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Abstract

Moving boundary problems of Stefan-type for a novel third order nonlinear evolution
equation with temporal modulation are here shown to be amenable to exact Airy-type
solution via a classical Ermakov equation with its admitted nonlinear superposition
principle. Application of the latter together with a class of involutory transformations
sets the original moving boundary problem in a wide class with temporal modulation.
As an appendix, reciprocally associated exactly solvable moving boundary problems
are derived.

1 Introduction

A nonlinear equation as introduced by Ermakov [10] has subsequently proved to consti-
tute the canonical base member of multi-component Ermakov-type systems with exten-
sive physical applications in both nonlinear physics and continuum mechanics [40]. Im-
portantly, the original Ermakov equation admits a now classical nonlinear superposition
principle. The latter may, notably, be applied in the analysis of moving shoreline hydrody-
namics with an underlying boundary [25]. Indeed, the classical single component Ermakov
equation has diverse applications such as, inter alia, in the nonlinear elastodynamics of
boundary-loaded hyperelastic tubes [26, 51], oceanographic eddy pulsrodon evolution [27],
magnetogasdynamics [29] and the analysis of rotating gas cloud phenomena [30].

Here, moving boundary problems of Stefan-type for a novel 3rd order nonlinear evo-
lution equation with temporal modulation are shown to be amenable to exact solution
via symmetry reduction in a classical Ermakov equation with its nonlinear superposition
principle.
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2 A Ermakov Symmetry reduction

A novel third order nonlinear evolution equation with temporal modulation is introduced
here according to

ut + uxxx + λ(t+ a)µu−4ux = 0, λ, µ ∈ R (1)

with symmetry reduction to be derived via the ansatz

u = (t+ a)mΨ

(
x

(t+ a)n

)
. (2)

Thus, insertion of the latter into (1) yields

mΨ− nξΨ′ + (t+ a)−3n+1Ψ′′′ + λ(t+ a)µ−4m−n+1Ψ−4Ψ′ = 0 (3)

whence, m = −1/3, n = 1/3 together with µ = −2 so that

Ψ′′′ − (1/3)(ξΨ)′ + λΨ−4Ψ′ = 0, ξ =
x

(t+ a)n
. (4)

Integration of (4) leads to the symmetry reduction

Ψ′′ − (1/3)ξΨ− (λ/3)Ψ−3 = ζ, ζ ∈ R (5)

whence, with ζ = 0 and the scaling ξ = ϵz where ϵ3 = −3
2 there results a classical

Ermakov-type equation

Ψzz + (z/2)Ψ = k∗Ψ−3, k∗ ∈ R. (6)

This admits the nonlinear superposition principle

Ψ =
√
c1Ω2

1 + 2c2Ω1Ω2 + c3Ω2
2 (7)

wherein Ω1, Ω2 constitute a pair of linearly independent solutions of the auxiliary linear
equation

Ωzz + (z/2)Ω = 0 (8)

with constants k∗ together with ci, i = 1, 2, 3 such that

c1c3 − c22 =
k∗

W 2
(9)

where W = Ω1Ω2z − Ω1zΩ2 is the constant Wronskian of Ω1,Ω2.
The general nonlinear superposition principle can be derived via Lie group invariance

as in [25]. Here, in view of the Ermakov symmetry reduction (6)

Ψ =
√

c1A2
i (−21/3ξ/ϵ) + 2c2Ai(−21/3ξ/ϵ)Bi(−21/3ξ/ϵ) + c3B2

i (−21/3ξ/ϵ) (10)

wherein Ai and Bi are the Airy functions of the 1st and 2nd kind respectively. The ci,
i = 1, 2, 3 together with k∗ constitute available parameters.
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3 A class of Moving Boundary Problems

Here, a class of Stefan-type moving boundary problems for (1) is introduced, namely

ut + uxxx + λ(t+ a)−2u−4ux = 0, 0 < x < S(t), t > 0 (11)

uxx(S(t), t)− (λ/3)(t+ a)−2u−3(S(t), t) = LmSi(t)Ṡ(t) (12)

u(S(t), t) = PmSj(t) (13)

together with

uxx(0, t)− (λ/3)(t+ a)−2u−3(0, t) = H0(t+ a)k (14)

and the initial condition s(0) = S0.

In the sequel, the moving boundary x = S(t) = γ(t + a)1/3 is adopted whence S0 =
γa1/3.

Boundary conditions

(I)

uxx(S(t), t)− (λ/3)(t+ a)−2u−3(S(t), t) = LmSi(t)Ṡ(t), t > 0

Insertion of the symmetry ansatz (2) into the preceding yields

Ψ′′(γ)− (λ/3)Ψ−3(γ) = LmSi(t)Ṡ(t)(t+ a) =
1

3
Lmγi+1(t+ a)

i+1
3 (15)

whence i = −1 together with

Ψ′′(γ)− (λ/3)Ψ−3(γ) =
1

3
Lm. (16)

(II)

u(S(t), t) = PmSj(t), t > 0

Accordingly,

Ψ(γ)(t+ a)−1/3 = Pmγj(t+ a)j/3, t > 0 (17)

so that j = −1 and

Ψ(γ) = Pmγ−1. (18)

(III)

uxx(0, t)− (λ/3)(t+ a)−2u−3(0, t) = H0(t+ a)k, t > 0.
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This yields

Ψ′′(0)− (λ/3)Ψ−3(0) = H0(t+ a)k+1 (19)

so that k = −1 and H0 is determined by

Ψ′′(0)− (λ/3)Ψ−3(0) = H0 (20)

It is important to record that the nonlinear evolution equation (1) which can admit
classical Ermakov symmetry reduction may be embedded in a wide class of temporally-
modulated equations which inherit this property via application of transformations of the
type T ∗ given by

dt∗ = ρ−2(t)dt, x∗ = x, u∗ = ρ−1(t)u, T ∗ (21)

which augmented by the relation ρ∗ = ρ−1 admit the involutory property T ∗∗ = I. Ap-
plication of T ∗ to the moving boundary problems determined by (11) - (14) may be made
to embed it in a wide class of temporally-modulated such Stefan-type problems which
admit integrable classical Ermakov symmetry reduction. Involutory transformations such
as T ∗ have their genesis in the autonomisation of Ermakov-type systems [4]. In modern
soliton theory, spatial analogues of T ∗ have been applied in [41] to link modulated coupled
systems to their canonical unmodulated counterparts. The key characteristic solitonic
properties of the latter such as invariance under certain Bäcklund type transformations
[28] and being amenable to the inverse scattering procedure [2] are thereby inherited by
the associated spatially modulated systems.

A detailed analysis of moving boundary problems of generalised Stefan-type was initi-
ated in [32] for the solitonic Harry-Dym equation [54]. This was motivated by a remarkable
solitonic connection made in [53] between the latter and the classical Saffman-Taylor prob-
lem with surface tension [50]. In subsequent developments, nonlinear moving boundary
problems of Stefan-type have been shown to be amenable to analytic solution for a range of
canonical soliton equations via Painlevé II symmetry reduction [34, 37, 44, 45, 46, 47]. Hy-
brid Ermakov-Painlevé II systems were originally derived in [31] in the context of symmetry
reduction of multi-dimensional coupled nonlinear Schrödinger systems of Manakov-type.
The canonical base single component Ermakov-Painlevé II equation was obtained therein
in the analysis of certain transverse wave motions in a generalised Mooney-Rivlin hyper-
elastic material. This novel extension of the classical Ermakov equation has subsequently
proved to have diverse physical applications, notably, in Korteweg capillarity theory [38],
cold plasma physics [39] and the analysis of Dirichlet-type boundary-value problems in
the Nernst-Planck electrolytic system [3]. A connection to the classical Painlevé XXXIV
equation was established in [36]. Ermakov-Painlevé II symmetry reduction of a novel class
of extended mKdV equations with temporal modulation and applications to associated
moving boundary problem of Stefan-type is currently in progress.

Appendix: A reciprocal associated Moving Boundary Prob-
lem

Reciprocal type transformations as originally introduced by Bateman [5] concerned the
derivation of a class of novel invariance properties in homentropic two-dimensional gas-
dynamics as associated with admitted conservation laws. It was subsequently established
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in [6] that the reciprocal relations constitute a particular class of Bäcklund transforma-
tions. Invariance under such multi-parameter reciprocal-type Bäcklund transformations
has recently been extended to relativistic gasdynamics systems in [42, 43, 48]. In [18, 19],
1+1 dimensional reciprocal transformations have been applied to solve classes of mov-
ing boundary problems of Stefan-type for nonlinear evolution equations which model heat
conduction in a range of metals as delimited by Storm in [52]. A reciprocal transformation
was subsequently applied in [23] to such moving boundary problems in order to determine
the conditions for the onset of melting due to applied boundary flux. In soil mechanics,
reciprocal transformations have application to the analysis of Stefan-type moving bound-
ary problems descriptive of percolation of liquids through porous media [24, 33], It is
remarked that a reciprocal transformation of another type has application in the context
of 3+1-dimensional discontinuity wave theory [9].

In modern soliton theory, reciprocal transformations associated with admitted conser-
vation laws were originally introduced in [12]. Therein conjugation was made with the
classical Bianchi permutability theorem of pseudo-spherical surface theory as derived via
invariance of the 1+1- dimensional sine-Gordon equation under a Bäcklund transformation
and whereby multi-soliton solutions may be algorithmically generated in an iterative man-
ner [28]. Reciprocal transformations were subsequently applied in [17] to link the canonical
AKNS and WKI inverse scattering schemes of [1] and [56] respectively. Certain classes of
1+1-dimensional solitonic hierarchies are connected via reciprocal transformations as in
[20] and [22]. Reciprocal transformations in 2+1- dimensions were introduced in [21] and
later applied in [14] to establish novel connections between members of a solitonic triad
consisting of the canonical Kadomtsev-Petviashvili, modified Kadomtsev-Petviashvili as
2+1-dimensional Dym hierachies.

Reciprocal transformations have been applied to moving boundary problems for a wide
range of solitonic equations in [34, 37, 44, 45, 46, 47]. Thereby, the reciprocally associ-
ated moving boundary problems inherent Painlevé II-type integrability. The procedure
was originally introduced in [32] to determine such reciprocal associates for the 1+1-
dimensional soliton Harry Dym equation. In [45], a class of Stefan-type moving boundary
problems for the modified Korteweg de Vries (mKdV) equation was solved via application
of a Painlevé II similarity reduction which involved the classical Airy equation. A recipro-
cal transformation was applied to derive a novel class of exactly solvable moving boundary
problems for the base Casimir member of the compacton hierarchy as set down in [15].
In addition, application of a class of involutory transformations T ∗ with origin in the au-
tonomisation of the Ermakov-Ray-Reid system as in [4] was made to isolate novel solvable
moving boundary problems for mKdV equations with Ermakov-type temporal modula-
tion. In [46], reciprocal transformations were applied to a class of Stefan-type problems
for the Korteweg-deVries equation to generate, in turn, Airy-type exact solution to asso-
ciated moving boundary problems both for the canonical nonlinear evolution of magma
theory and a novel reciprocal associate of the KdV equation which incorporates a source
term. The Gardner equation [13] which subsumes the mKdV and KdV solitonic equations
has proved to have diverse physical applications, notably in plasma physics [49], optical
lattice theory [55] and the analysis of nonlinear oceanic wave propagation phenomena [11].
In a recent development it has been derived in a nonlinear elastodynamic context [7]. It
is remarked that certain Ermakov-type connections with transverse wave propagation in
Mooney–Rivlin hyperelastic materials have been detailed in [8, 35]. Moving boundary
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problems of Stefan-type have been shown to be amenable to exact solution via Painlevé II
symmetry reduction in [47] both for the solitonic Gardner equation and a novel reciprocal
associate with a source term. Ermakov spatial modulation of the Gardner equation via
involutory transformations was detailed.

Reciprocal Transformation: Application to Moving Bound-
ary Problem (11) - (14).

In the present context with regard to the nonlinear temporally modulated evolution equa-
tion

ut + uxxx + λ(t+ a)−2u−4ux = 0, (A1)

under the reciprocal transformation R∗ given by

dx∗ = u dx+ [−uxx +
λ

3
u−3(t+ a)−2] dt, t∗ = t, u∗ =

1

u
(A2)

there results

dx = u∗ dx∗ +

[
∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
− λ

3
u∗4(t∗ + a)−2

]
dt∗, (A3)

with compatibility condition

∂u∗

∂t∗
=

∂

∂x∗

[
∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
− λ

3
u∗4(t∗ + a)−2

]
. (A4)

By virtue of the reciprocal connection R∗ of the latter to (A1), importantly it inherits
admissible Airy-type symmetry reduction.

Reciprocal Moving Boundary Problem Application

Under the reciprocal transformation R∗, the class of moving boundary problems (11) -(14)
becomes

∂u∗

∂t∗
=

∂

∂x∗

[
∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
− λ

3
u∗4(t∗ + a)−2

]
, x∗

∣∣
x=0

< x∗ < x∗
∣∣
x=S(t)

, t∗ > 0,

∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
1

u∗
− λ

3
u∗4(t∗ + a)−2 = LmSiṠ, on x∗|x=S(t), t∗ > 0, (A5)

1

u∗
= PmSj(t), on x∗

∣∣
x=S(t)

, t∗ > 0,

∂

∂x∗

(
1

u∗
∂

∂x∗

(
1

u∗

))
1

u∗
− λ

3
u∗4(t∗ + a)−2 = H0(t

∗ + a)k, on x∗|x=0, t∗ > 0

wherein S(t) = γ(t+ a)1/3.
In the preceding

dx∗
∣∣
x=0

= [−uxx+(λ/3)u−3(t+a)−2]dt
∣∣
x=0

= (t+a)−1[−Ψ′′+(λ/3)Ψ−3]dt
∣∣
x=0

= 0 (A6)
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by virtue of (5) with ζ = 0. Hence, x∗
∣∣
x=0

is constant. It is seen than it is required that
H0 = 0.

In addition,

dx∗
∣∣
x=S(t)

= dx∗
∣∣
x=γ(t+a)1/3

= [(t+ a)−1/3Ψ(γ)Ṡ(t)− LmSi(t)Ṡ(t)]dt (A7)

= (t+ a)−[Ψ(γ)− Lmγ−1]
γ

3
dt

whence

x∗|x=S(t) =
γ

3
[Ψ(γ)− Lmγ−1] ln(t∗ + a) = S∗(t) (A8)

upto an additive constant and the reciprocal initial condition on the moving boundary
becomes

S∗(0) =
γ

3
[Ψ(γ)− Lmγ−1] ln(a) (A9)

In conclusion, it is remarked that in [45], a reciprocal class of moving boundary problems
associated with the mKdV equation has likewise been derived with logarithmic reciprocal
boundary x∗ = S∗(t∗). The mKdV equation and the solitonic hierarchy of which it is
the base member may be obtained in a purely geometric manner in connection with the
particular motion of curves in a plane [28]. Intrinsic geometric formulation of such a type
has been applied in magnetohydrodynamics to uncover underlying geodesic characteristics
in a normal congruence of surfaces [16].
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Korteweg-de Vries hierarchy, Physica Scripta, 1986, V.33, 289–292.



98 ]ocnmp[ C Rogers and A C Briozzo

[21] Rogers C, Reciprocal transformations in 2+1-dimensions, J. Phys. A: Math. Gen.,
1986, V.49, L491–L496.

[22] Rogers C and Carillo S, On reciprocal properties of the Caudrey-Dodd-Gibbon and
Kaup-Kupershmidt Hierarchies, Physica Scripta, 1987, V.36, 865–869.

[23] Rogers C and Yu Guo B, A note on the onset of melting in a class of simple metals.
Condition on the applied boundary flux, Acta Mathematica Scientia, 1988, V.8, 425–
430.

[24] Rogers C and Broadbridge P, On a nonlinear moving boundary problem with hetero-
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Scripta , 2022, V.97, 095207.

[45] Rogers C, On mKdV and associated classes of moving boundary problems: reciprocal
connections, Meccanica 2023, V.58, 1633–1640.

[46] Rogers C, On Korteweg–de Vries and associated reciprocal moving boundary prob-
lems, Z. Angew. Math. Phys., 2025, V.76, 33.

[47] Rogers C, On moving boundary problems for the solitonic Gardner equation. a recip-
rocally associated class, Z. Angew. Math. Phys., 2025, 76:186.

[48] Rogers C and Ruggeri T, A relativistic gasdynamic system. Chaplygin-Karman-Tsien
laws and substitution principle, Rendiconti Lincei, Matematica e Applicazioni, 2025,
V.35, 447–457.

[49] Ruderman M, Talipova T and Pelinovsky E, Dynamics of modulationally unstable
ion-acoustic wavepackets in plasmas with negative ions, J. Plasma Phys., 2008, V.74,
639–656.



100 ]ocnmp[ C Rogers and A C Briozzo

[50] Saffman P G and Taylor G I, The penetration of a fluid into a porous medium or
Hele-Shaw cell containing a more viscous liquid, Proceedings of the Royal Society of
London, 1958 A 245, 312–329.

[51] Shahinpoor M and Nowinski J L, Exact solution to the problem of forced large am-
plitude radial oscillations of a thin hyperelastic tube, Int. J. Nonlinear Mech., 1971,
193–208.

[52] Storm M L, Heat conduction in simple metals, J. Appl. Phys., 1951 V.22, 940–951.

[53] Vasconcelos G L and Kadanoff L P, Stationary solutions for the Saffman-Taylor prob-
lem with surface tension, Phys. Rev., 1991, A 44, 6490–6495.

[54] Vassiliou P J, Harry Dym Equation in Encyclopaedia of Mathematics, Springer, 2001.

[55] Wadati M, Wave Propagation in nonlinear lattice. II. Journal of the Physical Society
of Japan, 1975, V.38, 681–686.

[56] Wadati M, Konno K and Ichikawa V H, New integrable nonlinear evolution equations,
J. Phys. Soc. Japan, 1979, V.47, 1698–1700.


