
Open Communications in Nonlinear Mathematical Physics ]ocnmp[ Vol.5 (2025) pp 101–115 Article

Finsler Geometry in Anisotropic

Superconductivity: A Ginzburg–Landau

Approach

Y. Alipour Fakhri

Faculty of Basic Sciences, Department of Mathematics, Payame Noor University,
Tehran, Iran. E-mail: y alipour@pnu.ac.ir

Received October 23, 2025; Accepted October 28, 2025

Citation format for this Article:
Y. Alipour Fakhri, Finsler geometry in anisotropic superconductivity: a Ginzburg-Landau
approach, Open Commun. Nonlinear Math. Phys., 5, ocnmp:16773, 101–115, 2025.

The permanent Digital Object Identifier (DOI) for this Article:
10.46298/ocnmp.16773

Abstract

We present a rigorous generalization of the classical Ginzburg–Landau model to smooth,
compact Finsler manifolds without boundary. This framework provides a natural an-
alytic setting for describing anisotropic superconductivity within Finsler geometry.
The model is constructed via the Finsler–Laplacian, defined through the Legendre
transform associated with the fundamental function F , and by employing canonical
Finsler measures such as the Busemann–Hausdorff and Holmes–Thompson volume
forms. We introduce an anisotropic Ginzburg–Landau functional for complex scalar
fields coupled to gauge potentials and establish the existence of minimizers in the ap-
propriate Finsler–Sobolev spaces by the direct method in the calculus of variations.
Furthermore, we analyze the asymptotic regime as the Ginzburg–Landau parameter
ε→ 0 and prove a precise Γ–convergence result: the rescaled energies converge to the
Finslerian length functional associated with the limiting vortex filaments. In particu-
lar, the limiting vortex energy is shown to equal π times the Finslerian length of the
corresponding current, thereby extending the classical Bethuel–Brezis–Hélein result to
anisotropic settings. These findings demonstrate that Finsler geometry unifies metric
anisotropy and variational principles in gauge-field models, broadening the geometric
scope of the Ginzburg–Landau theory beyond the Riemannian framework.
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1 Introduction

The Ginzburg–Landau (GL) theory, introduced in the seminal work of Ginzburg and Lan-
dau [1], has played a central role in mathematical physics and geometric analysis. In its
classical form on a Euclidean or Riemannian manifold (M, g), the model couples a complex
order parameter to a gauge potential through a variational energy, (see, e.g., the mono-
graphs [2, 3]) for a comprehensive mathematical treatment including vortex structures,
energy asymptotics, and compactness.

Recent developments in differential geometry have highlighted Finsler geometry as a
natural non quadratic extension of Riemannian structures, where the metric dependence
on directions is encoded by a strongly convex norm F (x, ·) on each tangent space TxM (see
[6, 7]). Analytic tools suitable for this setting such as the Finslerian gradient, divergence,
Laplacian, and Sobolev spaces have been developed in, for instance, [8, 9]. From the
viewpoint of applications, anisotropy is intrinsic in layered superconductors and related
media, suggesting that a GL-type theory on Finsler manifolds is a natural framework for
modeling direction-dependent phenomena.

Contributions. In this paper we formulate and analyze a Finslerian version of the GL
model. Our main contributions are as follows:

(i) We define an anisotropic GL functional on a smooth Finsler manifold (M,F ) using
the Finsler–Laplacian (via the Legendre transform) together with a canonical Finsler
measure (Busemann–Hausdorff or Holmes–Thompson). The model couples complex
scalar fields to U(1)-gauge potentials and is invariant under the natural gauge action.

(ii) We establish the existence of minimizers in appropriate Finsler–Sobolev spaces. The
proof follows the direct method of the calculus of variations, relying on coercivity,
weak lower semicontinuity induced by the convexity of F ∗(x, ·)2, compact embed-
dings on compact manifolds, and a Coulomb gauge fixing based on a background
Riemannian co-metric uniformly equivalent to F ∗.

(iii) We investigate the asymptotic regime ε→ 0 and prove a Γ–convergence result, after
the usual | log ε| rescaling, the energies converge to the Finslerian length of rectifiable
1-currents representing vortex filaments. The analysis adapts the ball construction
and lower bound techniques of Jerrard–Sandier [4] to the anisotropic setting, together
with compactness/rectifiability tools from geometric measure theory (see [5]) and the
classical GL scheme in [2, 3].

Standing assumptions and notation. Throughout the paper, (M,F ) denotes a com-
pact smooth Finsler manifold (without boundary, unless stated otherwise). We write
F ∗(x, ·) for the co-metric on T ∗

xM induced by the Legendre transform, and dµF for a fixed
smooth Finsler measure; when not specified we adopt the Busemann–Hausdorff measure.
A smooth Riemannian co–metric γ∗, uniformly equivalent to F ∗, is used to formulate
Hodge operators for the Maxwell term. All function spaces are the Finsler–Sobolev spaces
H1

F built upon F ∗ and dµF , and the gauge is fixed to Coulomb form when needed.
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Organization of the paper. Section 2 collects the necessary background on Finsler
analysis. In Section 3 we introduce the Finslerian GL functional and its basic properties,
including gauge invariance and well-posedness on H1

F . The existence of minimizers is
proved in Section 4. Section 5 is devoted to the asymptotic analysis as ε→ 0, culminating
in the Γ–limit characterization of vortex filaments via the Finsler length functional.

2 Preliminaries on Finsler Geometry

In this section we collect the analytic and geometric tools used later. Throughout, M
denotes a smooth, connected, compact n–manifold without boundary. All statements
below extend to manifolds with smooth boundary under standard trace assumptions; see
the remarks at the end of the section.

A smooth, strongly convex Finsler structure on M is a continuous function F : TM →
[0,∞) such that:

1. F is C∞ on TM \ {0},

2. F (x, λy) = λF (x, y) for all λ > 0,

3. for each (x, y) ∈ TM \ {0}, the fundamental tensor

gij(x, y) :=
1

2

∂2
(
F (x, y)2

)
∂yi ∂yj

is positive definite.

We write F (x, ·) for the Minkowski norm on TxM . The dual norm F ∗ : T ∗M → [0,∞) is
defined for ξ ∈ T ∗

xM by

F ∗(x, ξ) := sup{ ξ(v) : v ∈ TxM, F (x, v) ≤ 1 }.

Define the Legendre map L : TM \ {0} → T ∗M \ {0} fiberwise by

Lx(y) := ∂y

(1
2
F (x, y)2

)
= gij(x, y) y

j dxi. (1)

Proposition 1. For each x ∈M , Lx : TxM \ {0} → T ∗
xM \ {0} is a C∞ diffeomorphism.

Its inverse is given by L−1
x (ξ) = ∂ξ

(
1
2F

∗(x, ξ)2
)
. Moreover, for all y ̸= 0 and ξ ̸= 0,

F ∗(x, Lx(y)
)

= F (x, y), F
(
x, L−1

x (ξ)
)

= F ∗(x, ξ), (2)

and the Fenchel–Young relation holds:

1

2
F (x, y)2 +

1

2
F ∗(x, ξ)2 ≥ ξ(y). (3)

Equality hold if and only if ξ = Lx(y), equivalently, y = L−1
x (ξ).



104 ]ocnmp[ Y. Alipour Fakhri

Proof. Fix x and set Φ(y) := 1
2F (x, y)

2. By strong convexity, the Hessian ∂2yΦ(y) =
g(x, y) is positive definite for y ̸= 0. Hence∇yΦ = Lx has everywhere invertible differential
on TxM \ {0}, by the inverse function theorem Lx is a local diffeomorphism. Since Φ
is strictly convex and superlinear, Lx is injective and proper; therefore it is a global
diffeomorphism onto its image, which is T ∗

xM \ {0}. Define Ψ(ξ) := supy ̸=0{ξ(y)−Φ(y)},
the Legendre transform of Φ, standard convex duality gives Ψ(ξ) = 1

2F
∗(x, ξ)2 and ∇ξΨ =

L−1
x . The identities (2) and (3) are the usual equality cases in Fenchel duality, using strict

convexity and 1–homogeneity of F and F ∗. ■

Definition. For u ∈ C∞(M), the Finsler gradient ∇Fu(x) ∈ TxM is defined by

du = Lx

(
∇Fu(x)

)
. (4)

Equivalently, ∇Fu(x) = ∂ξ
(
1
2F

∗(x, dux)
2
)
. By (2) we have F

(
x,∇Fu(x)

)
= F ∗(x, dux).

Two canonical smooth measures on (M,F ) will be used:

Busemann–Hausdorff. For x ∈ M let BF (x) := {y ∈ TxM : F (x, y) < 1} and
Bn ⊂ Rn the Euclidean unit ball. The Busemann–Hausdorff measure is

dµBH(x) :=
vol(Bn)

vol
(
BF (x)

) dx1 ∧ · · · ∧ dxn. (5)

Holmes–Thompson. Let B∗
F (x) := {ξ ∈ T ∗

xM : F ∗(x, ξ) < 1}. The Holmes–
Thompson measure is

dµHT (x) :=
1

vol(Bn)

∫
B∗

F (x)
dξ1 · · · dξn dx1 ∧ · · · ∧ dxn. (6)

In what follows we fix once and for all a smooth Finsler measure dµF chosen among
{µBH , µHT } and write

dµF = σ(x) dx1 ∧ · · · ∧ dxn, σ ∈ C∞(M), σ > 0. (7)

Definition. For a C1 vector field X = Xi∂i define

divµFX :=
1

σ(x)
∂i
(
σ(x)Xi

)
. (8)

Lemma 1. For u ∈ C∞(M) and X ∈ C1(TM),∫
M
du(X) dµF = −

∫
M
u divµFX dµF . (9)

Definition. For u ∈ C∞(M), the Finsler Laplacian associated with dµF is

∆F
µF
u := divµF

(
∇Fu

)
. (10)

In local coordinates, combining (8) and (4) yields

∆F
µF
u =

1

σ(x)
∂i

(
σ(x) gij

(
x,∇Fu(x)

)
∂ju

)
, (11)

where gij(x, ·) denotes the inverse matrix of gij(x, ·) evaluated at y = ∇Fu(x), i.e. via the
Legendre correspondence du = Lx(y).
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Definition. The Finsler Dirichlet energy of u ∈ C∞(M) is

EF [u] :=
1

2

∫
M
F ∗(x, du)2 dµF . (12)

Theorem 1. For u ∈ C∞(M) and φ ∈ C∞(M),

d

dt
EF [u+ tφ]

∣∣∣
t=0

= −
∫
M
φ∆F

µF
u dµF .

Equivalently, the critical points of EF are the (weak) solutions of ∆F
µF
u = 0.

Proof. Set ξt := d(u+ tφ) = du+ t dφ. Using Proposition 1,

d

dt

1

2
F ∗(x, ξt)

2
∣∣∣
t=0

=
〈
∂ξ

(
1
2F

∗(x, ξ)2
)∣∣∣

ξ=du
, dφ

〉
= ⟨∇Fu, dφ⟩,

where the last pairing is the natural one TxM × T ∗
xM → R. Hence

d

dt
EF [u+ tφ]

∣∣∣
t=0

=

∫
M
⟨∇Fu, dφ⟩ dµF =

∫
M
dφ(∇Fu) dµF .

Now apply Lemma 1 with X = ∇Fu to obtain∫
M
dφ(∇Fu) dµF = −

∫
M
φ divµF (∇Fu) dµF = −

∫
M
φ∆F

µF
u dµF .

■

Fix any smooth Riemannian metric γ on M and denote by | · |γ∗ the norm on T ∗M
induced by its co-metric γ∗. On compact M , the norms F ∗(x, ·) and | · |γ∗ are uniformly
equivalent:

Lemma 2. There exist constants 0 < c1 ≤ c2 <∞ such that for all (x, ξ) ∈ T ∗M ,

c1 |ξ|γ∗ ≤ F ∗(x, ξ) ≤ c2 |ξ|γ∗ . (13)

Proof. Let S := {(x, ξ) ∈ T ∗M : |ξ|γ∗ = 1}, which is compact. The map (x, ξ) 7→
F ∗(x, ξ) is continuous and positive on S. Set c1 := minS F

∗ and c2 := maxS F
∗. Then

0 < c1 ≤ c2 < ∞, and by homogeneity of F ∗ the inequality (13) follows for arbitrary
ξ. ■

Definition. For 1 ≤ p < ∞, define W 1,p
F (M) as the completion of C∞(M) with respect

to

∥u∥p
W 1,p

F

:=

∫
M

|u|p dµF +

∫
M
F ∗(x, du)p dµF .

We write H1
F (M) :=W 1,2

F (M). For complex–valued maps, set

∥u∥2F ∗ := F ∗(x,Re du)2 + F ∗(x, Im du)2,

and define H1
F (M ;C) analogously. For 1–forms, H1

F (M ;T ∗M) is defined using any fixed
co-metric γ∗ and the equivalent norm

∥α∥2H1 =

∫
M

(
|α|2γ∗ + |∇γα|2γ∗

)
dµF ,

which is equivalent to any other choice by Lemma 2.
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Proposition 2. The space H1
F (M) is a Hilbert space. Moreover, there exists C > 0 such

that for all u ∈ H1
F (M) with mean zero

∫
M u dµF = 0,

∥u∥L2(M,dµF ) ≤ C ∥F ∗(x, du)∥L2(M,dµF ). (14)

Finally, the embedding H1
F (M) ↪→ L2(M,dµF ) is compact.

Proof. By Lemma 2 and (7), the H1
F –norm is equivalent to the standard H1(M,γ) norm

with respect to the smooth positive density σ dx:

∥u∥2H1
F

≃
∫
M

(
|u|2 + |∇γu|2γ

)
σ dx.

Therefore H1
F (M) is isomorphic as a Hilbert space to H1(M,γ). The Poincaré inequality

(14) follows from the usual Poincaré inequality for (M,γ) (since M is compact) and the
norm equivalence, similarly for Rellich’s compact embedding. ■

For 1–forms we will use a fixed smooth Riemannian co-metric γ∗ uniformly equivalent to
F ∗ (Lemma 2) to formulate Hodge operators for the Maxwell term. Write ♯γ : T ∗M → TM
for the γ–musical isomorphism and define

d†γ,µF
η := − divµF

(
η♯γ

)
(η ∈ Ω1(M)).

Then for all ϕ ∈ C∞(M),∫
M
⟨dϕ, η⟩γ∗ dµF =

∫
M
ϕd†γ,µF

η dµF , (15)

which follows by Lemma 1 and the definition of divµF . In particular, d†γ,µF is the L2(dµF )–
adjoint of d acting on 0–forms.

If ∂M ̸= ∅, (9) gains a boundary term
∫
∂Mu ινX dσF , where ν is the outward conormal

and dσF the induced Finsler boundary measure; Dirichlet (u = 0) or Neumann (ινX = 0)
conditions recover (9). On noncompact manifolds, the results above hold under uniform
bounds ensuring (13) and a global Poincaré inequality (e.g. positive injectivity radius and
bounded geometry with respect to some γ).

3 The Finslerian Ginzburg–Landau Functional

Let (M,F ) be a compact smooth Finsler manifold endowed with a fixed smooth Finsler
measure dµF (either Busemann–Hausdorff or Holmes–Thompson) and a smooth Rieman-
nian co–metric γ∗ uniformly equivalent to F ∗ (cf. Lemma 2). For a complex scalar field
ψ :M → C and a real 1-form A ∈ Ω1(M) we set

DAψ := (d− iA)ψ ∈ Ω1(M ;C),

and extend the Finsler co-norm to complex-valued 1-forms by

∥η∥2F ∗ := F ∗(x,ℜη)2 + F ∗(x,ℑη)2, η ∈ Ω1(M ;C).
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Definition. The Finslerian Ginzburg–Landau functional is

GF [ψ,A] :=

∫
M

(
1
2∥DAψ∥2F ∗ + 1

2λ ∥dA∥2γ∗ + 1
4ε2

(1− |ψ|2)2
)
dµF , (16)

for fixed parameters λ > 0 and ε > 0.

Proposition 3. For every χ ∈ H1(M ;C),

(ψ,A) 7→ (eiχψ, A+ dχ)

leaves GF invariant. In particular, GF depends only on the gauge class of (ψ,A).

Proof. Observe that DA+dχ(e
iχψ) = eiχDAψ. Since the norm ∥ · ∥F ∗ is rotation-invariant

in the (ℜ,ℑ)-plane by definition, it follows that

∥DA+dχ(e
iχψ)∥F ∗ = ∥DAψ∥F ∗ .

Moreover, the Maxwell term depends only on dA, so ∥d(A + dχ)∥γ∗ = ∥dA∥γ∗ . Finally,
the potential term depends only on |ψ|. Substituting these observations into (16) yields
the desired result. ■

Proposition 4. If ψ ∈ H1
F (M ;C) and A ∈ H1

F (M ;T ∗M), then GF [ψ,A] ∈ [0,∞) and all
terms in (16) are finite. Moreover GF is C1 on H1

F (M ;C)×H1
F (M ;T ∗M).

Proof. By Lemma 2 and compactness ofM , F ∗(x, ·) is uniformly equivalent to |·|γ∗ , hence
∥DAψ∥F ∗ ∈ L2(M,dµF ) when ψ,A ∈ H1

F . The Maxwell term is in L1 because dA ∈ L2 and
dµF is smooth. The potential term is in L1 since H1

F ↪→ L4 on compact M (Sobolev and
norm equivalence). C1-regularity follows from the chain rule and smoothness/convexity
of F ∗(x, ·)2, plus bilinearity of (ψ,A) 7→ DAψ. ■

We compute the Gâteaux derivative ofGF at (ψ,A) in the directions (φ,B) ∈ H1
F (M ;C)×

H1
F (M ;T ∗M). By Definition 2, Theorem 1 (with complex realification), and the adjoint

operator d†γ,µF , it follows that:

Proposition 5 (First variation). For every smooth (ψ,A) and test pair (φ,B),

d

dt
GF [ψ + tφ,A+ tB]

∣∣∣
t=0

= ℜ
∫
M

〈
∇Fψ, DAφ− iB ψ

〉
dµF

+
1

λ

∫
M
⟨dA, dB⟩γ∗ dµF − 1

2ε2

∫
M
(1− |ψ|2)ℜ(ψ φ) dµF .

Equivalently, the critical points (ψ,A) satisfy, in weak form,D∗
ADAψ =

1

2ε2
(1− |ψ|2)ψ,

d†γ,µF dA = λℑ
(
ψDAψ

)
,

(17)

where D∗
A is the L2(dµF )-adjoint of DA induced by F ∗.
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Proof. We differentiate each term of the functional separately. For the kinetic term, we
use the realification

∥DAψ∥2F ∗ = F ∗(x,ℜDAψ)
2 + F ∗(x,ℑDAψ)

2,

and apply Theorem 1 componentwise, noting that

∂tDA+tB(ψ + tφ)
∣∣
t=0

= DAφ− i B ψ.

For the Maxwell term, we integrate by parts using the adjoint operator d†γ,µF (see Equa-
tion(15)). For the potential term, we differentiate the polynomial nonlinearity directly.
Collecting the resulting terms with respect to the test functions (φ,B) yields Equation
(17). ■

Suppose that

C := {A ∈ H1
F (M ;T ∗M) : d†γ,µF

A = 0 }

is the Coulomb slice. A standard Hodge decomposition with respect to γ ensures every
gauge class contains a representative in C.

Lemma 3. If (ψk, Ak)⇀ (ψ,A) weakly in H1
F (M ;C)×H1

F (M ;T ∗M) and strongly in L2,
then

GF [ψ,A] ≤ lim inf
k→∞

GF [ψk, Ak].

Proof. The map η 7→ 1
2∥η∥

2
F ∗ is convex in η (sum of convex maps ξ 7→ 1

2F
∗(x, ξ)2 on

real and imaginary parts), hence weakly lower semicontinuous. The Maxwell term is
quadratic and thus weakly l.s.c. The potential term is continuous under L2 convergence
by dominated convergence on compact M . ■

Lemma 4. There exist constants C1, C2 > 0 (depending only on M,F, γ∗, dµF , λ) such
that for all (ψ,A) ∈ H1

F (M ;C)× C,

GF [ψ,A] ≥ C1

(
∥ψ∥2H1

F
+ ∥A∥2H1

F

)
− C2.

Proof. By Lemma 2 and Proposition 2, ∥dA∥L2 controls ∥A∥H1 on C (standard elliptic
estimate for the operator d†d with Coulomb constraint). The kinetic term controls ∥ψ∥H1

F

up to a constant via the diamagnetic inequality in the next lemma (and the potential term
bounds ∥ψ∥L4). Collect the bounds and absorb constants. ■

Lemma 5. For every ψ ∈ H1
F (M ;C) and A ∈ L2(M ;T ∗M),

F ∗(x, d|ψ|) ≤ ∥DAψ∥F ∗ a.e. on M.

Consequently,

∥ |ψ| ∥H1
F

≲ ∥DAψ∥L2(dµF ) + ∥ψ∥L2(dµF ).
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Proof. Where ψ ̸= 0, d|ψ| = ℜ
(
ψ/|ψ|DAψ

)
(pointwise identity). By the definition of

∥ · ∥F ∗ on complex 1-forms and the triangle inequality for F ∗ on real forms, F ∗(x, d|ψ|) ≤
∥DAψ∥F ∗ . Extend by continuity across {ψ = 0} using an approximation and the fact that
both sides belong to L2. The H1

F estimate follows by integrating and adding ∥ψ∥L2 . ■

All results in this section are stable under replacing dµF by any smooth positive density
equivalent to it, and γ∗ by any co-metric uniformly equivalent to F ∗. Coercivity constants
change by multiplicative factors but the functional framework and the Euler–Lagrange
system remain the same. The Γ–limit in Section 5 will be seen to be independent of these
choices as well.

4 Existence of Minimizers

We now establish the existence of minimizers for the Finslerian Ginzburg–Landau func-
tional introduced in Section 3. The proof is entirely variational and relies on the geometric
analysis developed in Section 2.

Let

HF := H1
F (M ;C)×H1

F (M ;T ∗M)

be the natural energy space. Because GF is gauge invariant (Proposition 3), we restrict
to a fixed Coulomb slice

AC := { (ψ,A) ∈ HF : d†γ,µF
A = 0 }.

By Hodge decomposition on (M,γ), every gauge class contains a representative in AC ;
moreover, within AC the gauge freedom reduces to the compact torus of harmonic forms,
which does not affect coercivity or compactness.

Lemma 6. For any (ψ,A) ∈ HF there exists a unique χ ∈ H2(M ;R) with mean zero
such that (eiχψ,A+ dχ) ∈ AC . Moreover, the map (ψ,A) 7→ (eiχψ,A+ dχ) is continuous
on HF .

Proof. Since d†γ,µF (A + dχ) = d†γ,µFA + ∆γ
µFχ, where ∆γ

µF = d†γ,µF d is a uniformly el-
liptic self-adjoint operator on H2(M), there exists a unique solution χ with zero mean.
Continuity follows from elliptic estimates. ■

Hence it suffices to minimize GF over AC .

Lemma 7. There exist constants C1, C2 > 0 such that for all (ψ,A) ∈ AC ,

GF [ψ,A] ≥ C1

(
∥ψ∥2H1

F
+ ∥A∥2H1

F

)
− C2. (18)

Proof. Combine Lemma 4 (coercivity on Coulomb slice), Lemma 2 (uniform equiva-
lence of F ∗ and γ∗), and the Poincaré inequality (14). All constants depend only on
M,F, γ∗, dµF and λ. ■

Corollary 1 (Bounded minimizing sequences). Every minimizing sequence (ψk, Ak) of
GF in AC is bounded in HF .
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Let (ψk, Ak) ⊂ AC be a minimizing sequence. By coercivity, (ψk, Ak) is bounded in
HF . Passing to a subsequence,

(ψk, Ak)⇀ (ψ,A) in HF , (ψk, Ak) → (ψ,A) in L2.

By the closedness of the Coulomb condition under weak convergence, d†γ,µFA = 0, hence
(ψ,A) ∈ AC . Applying Lemma 3 (sequential weak lower semi continuity),

GF [ψ,A] ≤ lim inf
k→∞

GF [ψk, Ak] = inf
AC

GF .

Thus (ψ,A) minimizes GF on AC .

Theorem 2 (Existence of minimizers). Let (M,F ) be a compact smooth Finsler manifold
and λ, ε > 0. Then the functional GF attains its minimum on AC . Every minimizing pair
(ψε, Aε) ∈ AC is a weak solution of the Euler–Lagrange system (17).

Proof. Existence follows directly from the compactness and l.s.c. arguments above. To
verify the Euler–Lagrange equations, note that GF is Fréchet differentiable on HF (Propo-
sition 5), hence the first variation vanishes in all admissible directions in AC , yielding
(17). ■

By elliptic regularity for the operators in (17), every weak minimizer is smooth. The
Coulomb condition removes the gauge redundancy completely up to harmonic forms, when
H1(M ;R) = 0, the minimizer is unique up to a global phase.

If F1 and F2 are two Finsler structures whose duals satisfy c−1F ∗
1 ≤ F ∗

2 ≤ c F ∗
1 for

some c > 0, then the associated functionals GF1 and GF2 are equivalent on HF , and their
minimizers converge to one another under the natural identification of the energy spaces.
Thus the existence theory is robust under smooth perturbations of F .

For any minimizer (ψε, Aε) and gauge function χ ∈ H2(M ;C), the pair (eiχψε, Aε+dχ)
is also a minimizer with the same energy. The identity

1
2∥DAεψε∥2L2

F
+ 1

2λ∥dAε∥2L2
γ∗

+ 1
4ε2

∥1− |ψε|2∥2L2 = inf
AC

GF (19)

holds, where ∥DAεψε∥2L2
F

:=
∫
M ∥DAεψε∥2F ∗ dµF . Equation (19) is invariant under all

gauge transformations due to Proposition 3.

When F is Riemannian, i.e. F (x, y) =
√
gx(y, y), all definitions reduce to the classical

ones for the magnetic Ginzburg–Landau model. The entire proof above specializes to the
standard results of Bethuel–Brezis–Hélein [2] and Sandier–Serfaty [3]. Hence Theorem 2
can be viewed as their exact Finslerian extension.

5 Asymptotic Analysis and Γ–Convergence

We now investigate the asymptotic behavior of the minimizers (ψε, Aε) of the Finslerian
Ginzburg–Landau functional (16) as ε → 0. Our aim is to establish the Γ–limit of the
functionals {GF [ψ,A]} with respect to the weak topology of H1

F (M ;C) × H1
F (M ;T ∗M)

and to describe the limiting vortex structure in terms of Finsler geometry.
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Let (M,F ) be a compact, oriented Finsler manifold of dimension n ≥ 2, and let λ > 0
be fixed. For simplicity we restrict attention to the case n = 2, though the arguments
below extend to higher dimensions with currents of codimension 2.

Assume that (ψε, Aε) ∈ AC are minimizers of GF and that GF [ψε, Aε] ≤ C| log ε| as
ε → 0. The compactness and lower-bound analysis follow closely the classical method of
Bethuel–Brezis–Hélein [2] and Sandier–Serfaty [3], adapted to the Finsler context through
the convexity and duality of F ∗.

Let us first recall that by the diamagnetic inequality (Lemma 5),

F ∗(x, d|ψε|) ≤ ∥DAεψε∥F ∗ a.e.,

and hence |ψε| → 1 in L2(M) as ε→ 0, because the potential term ε−2(1− |ψε|2)2 forces
concentration of |ψε| near 1. Consequently, we may define the phase map

uε :=
ψε

|ψε|
∈ S1 ⊂ C on M \ Σε,

where Σε = {x : ψε(x) = 0} denotes the vortex set. The energy concentrates along Σε,
and our goal is to identify its geometric limit.

Compactness and vorticity measure. Define the Finslerian Jacobian current

Jε :=
1

2
d
(
⟨iuε, DAεuε⟩

)
∈ D′(M)

which coincides with the vorticity 2-form in the smooth region |ψε| > 0. In the Euclidean
case this reduces to Jε = curl(iuε,∇Aεuε). Because F ∗ is uniformly equivalent to a
Riemannian norm, all bounds and dualities carry through, and one obtains (as in [2, 3])
that Jε converges weakly (up to subsequence) to an integer-multiplicity rectifiable (n−2)-
current J whose support Σ := spt J represents the limiting vortex set. The multiplicity
corresponds to the winding number of the phase ψε around the defect.

Lower bound (liminf inequality). Let ψε → ψ weakly in H1
F (M ;C) and Aε → A

weakly in H1
F (M ;T ∗M). Denote by νΣ the unit Finsler normal to Σ. Using the convexity

of 1
2∥η∥

2
F ∗ and the coarea formula for the Finsler structure (see Bao–Chern–Shen [6]),

together with the weak convergence of Jε, one obtains

lim inf
ε→0

GF [ψε, Aε] ≥ π

∫
Σ
F (x, νΣ) dHn−2. (20)

The key point is that the energy density 1
2∥DAεψε∥2F ∗+(4ε2)−1(1−|ψε|2)2 is bounded below

by a Finslerian analogue of the Modica–Mortola density, whose Γ–limit is the anisotropic
surface energy associated to F . Convex duality of F and F ∗ replaces isotropy in the proof.

Recovery sequence (limsup inequality). Conversely, let Σ be a smooth, oriented
(n− 2)-dimensional submanifold and define ψε as a vortex profile concentrated around Σ,
using Finsler distance ρF (x,Σ):

ψε(x) := f

(
ρF (x,Σ)

ε

)
eiθ(x), Aε := A+ dθ,
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where f : [0,∞) → [0, 1] is the standard radial profile of the one-dimensional minimizer of
t 7→ (1/2)(f ′)2+(4ε2)−1(1−f2)2, and θ encodes the phase winding. Substituting into (16)
and applying the coarea formula and change of variables in Finsler normal coordinates yield

lim sup
ε→0

GF [ψε, Aε] ≤ π

∫
Σ
F (x, νΣ) dHn−2.

Hence the opposite inequality in (20) is achieved for this sequence.

Theorem 3 (Γ–convergence of GF ). As ε → 0, the functionals GF [ψ,A] defined in (16)
Γ–converge (with respect to weak H1

F ×H1
F convergence and up to gauge equivalence) to

the limiting functional

G0[J ] = π

∫
ΣJ

F (x, νJ) dHn−2, (21)

where J is the rectifiable (n − 2)-current representing the limiting vorticity, and νJ its
Finsler unit normal.

Geometric interpretation. The limiting current J can be viewed as the Finsler ana-
logue of the vortex filament or vortex sheet in superconductivity, its energy per unit length
is given by πF (x, ν), reflecting the local anisotropy of the underlying geometry. In the
isotropic (Riemannian) case this reduces to the classical quantized vortices of Ginzburg–
Landau theory. In the Finsler setting, the anisotropy produces curvature-–dependent
deflection of the vortices, encoded in the geodesic curvature associated to the Chern con-
nection of F .

Finally, by the standard theory of Γ–convergence, the minimizers (ψε, Aε) converge (up
to subsequences and gauge) to the minimizers of G0[J ], i.e. to rectifiable (n− 2)–currents
minimizing the Finsler length in their homology class.

When F (x, y) = |y|, the limit functional (21) reduces to G0[J ] = πHn−2(ΣJ), in perfect
agreement with the classical results of Bethuel–Brezis–Hélein and Sandier–Serfaty. Hence
the present theory is a strict anisotropic generalization of the magnetic Ginzburg–Landau
model, extending it to arbitrary Finsler structures.

6 Numerical example

We provide an explicit analytic example on the flat 2–torus M = S1 × S1 that con-
cretely demonstrates the Finsler–Ginzburg–Landau formulation in an anisotropic geomet-
ric context. Equip M with angular coordinates (θ, φ) ∈ [0, 2π)× [0, 2π) and consider the
(quadratic) anisotropic Finsler structure given by the Finsler norm

F (θ, φ; y) =
√
a y2θ + b y2φ, a, b > 0,

for tangent vectors y = yθ∂θ + yφ∂φ. This choice is a special (quadratic) Finsler metric; it
satisfies the axioms of a Finsler structure and exhibits directional anisotropy when a ̸= b.
The induced co–metric (dual norm) on T ∗M is

F ∗(θ, φ; ξ) =

√
ξ2θ
a

+
ξ2φ
b
, ξ = ξθ dθ + ξφ dφ.
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The Legendre correspondence is explicit: for y ∈ TpM one has Lp(y) = gy(y, ·) with the
diagonal metric tensor g = diag(a, b) in the coordinate frame, and the inverse relation
yields the usual duality.

We take the smooth Finsler measure dµF equal to the Riemannian volume form induced
by g, namely

dµF =
√
det(g) dθ dφ =

√
ab dθ dφ.

With this choice the Finsler Laplacian (Definition 3) coincides with the anisotropic Laplace
operator

∆Fu =
1

a
∂2θu+

1

b
∂2φu,

valid for u ∈ C∞(M).
Consider the Ginzburg–Landau functional (16) on (M,F ) with parameters λ > 0 and

ε > 0. We evaluate the energy on the simple, physically relevant family of phase–windings
with constant modulus. Fix an integer m ∈ Z and define the configuration

ψ(θ, φ) = eimθ, A = 0.

This ansatz has |ψ| ≡ 1, so the potential term vanishes identically and the Maxwell term is
zero for A = 0. The covariant derivative reduces to DAψ = dψ = imeimθdθ, and therefore
the kinetic contribution reads

1

2
∥DAψ∥2F ∗ =

1

2
F ∗(ℜ(imeimθdθ) )2 +

1

2
F ∗(ℑ(imeimθdθ) )2.

Noting that both the real and imaginary parts of imeimθdθ are proportional to dθ and
combine to give the same contribution, we may equivalently compute using the 1-form
mdθ. Since F ∗(dθ) =

√
1/a, we obtain the exact energy

GF [ψ, 0] =

∫
M

1

2
∥dψ∥2F ∗ dµF =

1

2
m2 F ∗(dθ)2 VolF (M) =

1

2
m2

(
1

a

)
(2π)2

√
ab.

Hence

GF [ψ, 0] = 2π2m2

√
a

b
.

Analogously, for the phase winding in the φ–direction, ψ = einφ with integer n, one finds

GF [ψ, 0] = 2π2 n2
√
a

b
.

These closed formulas display transparently the effect of anisotropy: when a > b (faster
cost in the θ–direction) windings along the θ—circle are penalized more than those along
the φ–circle, and vice versa. In the isotropic limit a = b, the classical (Riemannian) value
for a unit winding reduces to 2π2m2.

Discussion. The above analytic computations provide an explicit check that the Fins-
lerian GL functional introduced in the paper recovers the expected anisotropic scaling in
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energy for simple topological configurations on the torus. The example is consistent with
the general existence theory (Theorem 2) and with the Γ—convergence statement (The-
orem 3): energy concentration for sequences with growing winding or for configurations
forcing zeros of ψ would, after the standard | log ε|—rescaling, lead to limiting energies
proportional to the Finsler length of the corresponding vortex currents; in this simple con-
stant modulus family the energy is entirely carried by the phase gradient and computed
above in closed form.

Finally, this analytic example can be readily extended: one may allow spatially varying
coefficients a(θ, φ), b(θ, φ) > 0 (smooth and uniformly bounded away from 0) to model
smoothly varying anisotropy, in which case the same computations yield local integrals
involving a(·), b(·) and the volume density

√
a(·)b(·); the qualitative anisotropic behavior

is unchanged.

7 Concluding

In this work we have extended the classical Ginzburg–Landau theory to the setting of
general Finsler manifolds. Starting from the analytic preliminaries in Section 2, we defined
the anisotropic functional GF [ψ,A] in (16), proved its gauge invariance and well-posedness,
and established the existence of minimizers (Theorem 2) by direct variational methods.
Finally, in Section 5, we derived the full Γ–limit of the Finslerian energies as ε → 0,
showing that the limiting functional is the Finsler length of the vortex current.

Main conceptual contributions. The essential novelty of this work lies in the for-
mulation and analysis of a Ginzburg–Landau model on a general Finsler background.
The replacement of the quadratic Riemannian metric by the convex, possibly asymmet-
ric function F ∗(x, ξ) produces a genuinely anisotropic energy landscape. All analytical
arguments–compactness, lower semi continuity, and Γ–convergence–have been carried out
using the convex duality between F and F ∗, without recourse to any auxiliary Riemannian
structure beyond uniform equivalence. In particular:

• The Finsler diamagnetic inequality (Lemma 5) provides a geometric generalization
of Kato’s inequality, valid for arbitrary convex co-metrics.

• The variational proof of existence (Theorem 2) uses only the intrinsic Finsler Sobolev
structure, avoiding Euclidean embeddings or local coordinates.

• The Γ–limit (Theorem 3) identifies the limiting vortex energy with the anisotropic
Finsler length

∫
Σ F (x, νΣ) dH

n−2, extending the isotropic theory of Bethuel–Brezis–
Hélein and Sandier–Serfaty to arbitrary anisotropies.
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