂

∂t+
+u̇+

∂

∂u+
+ü+

∂

∂u̇+
+· · · (4.4)

provides the total derivative.

4.2 The invariance of DODEs

To consider invariant DODEs (3.1a) with a constant delay (3.1b), we require both equa-
tions (3.1a) and (3.1b) to be invariant together.

In the present paper, we restrict the function ξ to depend on t only: ξ = ξ(t). In this
case, one can single out the invariance condition for system (3.1a) and (3.1b), and consider
the invariance of the equations separately. The infinitesimal criterion for the invariance of
an equation (3.1a) becomes

X(ü+ − F )
∣∣
ü+=F, t+−t=t−t−

= 0, (4.5)

for the prolonged generators (4.3).
For an arbitrary t, the delay parameter τ is assumed to have the same value to the

right and left of t:

t+ − t = t− t− = τ. (4.6)
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We need this relation to be preserved under group transformations, i.e.,

(t+)∗ − t∗ = t∗ − (t−)∗ = τ∗.

This leads to the infinitesimal condition

ξ(t+)− ξ(t) = ξ(t)− ξ(t−).

The latter equation has the following solution:

ξ(t) = f(t)t+ g(t), (4.7)

where f(t) and g(t) are arbitrary periodic functions with the period τ . Notice that this
solution allows the delay parameter to be changed.

The following requirement for a transformation of the delay parameter is that the time
scale must remain unchanged after the transformation.

To keep time homogeneity of transformations, we have to preserve the following relation
for pairwise distinguished points t1, t2, t3, t4:

t1 − t2 = γ(t3 − t4), (4.8)

where γ is constant. Applying generator (4.2), one gets

(ξ(t1)− ξ(t2)− γ(ξ(t3)− ξ(t4))) |(4.8) = 0.

Satisfying this condition, one obtains the following result:

ξ(t) = αt+ β, (4.9)

where α and β are arbitrary constants.
Notice that (4.9) is not required for all results obtained below: some of the requirements

can be relaxed.

5 Lagrangian approach for DODEs

This section describes the Lagrangian approach to delay ordinary differential equations
and provides the Noether theorem, established in [31].

5.1 ODE case: the Euler–Lagrange equation

It is well known [42, 43, 44, 45, 46] that variations of the action functional

L =

∫ b

a
L(t, u, u̇) dt, (5.1)

where L(t, u, u̇) is a Lagrangian function, lead to the Euler-Lagrange equation

δL

δu
=
∂L

∂u
−D

(
∂L

∂u̇

)
= 0, (5.2)
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where

D =
∂

∂t
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ · · ·

is the total differentiation operator. We consider a one-dimensional case u ∈ R for sim-
plicity.

Remark 5.1. In the case of ODEs, the variational equations corresponding to variations
of the dependent and independent variables are equivalent. For the first-order Lagrangians
L = L(t, u, u̇), these equations are the Euler–Lagrange equation (5.2) and the Du Bois-
Reymond equation

δL

δt
=
∂L

∂t
+D

(
u̇
∂L

∂u̇
− L

)
= 0, (5.3)

respectively. It is not difficult to check that these equations are proportional

δL

δt
= −u̇δL

δu
, (5.4)

and, therefore, equivalent.

5.2 Variational equations for delay functionals

Consider a first-order functional with one constant delay

L =

∫ b

a
L(t, t−, u, u−, u̇, u̇−)dt (5.5a)

t− t− = τ, τ = const. (5.5b)

and the Lagrangian function L satisfying(
∂L

∂u

)2

+

(
∂L

∂u̇

)2

̸≡0,

(
∂L

∂u−

)2

+

(
∂L

∂u̇−

)2

̸≡0. (5.6)

Let the interval [t1, t2] be such that a ≤ t1 < t2 ≤ b− τ . We apply slight perturbations
of the independent and dependent variables given by

tε = t+ φ(t)ε, uε = u+ ψ(t)ε, t1 ≤ t ≤ t2, (5.7)

where φ(t) and ψ(t) are differentiable functions satisfying

φ(s) = 0 and ψ(s) = 0 for s ∈ (−∞, t1] ∪ [t2,∞) (5.8)

and ε is a small parameter. Such perturbations produce variations of the derivative u̇ and
the differential dt. The variational equations were derived in [31].

For φ = 0 and ψ ̸= 0, we obtain the extremal delay equation

δL

δu
=
∂L

∂u
+
∂L+

∂u
−D

(
∂L

∂u̇
+
∂L+

∂u̇

)
= 0, (5.9)
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which represents the ‘vertical variation’, i.e., a variational equation for the variation of the
dependent variable u. This equation is known since Elsgolts [39] (see also [37, 38]). We
call it the Elsgolts equation.

For the case φ ̸= 0 and ψ = 0, we define a ‘horizontal variation’

δL

δt
=
∂L

∂t
+
∂L+

∂t
+D

(
u̇
∂L

∂u̇
+ u̇

∂L+

∂u̇
− L

)
= 0. (5.10)

For variations defined by the symmetry (4.2), we multiply the coefficients of the gen-
erator X by a function φ(t) satisfying (5.8)

tε = t+ φ(t)ξ(t, u)ε, uε = u+ φ(t)η(t, u)ε. (5.11)

In this case, the variation leads to the equation

ξ

[
∂L

∂t
+
∂L+

∂t
+D

(
u̇
∂L

∂u̇
+ u̇

∂L+

∂u̇
− L

)]
+ η

[
∂L

∂u
+
∂L+

∂u
−D

(
∂L

∂u̇
+
∂L+

∂u̇

)]
= 0,

(5.12)

which depends explicitly on ξ and η, i.e., on the considered given group. It can be rewritten
in the form

ξ
δL

δt
+ η

δL

δu
= 0. (5.13)

We call this equation the local extremal equation. Notice that a local extremal equation
is a second-order DODE containing L and the shifted to the right Lagrangian L+, and
by virtue of the equation has two delays. The local extremal equation gives the necessary
condition for any Lagrangian to achieve an extremal value for variations along orbits of
the considered Lie group.

Remark 5.2. In contrast to the ODE case (see remark 5.1), the vertical variational
equation (5.9) and the horizontal variational equation (5.10) are not equivalent.

5.3 Invariance of delay functionals

Invariance of first-order functional with one delay for a one-parameter group of point
transformations (4.1) was examined in [31]. It was shown that it is equivalent to the
invariance of the elementary action

L(t, t−, u, u−, u̇, u̇−)dt = L(f, f−, g, g−, ġ, ġ−)D(f)dt. (5.14)

Thus, the functional is invariant if and only if the elementary action is invariant. It leads
to the criterion for invariance of the delay functional.

Theorem 5.3. (Invariance of Lagrangian) The functional (5.5) is invariant with re-
spect to the group of transformations with the generator (4.2) if and only if

XL+ LD(ξ) = 0. (5.15)

In detail, the invariance condition (5.15) states

ξ
∂L

∂t
+ ξ−

∂L

∂t−
+ η

∂L

∂u
+ η−

∂L

∂u−
+ ζ1

∂L

∂u̇
+ ζ−1

∂L

∂u̇−
+ LD(ξ) = 0. (5.16)
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5.4 Noether’s identity and Noether-type theorem

In this subsection, we introduce the Noether operator identity, which relates the invariance
of a Lagrangian (5.15), a local extremal equation (5.12), and conserved quantities.

Lemma 5.4. (Noether’s identity) The following identity holds

XL+ LD(ξ) = ξ
δL

δt
+ η

δL

δu
+D(CI) + (1− S+)C

J , (5.17)

where

C = ξL+ (η − u̇ξ)

(
∂L

∂u̇
+
∂L+

∂u̇

)
(5.18)

and

P = ξ−
∂L

∂t−
+ η−

∂L

∂u−
+ ζ−1

∂L

∂u̇−
. (5.19)

Direct computations prove the identity. It yields various versions of the Noether the-
orem for delay differential equations. We recall that invariance of the delay functional
(5.15) does not require invariance of the delay equation (3.1b).

Theorem 5.5. (Noether’s theorem) Let a delay functional (5.5) be invariant for the
group action corresponding to the generator (4.2) on solutions of the local extremal equa-
tion

ξ
δL

δt
+ η

δL

δu
= 0. (5.20)

Then the differential-difference relation

D(C) = (S+ − 1)P (5.21)

holds on solutions of this equation.

Proof. The result follows from identity (5.17). 2

Theorem 5.5 has an extension for the divergence invariant Lagrangians. Such an ex-
tension for the Noether theorem was first proposed in [47].

Corollary 5.6. Let delay functional (5.5) satisfy the condition

XL+ LD(ξ) = D(V ) + (1− S+)W (5.22)

with some functions V (t+, t, t−, u+, u, u−, u̇+, u̇, u̇−) and W (t, t−, u, u−, u̇, u̇−, ü, ü−) on
solutions of the local extremal equation (5.20). Then the differential-difference relation

D(C − V ) = (S+ − 1)(P −W ) (5.23)

holds on solutions of this equation.
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Condition (5.22) means the divergent invariance of the Lagrangian. We call the terms
on the right side, namely D(V ) and (1 − S+)W , as differential divergence and difference
divergence, respectively.

For some DODE, the differential-difference relation (5.21) can be converted into a
differential first integral or a difference first integral.

Corollary 5.7. If there holds

(S+ − 1)P = D(V ) (5.24)

with some function V (t+, t, t−, u+, u, u−, u̇+, u̇, u̇−), then the differential-difference relation
(5.21) provides the differential first integral

I = C − V. (5.25)

Corollary 5.8. If there holds

D(C) = (S+ − 1)W, (5.26)

with some function W (t, t−, u, u−, u̇, u̇−, ü, ü−), then the differential-difference relation
(5.21) provides the difference first integral

J = P −W. (5.27)

5.5 Example: delay oscillator

In this example, we illustrate the basic version of Noether’s Theorem 5.5, its corollary,
and how to transform differential-difference relations into differential first integrals.

Consider the Lagrangian function

L = u̇u̇− − uu− (5.28)

and the symmetries

X1 = cos t
∂

∂u
, X2 = sin t

∂

∂u
, X3 =

∂

∂t
, X4 = u

∂

∂u
. (5.29)

The symmetries X1 and X2 are linearly connected. For them, the local extremal equa-
tion (5.20) is the Elsgolts equation

δL

δu
= −u− − u+ − ü− − ü+ = 0. (5.30)

The symmetry X1 satisfies the divergence invariance condition (5.22)

X1L+ LD(ξ1) = D(− sin t−u− sin t u−).

Therefore, the differential-difference relation (5.23) with

C1 = cos t(u̇+ + u̇−) + sin t−u+ sin t u−, P1 = − cos t−u− sin t−u̇
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holds on solutions of equation (5.30). Using Corollary 5.7 and

(S+ − 1)P1 = D(− sin t u+ + sin t−u),

we find the differential first integral

I1 = cos t(u̇+ + u̇−) + sin t(u+ + u−). (5.31)

For the symmetry X2, the divergence invariance condition is

X2L+ LD(ξ2) = D(cos t−u+ cos t u−).

The components of the differential-difference relation are

C2 = sin t(u̇+ + u̇−)− cos t−u− cos t u−, P2 = − sin t−u+ cos t−u̇.

Using

(S+ − 1)P2 = D(cos t u+ − cos t−u),

we transform the differential-difference relation into the differential first integral

I2 = sin t(u̇+ + u̇−)− cos t(u+ + u−). (5.32)

For the symmetry X3, we get the horizontal variational equation

δL

δt
= D(u̇u̇+ + uu−) = üu̇+ + u̇ü+ + u̇u− + uu̇− = 0. (5.33)

Notice that equation (5.30) is linear, while equation (5.33) is nonlinear.
The symmetry X3 is variational, i.e., it satisfies

X3L+ LD(ξ3) = 0.

It leads to the differential-difference relation (5.21) with

C3 = −u̇u̇+ − uu−, P3 ≡ 0.

This relation is actually the differential first integral

I3 = C3 = −u̇u̇+ − uu−, (5.34)

which holds on solutions of the horizontal variational equation (5.33).
We note that the symmetriesX1 andX2 give the first integrals I1 and I2 for the Elsholtz

equation. In contrast, the symmetry X3 gives the first integral I3 for the horizontal
variational equation (5.33): the first integral I3 does not hold on solutions of the Elsgolts
equation (5.30).

Variational equations can admit symmetries that are neither variational nor divergence
symmetries of the Lagrangians. For example, both equations (5.30) and (5.33) are in-
variant with respect to the scaling of the dependent variable, which is represented by the
generator X4, while this symmetry is not admitted by the Lagrangian (5.28):

X4L+ LD(ξ4) = 2L,
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where the right-hand side 2L can not be presented as a divergence.

The differential first integrals I1 and I2 can be used to provide solutions of equation
(5.30). Setting them equal to constants

I1 = A, I2 = B,

we get

u+ + u− = A sin t−B cos t.

The above general solution can be used to obtain a solution of an initial-value problem
by means of just algebraic manipulation. For convenience, we rewrite this relation in the
shifted form

u(t) + u(t− 2τ) = A sin(t− τ)−B cos(t− τ). (5.35)

We start with the initial values

u(t) = φ(t), t ∈ [−2τ, 0].

For simplicity, we assume that the function φ(t) has a continuous first derivative on this
interval. The initial conditions give

A = φ̇(0) + φ̇(−2τ), B = −φ(0)− φ(−2τ).

Using (5.35), we obtain

u(t) = A sin(t− τ)−B cos(t− τ)− φ(t− 2τ), t ∈ [0, 2τ ];

u(t) = A sin(t− τ)−B cos(t− τ)− u(t− 2τ)

= A sin(t−τ)−B cos(t−τ)−A sin(t−3τ)+B cos(t−3τ)+φ(t−4τ), t ∈ [2τ, 4τ ];

and so on. By virtue of these relations, one can find the solution u(t), t ∈ [τ,∞) recursively,
starting from the initial data. In contrast to the method of steps [39], this recursive
procedure does not require any integration.

6 Hamiltonian approach for DODEs

The Hamiltonian approach to delay ordinary differential equations was developed in [33].
It is related to the Lagrangian approach via a delay analog of the Legendre transformation.

6.1 ODE case: the canonical Hamiltonian equations

We shortly overview the variational approach for canonical Hamiltonian ODEs in the case
of scalar dependent functions q(t) and p(t). Similarly, we will construct a Hamiltonian
approach for DODEs.
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We consider the canonical Hamiltonian equations [44, 45]

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (6.1)

for some Hamiltonian function H = H(t, q, p). These equations can be obtained by the
variational principle in the phase space (q, p) from the action functional

H =

∫ b

a
(pq̇ −H(t, q, p)) dt (6.2)

(see, for example, [42]).
Let us note that the canonical Hamiltonian equations (6.1) can be obtained by the

action of the variational operators

δ

δp
=

∂

∂p
−D

∂

∂ṗ
,

δ

δq
=

∂

∂q
−D

∂

∂q̇
,

where D is the operator of total differentiation with respect to time

D =
∂

∂t
+ q̇

∂

∂q
+ ṗ

∂

∂p
+ · · · ,

on the integrand of the functional (6.2), namely on the function

H̃ = pq̇ −H(t, q, p). (6.3)

In detail, we obtain

δH̃

δp
= q̇ − ∂H

∂p
= 0,

δH̃

δq
= −ṗ− ∂H

∂q
= 0. (6.4)

Remark 6.1. We can also consider the variation with respect to the independent variable
t

δH̃

δt
= D(H)− ∂H

∂t
= 0. (6.5)

This equation holds on the solutions of the canonical Hamiltonian equations (6.1):

D(H)|q̇=Hp, ṗ=−Hq
=

[
∂H

∂t
+ q̇

∂H

∂q
+ ṗ

∂H

∂p

]
q̇=Hp, ṗ=−Hq

=
∂H

∂t
.

The relationship of the Hamiltonian function H(t, q, p) with the Lagrangian function
L(t, q, q̇) is given by the Legendre transformation

H(t, q, p) = pq̇ − L(t, q, q̇), (6.6)

where we should substitute q̇ expressed from

p =
∂L

∂q̇
(t, q, q̇) (6.7)
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in the right-hand side [42]. Equation (6.7) can be resolved for q̇ if ∂2L
∂q̇2

̸= 0.

The Legendre relation (6.6) makes it possible to establish equivalence of Euler–Lagrange
equation (5.2) and canonical Hamiltonian equations (6.1) (see, for example, [45]). In
addition to the relation (6.7), there hold

q̇ =
∂H

∂p
,

∂H

∂q
= −∂L

∂q
,

∂H

∂t
= −∂L

∂t
. (6.8)

Lie point symmetries of canonical Hamiltonian equations (6.1) are given by the gener-
ators of the form

X = ξ(t, q, p)
∂

∂t
+ η(t, q, p)

∂

∂q
+ ν(t, q, p)

∂

∂p
, (6.9)

which are prolonged to the derivatives according to the standard prolongation formulas [3,
4, 5].

Remark 6.2. It should be noticed that the Legendre transformation (6.6) is not a point
transformation. Hence, there is no one-to-one correspondence between Lie point sym-
metries of the Euler-Lagrange equation (5.2), which are given by the generators of the
form (4.2), and Lie point symmetries of the canonical Hamiltonian equations, which are
presented by the generators of the form (6.9).

6.2 Variational equations for delay functionals

Similarly to the continuous case, one can consider a delay analog of the functional (6.2).
We introduce the Hamiltonian functional with one delay

H =

∫ b

a
p−(α1dq̇ + α2dq̇

−) + p(α3dq̇ + α4dq̇
−)−H(t, t−, q, q−, p, p−) dt, (6.10a)

t− t− = τ, τ = const. (6.10b)

where αi, i = 1, 2, 3, 4 are some constants. One can consider more complicated cases of
the coefficients αi. Nonconstant αi are treated in [32].

For the variations of the dependent variables p and q and the independent variable t
taken on the interval [a.b− τ ], we obtain equations

δH̃

δp
= α1q̇

+ + (α2 + α3)q̇ + α4q̇
− − ∂

∂p
(H +H+) = 0, (6.11a)

δH̃

δq
= −

(
α4ṗ

+ + (α2 + α3)ṗ+ α1ṗ
− +

∂

∂q
(H +H+)

)
= 0, (6.11b)

δH̃

δt
= D[α2(pq̇ − p−q̇−) + α4(p

+q̇ − pq̇−)] +D(H)− ∂

∂t
(H +H+) = 0, (6.11c)

where

H̃ = p−(α1q̇ + α2q̇
−) + p(α3q̇ + α4q̇

−)−H(t, t−, q, q−, p, p−) (6.12)
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is the function corresponding to the integrand of functional (6.10a). Here, the operator of
total differentiation D is

D =
∂

∂t
+ q̇

∂

∂q
+ ṗ

∂

∂p
+ · · ·+ ∂

∂t−
+ q̇−

∂

∂q−
+ ṗ−

∂

∂p−
+ · · ·+ ∂

∂t+
+ q̇+

∂

∂q+
+ ṗ+

∂

∂p+
+ · · ·

The first and second operators perform the ’vertical variations’ (i.e., the variations with
respect to the dependent variables p and q), the last one takes the ’horizontal variation’
(the variation with respect to the independent variable t).

Remark 6.3. In contrast to the canonical Hamiltonian ODEs (see Remark 6.1), the
equation (6.11c) does not hold on the solutions of the equations (6.11a) and (6.11b),
supplemented by the delay equation (3.1b).

For the variations along group orbits corresponding to the generator (6.9), we obtain
the variational equation

ξ
δH̃

δt
+ η

δH̃

δq
+ ν

δH̃

δp
= 0. (6.13)

This local extremal equation is the Hamiltonian analog of (5.13).
We consider the system of equations

α1q̇
+ + (α2 + α3)q̇ + α4q̇

− =
∂

∂p
(H +H+), (6.14a)

α4ṗ
+ + (α2 + α3)ṗ+ α1ṗ

− = − ∂

∂q
(H +H+), (6.14b)

given by (6.11a) and (6.11b) as the delay canonical Hamiltonian equations, i.e., the delay
analog of the canonical Hamiltonian equations (6.1). Shortly, they can be presented as

δH̃

δp
= 0,

δH̃

δq
= 0. (6.15)

These equations are first-order DODEs with two delays. They are supplemented by the
delay equation (3.1b). Note that all three variational equations (6.11) supplemented by
the delay equation (3.1b) form an overdetermined system.

6.3 Compatibility of Hamiltonian approach with Lagrangian approach

In the classical Hamiltonian theory (see, for example, [42]), the variables q and p are
named canonical if the system of equations for them is equivalent to the Euler-Lagrange
variational equation. We are following the same strategy for the delay Hamiltonian equa-
tions and considering the transition from the Lagrangian to the Hamiltonian approach via
a delay version of the Legendre transformation.

6.3.1 Delay Legendre transformation

We consider the delay analog of the Legendre transformation

H(t, t−, q, q−, p, p−) = p−(α1q̇+α2q̇
−) + p(α3q̇+α4q̇

−)−L(t, t−, q, q−, q̇, q̇−), (6.16)
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where q̇ and q̇− in the right-hand side are to be substituted as found from

α1p
− + α3p =

∂L

∂q̇
, α2p

− + α4p =
∂L

∂q̇−
. (6.17)

We also obtain relations

α3q̇ + α4q̇
− =

∂H

∂p
, α1q̇ + α2q̇

− =
∂H

∂p−
, (6.18)

and

∂H

∂q
= −∂L

∂q
,

∂H

∂q−
= − ∂L

∂q−
,

∂H

∂t
= −∂L

∂t
,

∂H

∂t−
= − ∂L

∂t−
. (6.19)

We are interested in delay canonical Hamiltonian equations (6.14), which correspond to
Elsgolts equation (5.9). Starting with a delay Lagrangian L, we obtain the corresponding
delay Hamiltonian H. The delay Legendre transformation (6.16) gives the correspondence
between the Lagrangian and the Hamiltonian. We impose a compatibility condition3, which
requires that the variables p and p− expressed from the Legendre transformation via the
variables q̇ and q̇− satisfy

p = S+(p
−). (6.20)

6.3.2 Delay Legendre transformation with compatibility condition

We consider Lagrangians to be quadratic in the derivatives. Namely, the Lagrangians of
the form

L =
α

2
q̇2 + βq̇q̇− +

γ

2
(q̇−)2 − ϕ(q, q−), (6.21)

where α, β ̸= 0, and γ are some constants (a more general form of Lagrangians is examined
in [32]). The Elsgolts variational equation for this Lagrangian takes the form

δL

δq
= −

(
βq̈+ + (α+ γ)q̈ + βq̈− +

∂

∂q
(ϕ+ ϕ+)

)
= 0. (6.22)

It was shown in [33] that the compatibility condition (6.20) holds for coefficient

α2 =
γ

β
α1, α3 =

α

β
α1, α4 = α1 ̸= 0. (6.23)

For these coefficients, we obtain

p =
β

α1
q̇, p− =

β

α1
q̇−. (6.24)

The Hamiltonian given by (6.16) takes the form

H =
α2
1

β2

(α
2
p2 + βpp− +

γ

2
(p−)2

)
+ ϕ(q, q−). (6.25)

3Imposing this condition, we avoid contradiction with the Legendre relations in a given point with that
in a shifted point, and avoid introducing a double set of variables p as it was done in [48].
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For this Hamiltonian, the delay Hamiltonian equations (6.14) with the coefficients (6.23)
can be presented as

α1

(
q̇+ +

α+ γ

β
q̇ + q̇−

)
=
α2
1

β

(
p+ +

α+ γ

β
p+ p−

)
, (6.26a)

α1

(
ṗ+ +

α+ γ

β
ṗ+ ṗ−

)
= − ∂

∂q
(ϕ+ ϕ+). (6.26b)

They provide a decomposition of the second-order Elsgolts equation (6.22) into two first-
order DODEs with two delays. A convenient choice α1 = β simplifies the relations (6.24),
the Hamiltonian (6.25), and the delay canonical Hamiltonian equations (6.26).

6.4 Invariance of delay functionals

In section 4, we introduced Lie point symmetries for the Lagrangian approach. Here, we
modify them to the Hamiltonian case. Let group transformations in the space (t, q, p) be
provided by generators of the form (6.9). To apply the generator (6.9) to delay Hamiltonian
equations, we prolong it to all variables involved, namely derivatives q̇ and ṗ, and variables
at the shifted points (t−, q−, p−, q̇−, ṗ−) and (t+, q+, p+, q̇+, ṗ+). We obtain the prolonged
operator

X = ξ
∂

∂t
+ η

∂

∂q
+ ν

∂

∂p
+ ζη

∂

∂q̇
+ ζν

∂

∂ṗ

+ ξ−
∂

∂t−
+ η−

∂

∂q−
+ ν−

∂

∂p−
+ ζ−η

∂

∂q̇−
+ ζ−ν

∂

∂ṗ−

+ ξ+
∂

∂t+
+ η+

∂

∂q+
+ ν+

∂

∂p+
+ ζ+η

∂

∂q̇+
+ ζ+ν

∂

∂ṗ+
, (6.27)

where

ξ = ξ(t, q, p), η = η(t, q, p), ν = ν(t, q, p).

The coefficients

ζη = ζη(t, q, p, q̇, ṗ) = D(η)− q̇D(ξ), ζν = ζν(t, q, p, q̇, ṗ) = D(ν)− ṗD(ξ),

are found according to the standard prolongation formulas [3, 4, 5]. The other coefficients
are obtained by the left and right shift operators S− and S+:

ξ− = S−(ξ), η− = S−(η), ν− = S−(ν), ζ−η = S−(ζη), ζ−ν = S−(ζν),

ξ+ = S+(ξ), η+ = S+(η), ν+ = S+(ν), ζ+η = S+(ζη), ζ+ν = S+(ζν).

The left and right shift operators S− and S+ are defined in (3.2).

As in the Lagrangian approach, the invariance of a delay functional is equivalent to the
invariance of the corresponding elementary action. We go directly to the result.
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Theorem 6.4. (Invariance of delay Hamiltonian) The functional (6.2) is invariant
with respect to the group transformations with the generator (6.9) if and only if

X(H̃) + H̃D(ξ)

= ν−(α1q̇+α2q̇
−)+p−(α1D(η)+α2D(η−))+ν(α3q̇+α4q̇

−)+p(α3D(η)+α4D(η−))

+ (α2p
− + α4p)q̇

−D(ξ − ξ−)− ξ
∂H

∂t
− η

∂H

∂q
− ν

∂H

∂p
− ξ−

∂H

∂t−
− η−

∂H

∂q−
− ν−

∂H

∂p−

− HD(ξ) = 0. (6.28)

6.5 First integrals of delay Hamiltonian equations

We adopt the form of first integrals, introduced in subsection 3.2, to delay canonical Hamil-
tonian equations. The delay Hamiltonian equations can contain the dependent variables
at three points: t+, t, and t−. There can be two types of conserved quantities: differential
first integrals and difference first integrals.

Definition. Quantity

I(t+, t, t−, q+, q, q−, p+, p, p−) (6.29)

is called a differential first integral of the delay Hamiltonian equations if it is constant on
the solutions of the delay Hamiltonian equations.

We require that the differential first integrals (6.29) satisfy the equation

D(I) = It+ + It + It− + Iq+ q̇
+ + Iq q̇ + Iq− q̇

− + Ip+ ṗ
+ + Iṗṗ+ Iṗ− ṗ

− = 0, (6.30)

which should hold on the solutions of the considered delay Hamiltonian equations.
In addition to differential first integrals, we can define difference first integrals.

Definition. Quantity

J(t, t−, q, q−, p, p−, q̇, q̇−, ṗ, ṗ−) (6.31)

is called a difference first integral of the delay Hamiltonian equations if it satisfies the
equation

(S+ − 1)J = 0 (6.32)

on the solutions of the delay Hamiltonian equations.

6.6 Hamiltonian identity and Noether-type theorem

Noether-type theorems are formulated based on Hamiltonian identity, which is a Hamil-
tonian version of the Noether operator identity used in the Lagrangian approach.

Lemma 6.5. (Hamiltonian identity) The following identity holds

X(H̃) + H̃D(ξ) ≡ ξ
δH̃

δt
+ η

δH̃

δq
+ ν

δH̃

δp
+D(C) + (1− S+)P, (6.33)
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where the variations δH̃
δt ,

δH̃
δq , and

δH̃
δp are given in (6.11),

C = η(α4p
+ + (α2 + α3)p+ α1p

−)− ξ(α2(pq̇ − p−q̇−) + α4(p
+q̇ − pq̇−) +H),

and

P = (α2p
−+α4p)D(η−)+ν−(α1q̇+α2q̇

−)−(α2p
−+α4p)q̇

−D(ξ−)−ξ− ∂H
∂t−

−η− ∂H
∂q−

−ν− ∂H
∂p−

.

Based on the Hamiltonian identity, the most general Noether-type theorem is formu-
lated as follows.

Theorem 6.6. (Noether’s theorem) Let a Hamiltonian with some given constants α1,
α2, α3 and α4 be invariant with respect to a one-parameter group of transformations with
a generator (6.9), i.e. condition (6.28) hold. Then, on the solutions of the local extremal
equation

ξ
δH̃

δt
+ η

δH̃

δq
+ ν

δH̃

δp
= 0 (6.34)

there holds the differential-difference relation

D(C) = (S+ − 1)P. (6.35)

Proof. The proof follows from the Hamiltonian identity (6.33). 2

For Noether’s theorem, it is convenient to generalize the invariance of a delay Hamil-
tonian (6.28) and consider divergence invariance [47].

Definition. The delay Hamiltonian H(t, t−, q, q−, p, p−) is called divergence invariant for
a generator (6.9) if instead of the condition (6.28) it satisfies the condition

X(H̃) + H̃D(ξ) = D(V ) + (1− S+)W (6.36)

with some functions V (t+, t, t−, q+, q, q−, p+, p, p−) and W (t, t−, q, q−, p, p−, q̇, q̇−, ṗ, ṗ−)
on solutions of local extremal equation (6.34).

Corollary 6.7. Let delay Hamiltonian functional (6.10a) satisfy divergence invariance (6.36).
Then, on solutions of the local extremal equation (6.34) there holds the differential-
difference relation

D(C − V ) = (S+ − 1)(P −W ). (6.37)

Based on the Noether Theorem 6.6, it is possible to provide specified results.

Corollary 6.8. If the difference in the differential-difference relation (6.35) can be pre-
sented as a total derivative, i.e.

(S+ − 1)P = D(V ) (6.38)

with some function V (t+, t, t−, q+, q, q−, p+, p, p−), then there holds the differential first
integral

I = C − V. (6.39)
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Corollary 6.9. If the total derivative in the differential-difference relation (6.35) can be
presented as a difference, i.e.

D(C) = (S+ − 1)W, (6.40)

with some function W (t, t−, q, q−, p, p−, q̇, q̇−, q̇, q̇−), then, there is the difference first in-
tegral

J = P −W. (6.41)

6.6.1 Delay canonical Hamiltonian equations

The system of local extremal equation (6.13) and delay parameter equation (3.1b) is
underdetermined. There are several ways to choose a determined system. The most
important choice is to consider the delay canonical Hamiltonian equations.

Proposition 6.10. The results of the Theorem 6.6 hold for symmetries (6.9) with ξ ≡ 0
and the delay canonical Hamiltonian equations (6.14) with constant delay (3.1b).

6.7 Example: delay oscillator

We consider the Lagrangian

L(t, t−, q, q−, q̇, q̇−) = q̇q̇− − qq−. (6.42)

It yields the Elsgolts equation

δL

δq
= −(q̈+ + q̈− + q+ + q−) = 0. (6.43)

Following (6.23), we take

α1 = 1, α2 = 0, α3 = 0, α4 = 1. (6.44)

For these coefficients, the relations (6.24) take the form

p = q̇, p− = q̇−.

We obtain the Hamiltonian function

H = p−q̇ + pq̇− − L = p−q̇ + pq̇− − q̇q̇− + qq− = pp− + qq− (6.45)

and the delay canonical Hamiltonian equations

q̇+ + q̇− = p+ + p−, (6.46a)

ṗ+ + ṗ− = −q+ − q−. (6.46b)

We consider these equations with the delay equation (3.1b). One can easily verify that
these Hamiltonian equations are equivalent to the Elsgolts equation (6.43).
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For Hamiltonian (6.45) and coefficients (6.44), we obtain

H̃ = p−q̇ + pq̇− −H = p−q̇ + pq̇− − pp− − qq−

Delay equations (6.46) admit symmetry operators

X1 = sin t
∂

∂q
+ cos t

∂

∂p
, X2 = cos t

∂

∂q
− sin t

∂

∂p
,

X3 =
∂

∂t
, X4 = q

∂

∂q
+ p

∂

∂p
, X5 = p

∂

∂q
− q

∂

∂p
. (6.47)

We note that symmetry X5 has no corresponding Lie point symmetry in the Lagrangian
approach.

For symmetry X1, the Hamiltonian is divergence invariant

X1(H̃) + H̃D(ξ1) = D(cos t−q + cos t q−).

The symmetry gives the differential-difference relation

D(sin t (p+ + p−)− cos t−q − cos t q−) = (S+ − 1)(cos t−q̇ − sin t−q).

Since the right-hand side of the differential-difference relation can be rewritten as a total
derivative

(S+ − 1)(cos t−q̇ − sin t−q) = D(cos t q+ − cos t−q),

we obtain the differential integral

I1 = sin t (p+ + p−)− cos t (q+ + q−). (6.48)

Symmetry X2 also satisfies divergence invariance of the Hamiltonian

X2(H̃) + H̃D(ξ1) = D(− sin t−q − sin t q−).

We obtain the differential-difference relation

D(cos t (p+ + p−) + sin t−q + sin t q−) = (S+ − 1)(− sin t−q̇ − cos t−q).

Rewriting the right-hand side of the differential-difference relation as the total derivative

(S+ − 1)(− sin t−q̇ − cos t−q) = D(− sin t q+ + sin t−q),

we obtain the differential integral

I2 = cos t (p+ + p−) + sin t (q+ + q−). (6.49)

Thought symmetry X3 is a variational symmetry of the Hamiltonian, i.e.,

X3(H̃) + H̃D(ξ3) = 0,

It needs other equations than the canonical Hamiltonian equation (6.46),(3.1b) for deriving
the differential-difference relation.
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For symmetry X4, we find

X4(H̃) + H̃D(ξ4) = 2(p−q̇ + pq̇− − pp− − qq−).

The symmetry is neither variational symmetry nor divergence symmetry of the Hamilto-
nian. Thus, there is no differential-difference relation.

Symmetry X5 is a divergence symmetry of the Hamiltonian

X5(H̃) + H̃D(ξ5) = D(pp− − qq−).

It provides the differential-difference relation

D(pp+ + qq−) = (S+ − 1)(pṗ− − q−q̇ − qp− + q−p).

Converting this relation to a differential or difference first integral is not possible.

The differential first integrals I1 and I2 can be used to find solutions to the delay
Hamiltonian equations (6.46). In fact, setting the values of these first integrals as

I1 = A, I2 = B,

where A and B are constant, we obtain the following solution

q+ + q− = −A cos t+B sin t, (6.50a)

p+ + p− = A sin t+B cos t. (6.50b)

Using this representation, one can construct a solution to a Cauchy problem with the
initial values

q(t) = φ(t), p(t) = ψ(t), t ∈ [−2τ, 0],

where the functions φ(t) and ψ(t) are assumed to be continuous. By rewriting relations
(6.50) in shifted form

q(t) + q(t− 2τ) = −A cos(t− τ) +B sin(t− τ), (6.51a)

p(t) + p(t− 2τ) = A sin(t− τ) +B cos(t− τ), (6.51b)

we find the constants A and B as

A = − cos τ (φ(0) + φ(−2τ))− sin τ (ψ(0) + ψ(−2τ)) ,

B = − sin τ (φ(0) + φ(−2τ)) + cos τ (ψ(0) + ψ(−2τ)) .

Applying relations (6.51), we derive the solution of the Cauchy problem for t ∈ [0, 2τ ]

q(t) = −φ(t− 2τ)−A cos(t− τ) +B sin(t− τ),

p(t) = −ψ(t− 2τ) +A sin(t− τ) +B cos(t− τ).

Then, for t ∈ [2τ, 4τ ]

q(t) = φ(t− 4τ) +A cos(t− 3τ)−B sin(t− 3τ)−A cos(t− τ) +B sin(t− τ),

p(t) = ψ(t− 4τ)−A sin(t− 3τ)−B cos(t− 3τ) +A sin(t− τ) +B cos(t− τ).

This process can be continued recursively. Using these relations, one can find the solution
(q(t), p(t)) for t ∈ [0,∞). Unlike the standard method of solving DODEs, namely the
method of steps [39], which requires integration, the recursive procedure outlined above
does not involve any integration.
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7 Concluding remarks

This paper provides a review of research on the application of Lie group transformations
to delay ordinary differential equations.

First, DODEs of first- and second-order DODEs with a single delay were classified
into conjugacy classes, under arbitrary Lie point transformations. Here, we examine the
invariance of a system of two equations: the DODE itself and the equation specifying a
delay. The method for obtaining particular solutions of DODEs by symmetry reduction
was presented.

Then, the Lagrangian approach for variational delay ordinary differential equations
is presented for first-order delay Lagrangians. The variational approach to constructing
DODEs necessarily leads to equations with two delays. Noether-type operator identity
relates the invariance of a delay functional with the appropriate variational equations and
their conserved quantities. This identity is used to state a Noether-type theorem that
gives first integrals of variational second-order DODEs with symmetries.

Finally, the Hamiltonian approach to delay differential equations is described. The
delay analog of the Legendre transformation, which relates the Lagrangian and Hamil-
tonian approaches, is discussed. This transformation possesses several coefficients that
should be appropriately related to the form of the Lagrangian. The transition from a La-
grangian function to the corresponding Hamiltonian function has been demonstrated for
Lagrangians that are quadratic in the derivatives. The delay analog of the Hamiltonian
operator identity, which relates the invariance of a delay functional with the appropri-
ate variational equations and their conserved quantities, is established. The Noether-type
theorem was derived from this identity. In particular, it holds for delay canonical Hamilto-
nian equations with constant delay, with symmetries acting in the space of the dependent
variables.

For both the Lagrangian and Hamiltonian approaches, first integrals can be used to
express solutions. In cases of sufficiently many first integrals, the solutions of the DODEs
can be presented recursively.

In the paper, we did not explain how the invariance of variational equations relates to
the invariance of delay functionals. This topic was considered for the Lagrangian approach
in [31] and for the Hamiltonian approach in [33].

In conclusion, we formulate a range of problems that still await solution.

1. S. Lie formulated an algorithm for the complete integration of second-order ODEs
with two or more symmetries [49]. It would be tempting to develop a similar method
for second-order DODEs with the required number of symmetries.

2. The so-called direct method, which allows finding conservation laws (first integrals)
of differential equations without using symmetries, has been significantly developed
in works [10, 50, 8]. It would be tempting to generalize this method to differential
equations with retarded arguments.

3. The adjoint equation method, based on the Lagrange operator identity, allows one to
find conservation laws (first integrals) of differential equations, regardless of whether
a variational formulation exists for these equations. The works of G. Bluman and
S. Anco [51, 52, 8] made significant contributions to this method. This method has
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been successfully generalized to ordinary difference equations [21]. Hopefully, it can
be generalized to DODEs.

4. The variational approach to constructing equations with delay inevitably leads to
equations with two (or more) delay parameters. However, a group classification of
differential equations with two delay parameters has not yet been completed. This
task is difficult even for DODEs with constant delay parameters, as many variables
appear in the equation’s description. This problem becomes even more complicated
if the classification is carried out under the assumption that the delay parameter
may depend on the solution.

5. In practical problems involving mathematical models with a delay argument (e.g.,
chemistry, biology, etc.), equations with a single constant delay parameter are most
often used. However, these models are not derived from the assumption of any
conserved quantities or integrals. Meanwhile, modeling processes based on delay
conservation laws may yield equations with two delay parameters and the possibility
of variational formulations.

Dedication

The paper is dedicated to George Bluman, who made significant contributions to the
application of Lie groups to differential equations. The authors are grateful to him for
introducing the use of the Lagrange operator identity to find conservation laws (first
integrals) for non-variational equations that admit symmetries.
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