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Abstract

We obtain the complete Lie point symmetry algebras of two sequences of odd-order evo-
lution equations. This includes equations that are fully-nonlinear, i.e. nonlinear in the
highest derivative. Two of the equations in the sequences have recently been identified as
symmetry-integrable, namely a 3rd-order equation and a 5th-order equation [Open Com-
munications in Nonlinear Mathematical Physics, Special Issue in honour of George W
Bluman, ocnmp:15938, 1-15, 2025]. These two examples provided the motivation for the
current study. The Lie-Backlund symmetries and the consequent symmetry-integrability
of the equations in the sequences are also discussed.

1 Introduction

We recently [5] reported two fully-nonlinear symmetry-integrable evolution equations, namely
the 3rd-order equation

up = uz,"” (1.1)

and the 5th-order equation

—2/3
up = u5x/ . (1.2)
Througout this Letter we make use of the notation u, = 0u/0x, Uy, := 0%*u/02z? and Upy =
OPu/0zP for p > 3. Motivated by the symmetry-integrability of equations (1.1) and (1.2), we
propose here the following sequence of odd-order evolution equations:

w = (ki) . k=1,2,3,.., (1.3)
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that is
—n —n —n
Up = Ugy "y U = Ugy oy Up = Ugy oy (1.4)

Here ny is a number which is, in general, different for every value of k and ng ¢ {—1,0} for

any k. It will be shown in Sections 2 and Section 3 that the relation between nj and k is

essential for the symmetry properties and the symmetry-integrability of the equations in this

sequence. We note that equations (1.1) and (1.2) are included as the first two members of

the sequence (1.3) for the case where ny = k/(k + 1), namely k = 1 and k = 2, respectively.
Note further that we do not consider here sequences of even order of the form

u = (ugpe)™, k=1,2,3,... (1.5)

since the 2nd-order case (so (1.5) for k = 1) is included in our study of general 2nd-order
evolution equations [4]) in which we have established that the equation

Up = U, (1.6)

is the only symmetry-integrable equation of the form (1.5). In particular, (1.5) admits the
Lie-Bécklund symmetry generator

_ 0
ZiB = u:m?ui%x%- (1.7)

All other even-order equations of the form (1.5), i.e. for k£ > 2, do not satisfy the necessary
conditions for symmetry-integrability (see Conjecture 1 in Section 3 below).

In this short Letter we derive the Lie point symmetry algebras of (1.3) in Section 2. The
symmetry analysis reveals that (1.3) in fact consists of two sequences, whereby the difference
between the two sequences is essentially given by one symmetry. We furthermore discuss
the Lie-Béacklund symmetry structure of the two sequences in Section 3, i.e. the symmetry-
integrability of the equations, for which we state a Conjecture with a Corollary. In Section 4
we then sum up our findings and make some concluding remarks.

2 The Lie point symmetries of the sequences

In this section we report the Lie point symmetries of the sequence (1.3). It is well-known
how to calculate Lie point symmetries of evolution equations (see for example the books [7]
or [1]) so we merely point out our notations here (see [2] for details).

Let E(x,t,u, us, Uy, Ugg, - - - , Unz) = 0 denote a general nth-order partial differential equation.
For evolution equations we have

E :=u — F(z,t,u, Uy, Ugg, - . ., Ung)- (2.1)

The invariance condition for the Lie point symmetries of (2.1) with the generator

0 0 0
7 = fl(m,t,u)% + fz(x,t,u)a + n(az7t,u)% (2.2)
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is

where () denotes the corresponding invariant surface

Q = n(x7t7u) —fl(l',t, U)’U,z _§2($7t?u)ut (24)

and Lp[u] denotes the linear operator

L =28+ 08 08 p OB pa oy OF b (2.5a)
Ouy ou  Ouy Oy Oung E:=us—F
oF OF oF oF
_ - D, - D2 _..._ D" 2.
L7 0w Ouy OUgy © Oupg  * (2:50)

Here D; and D, denote the total x-derivative and total ¢-derivative, respectively.
Applying the invariance condition (2.3) for all equations in the sequence (1.3) results in
the following

Proposition 1. For the general invariant surface (2.4) of the sequence (1.3), viz.
Ut = (u(2k+1)x)_nk ’ k= 172737 ey

we distinguish between two cases:

Case 1: For the sequence

_k
ur = (Uopinye) 1, k=1,2,3,.., (2.6)

the most general invariant surface is

k+1
Q= [k:(al + 2a9x) + (2];; 1> bl] U — Uy (ao + a1x + a2x2)
(b + bit) + (), (2.72)
where
d2k+1f($)
with k = 1,2,.... Here ag, a1, as, by and by are arbitrary constants. This gives the Lie

symmetry algebra for (2.6) of dimension 2k 4+ 6 which is spanned by the following set of Lie
point symmetry generators:

d d d k+1\ 0 d d
Zi=2 Z=2 z3=tZ (TS zi =2 T kS
=gy L= 25 t8t+<2k+1)u8u’ 1= Ty TRy
Z :x2a—+2kxu— Z :xpfl‘l} p=1,2 2k + 1 (2.8)
5 O auv p+5 ou ) 3 Ly eeey . .
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Case 2: For the sequence
L
kE+1’

the most general invariant surface is

Q — (alnk(Qk + 1) - b1k> w— ((Nk + 1)(11 — by i a0>

Ut = (u(2k+1)x) o y Nk 7& k=1,2,3,.., (29)

np(k+1) =k np(k+1) =k
—ug (bo + b1t) + f(x), (2.10a)
where
Cl2k+1f(l‘)
withk =1,2,.... Hereag, a1, by and by are arbitrary constants. This gives the Lie symmetry

algebra for (2.9) of dimension 2k + 5 which is spanned by the following set of Lie point
symmetry generators:

0 0 0 0 0
9 (2k+1)ng 0 Y
Z4—x%+mu%, Zp+4—x 8u}7 (211)

p=1,2...,2k+1.

3 On the symmetry-integrability of the equations

An evolution equation of order n is said to be symmetry-integrable if it admits an infinite
number of local Lie-Béacklund symmetry generators

0
ZLB = Q(xatauv uxauajxa-"vuqz)%7 (31)

where ¢ > n (for details, see for example [2]). The invariance condition to obtain Lie-Backlund
symmetry generators is essentially the same as the condition (2.3), albeit ) now depends on
derivatives up to some order ¢g. The first step is to establish the possible nonlinearities of the
equations in the sequences of Proposition 1. For that we conjecture a necessary condition
which is based on many tedious calculations, the details of which we do not present here.
To obtain Conjecture 1 (see below) we have considered the evolution equations in their most
general form (2.1) with n > 2 and applied the Lie-Bécklund symmetry invariance condition
to establish a necessary condition for the existence of Lie-Béacklund symmetry generators of
the form (3.1). For this we have sought Lie-Bécklund symmetries up to order 19. This leads
to

Conjecture 1. The necessary condition for the symmetry-integrability of an evolution equa-
tion of the form

up = F(x, t,u, ug, Upgy -« oy Ungz), N> 2, (3.2)

strictly depends on the order n as follows:
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1. For n = 2, the necessary condition for the symmetry-integrability of the 2nd-order
equation

up = F(x,t, u, Uy, Ugy) (3.3a)

18

3 2 2
oF 8F_ (8F> _o. (3.3b)

3 2
Ougy OUS.,, ouz,,

2. Forn = 3 ,the necessary condition for the symmetry-integrability of the 3rd-order equa-
tion

up = F(x,t, u, ug, Upg, Ugy) (3.4a)
18

(3.4b)

OF \? 9'F OF O°F O°F 02F\°

9 T — 45 5 3 40(55) =0
Ousy ) Ous, Ouzy Ous, Ous, Ous,

3. For odd n > 5, that is n = (2k + 3) with k = 1,2,3, ..., the necessary condition for the

symmetry-integrability of

up = F(x,t,u,ug, Ugg, . . ., U2pt3), k=1,2,3,... (3.5a)
18
2
F 3SF ’F
(2% +3) 2 OF  (3k+s) <32) ~0 (3.5b)
8“(2k+3)x 8“(2k+3)m au(2k+3)x
k=1,2,3,... .

4. For even n >4, that isn =2k + 2 with k = 1,2,3,..., the necessary condition for the
symmetry-integrability of

up = F(x,t,u, Uy, Uggy -« -, Uspa2), k=1,2,3,... (3.6a)
18

0*F

=0, k=1,23,.... (3.6b)

8“(2k+2)a;

Remarks: The necessary condition (3.3b) for 2nd-order evolution equations has been estab-

OF \*
lished in [4]. Note that (3.3b) is the Schwarzian derivative when we factor out 2<8u ) .
Condition (3.4b) for 3rd-order equations was derived in [3].
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We now discuss the symmetry-integrability of the two sequences of Proposition 1 in view
of Conjecture 1.

Regarding Case 1: We consider the sequence of equations (2.6), i.e.

—-1/2

Ut = Usg, (3.7a)
up = ug " (3.7b)
wp = uz (3.7¢)
Up = u§;/5 (3.7d)

etc.

As reported in [5], equations (3.7a) and (3.7b) admit Lie-Backlund symmetry generators with
lowest order 5 and 11, respectively, so that these two equations are symmetry-integrable.
Moreover, equation (3.7a) satisfies condition (3.4b) and equation (3.7b) satisfies condition
(3.5b) for k = 1.

It is easy to show that every equation of order p > 5 in the sequence (2.6) satisfies the
necessary condition (3.5b) for symmetry-integrability as given in Conjecture 1. In particular,

k

ur = (Ugpyr)z) *, k=2,3,4,... (3.8)

is equivalent to

ur = (Uenis)e) 2, k=1,2,3,.... (3.9)

whereby

k+1

F = (u(akts)a) P (3.10)

satisfies condition (3.5b) for £k =1,2,3,... .

Regarding the 7Tth-order equation (3.7¢), we found that this equation does not admit a
Lie-Bécklund symmetry generator up to order 19. Due to the memory restrictions of our
computer we are not able to consider Lie-Backlund symmetry generators of order higher
than 19, so we can therefore not make any statement about the existence of Lie-Backlund
symmetries for the equations in sequence (2.6) that are of order 7 or higher.
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Regarding Case 2: We consider the sequence of equations (2.9), i.e.

1
u = ug, ', N1 # 5 (3.11a)
2
Uy = ugxn27 n9 7é g (311b)
3
U = u;w’IIg? ns ?é 1 (311C)
—ny 4
Ut = Ug,, 5 N4 75 g (3.11d)
etc.

The 3rd-order equation (3.11a) satisfies condition (3.4b) if and only if

1
ny € {—1, 3 2}. (3.12)
The only case of relevance here is ny = 2, i.e.
u = ug,, (3.13)

which has already been established as symmetry-integrable in [6] (see equation (3.7) with
a=0and f=11in [6]).
We now consider the equations of order p > 5 in the sequence (2.9), namely

_ k
ur = (ki) . Mk # Pt k=234,..., (3.14)
which is equivalent to
_ k+1
Ut = (u(2k+3)x) e y o M+l ?é TH? k=1,2,3,... . (315)
Then
F = (ugrszye) (3.16)

satisfies condition (3.5b) if and only if
k+1
k42

for k =1,2,3,... . Therefore the sequence (3.14) does not satisfy the necessary condition for
symmetry-integrability for all k = 2,3,4,... .

Mgt € {1, } (3.17)

Conjecture 1 now leads to the following

Corollary 1. The sequence (2.9), viz.

k
Ut = (u(2k+1)$) g y Nk # mv k= 1,2,3,...,

contains only one symmetry-integrable equation, namely the 3rd-order equation (3.13), viz.
U = ugﬁ

All remaining equations in this sequence are not symmetry-integrable.
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4 Concluding remarks

In this short Letter we have introduced two sequences of fully-nonlinear evolution equations,
namely

k
ur = (uorine) 7, k=1,2,3,.. (4.1)

and
—n k
Ut = (u(2k+1)x) F 5 ng 75 m, k= 1,2,3, cee e (42)

We report the Lie point symmetries of both sequences, where (4.1) admits a Lie point sym-
metry algebra of dimension 2k 4+ 6 spanned by the generators (2.8) and the sequence (4.2)
admits a Lie point symmetry algebra of dimension 2k + 5 spanned by the generators (2.11).
The difference in dimensions of the two symmetry algebras is due to the Lie point symmetry
generator

0 0
Zs = 22— + 2kau— 4.
5 $8x+ k:ﬁuau, (4.3)

which is admitted by the sequence (4.1) but not by the sequence (4.2). Note that (4.3)
generates the one-parameter local Lie transformation group

T ~ - u
t = t7 u = m, (4.4&)

TTi e
where € is the group parameter and #(e = 0) = z, t(e = 0) = ¢, @(e = 0) = w.

Regarding the symmetry-integrability of the two sequences: We have established that every
equation in the sequence (4.1) satisfies the necessary condition for symmetry-integrability.
That is, condition (3.4b) for the 3rd-order equation and condition (3.5b) for the remaining
equations in sequence (4.1) which is based on Conjecture 1. Furthermore, sequence (4.1)
contains at least two symmetry integrable equations, namely [5]

1/2

- —2/3

and  u; =ug, ", (4.5)

As mentioned in Section 3, we are not able to find further symmetry-integrable equations
of sequence (4.1) besides the two equations (4.5). It is therefore an open problem to find
further symmetry-integrable equations or to prove that these two equations are the only
symmetry-integrable equations in this sequence.

Regarding the sequence (4.2): Based on Conjecture 1 we conclude in Corollary 1 that
this series contains only one nonlinear symmetry-integrable equation, namely the 3rd-order
equation (3.13), viz

—2
U = ugm .

Furthermore, by solving condition (3.5b), Conjecture 1 leads to
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Corollary 2. Any fully-nonlinear evolution equations of dimension 1+1 of order n > 5 that
1s symmetry-integrable has to be of the form

_ k41

k+2
u = f1 <u(2k+3)x + f2) + fz, k=1,2,3,... (4.6)

for some functions f; = fj(x,t,u, Uz, Ugz, - - -, Up42)2), J=1,2,3.

We hope that this preliminary results will pave the way for a deeper study of the sequences
introduced here and possibly other sequences of (fully-)nonlinear evolution equations, in
particular the sequence (4.6).
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