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Abstract

The classical Floquet theory allows to map a time-periodic system of linear differential
equations into an autonomous one. By looking at it in a geometrical way, we extend
the theory to a class of non-autonomous non-periodic equations. This is obtained
by considering a change of variables which depends on time in a non-trivial way,
i.e. introducing gauge transformations, well known in fundamental Physics and Field
Theory – but which seem to have received little attention in this context.

1 Introduction

It is well known that linear systems of ordinary differential equations in M = Rn with
periodic coefficients (with mild non-degeneracy conditions) can be mapped, thanks to
Floquet theory, into autonomous systems in M , identified by a monodromy matrix.

In this paper we look at Floquet theory in a geometrical fashion, arguing that the
fundamental matrix identifies a connection in the full phase space M̃ = M × S1, where
t ∈ S1 due to the periodical nature of the system, seen as a fiber bundle (M̃, π, S1) over
S1; and that the Floquet map corresponds to a gauge transformation. Once the problem
is formulated in this way, it is quite natural to consider also cases where the coefficients
depend on time in an arbitrary (smooth) fashion; in this case we deal with M̃ = M × R

and with a connection in (M̃, π,R).
That is, in the present paper we discuss how to extend Floquet theory to general,

non-periodic non-autonomous systems of ODEs.
We would like to stress that in our Examples the relevant gauge transformations are

found by inspection – which is possible thanks to their simple nature. In a companion
paper [1] we discuss the solution of the relevant determining equation allowing to de-
termine the gauge transformation for a concrete non-autonomous system (in that paper
we also discuss the problem of how our approach deals with nonlinear perturbations of
non-autonomous linear systems).
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It should be mentioned that there have been, of course, previous works in which gauge
transformations were considered in the context of finite dimensional dynamics, see in
particular [2]. Our approach is however, as far as we know, quite different from previously
considered ones.

The plan of the paper is as follows. In Sect.2 we recall some basic facts of Floquet
theory; in Sect.3 we give a geometrical interpretation of it. In Sect.4 we argue that the same
description can be applied, with appropriate changes, to non-periodic systems. We then
discuss some simple concrete Examples, starting with (non-uniformly) rotating reference
frames in Sect.5; further Examples involve both the Abelian gauge group modelled on
SO(2), in Sect.6, and the non-Abelian one modelled on SU(2), in Sect.7. Then in Sect.8
we discuss a (relevant) case in which the gauge group is not given apriori, i.e. that of
Riccati equations. Sect.9 is then devoted to a brief discussion of relations with the Physics
literature; and to draw our conclusions.
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2 Floquet theory

In this Section we will briefly recall the main result of Floquet theory. For a general
treatment, see e.g. [3–5]. The theory is often discussed – for obvious physical reasons –
in the context of second order ODEs, while here we deal with first order ones. Physicists
also know this theory under the name of Bloch theory for periodic potentials in Quantum
Mechanics; see e.g. [6, 7].

We deal with a linear equation

ẋ = A(t) x , A(t+ T ) = A(t) (1)

where x ∈ Rn, the dot denotes time derivative, and A : R+ → GL(n;R) is a periodic
matrix function.

Consider n independent solutions x(k)(t) to (1), each of them being a n-dimensional
vector:

x(k)(t) =
(
x1(k)(t), ..., x

n
(k)(t)

)
.

The matrix Φ(t) with entries Φi
k(t) = xi(k)(t) is said to be a fundamental solution matrix,

or just fundamental matrix, for (1). By construction, the fundamental matrix evolves in
time according to the same equation as x(t), i.e.

Φ̇ = A Φ . (2)

Any solution x(t) to (1) can be written as x = Φv with v a constant vector, determined
by initial conditions.
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Theorem 1. (Floquet). Each fundamental solution matrix Φ(t) of eq.(1) may be written
as

Φ(t) = P (t) exp[Bt] ,

where P (t) : R → GL(n;R) is periodic of period T , and B ∈ Mat(n;R) is constant.

Proof. See e.g. [3], Section 27, or [4]. ♢

With reference to the notation introduced in the statement of Theorem 1, we define

M(t) = exp [Bt] ; (3)

the constant matrix M = M(T ) = exp[BT ] is said to be the monodromy matrix. We note
that the periodic matrix P (t) appearing in the statement of Theorem 1 can be written as

P (t) := Φ(t) M−1(t) . (4)

Theorem 2. (Floquet). Consider equation (1), and let P and B be as in Theorem 1
above. By the change of variables x → y defined by

x = P (t) y , (5)

the time-periodic system (1) is mapped into the autonomous system

ẏ = B y . (6)

Proof. Theorem 2 follows from a simple computation; this is relevant for our following
discussion, and hence we reproduce it here. By (1) and (5),

ẋ = Ṗ y + P ẏ = Ax = AP y . (7)

Rearranging terms, we get the equation for y(t) as

ẏ =
(
P−1AP − P−1 Ṗ

)
y := Â y . (8)

This is completely general, i.e. it holds for whatever choice of the matrix P (t) occurring
in the change of variables.1

However, if we choose exactly the P (t) considered above, see (4), we have a more
specific form. In fact, in this case we have

P−1 = M Φ−1 , Ṗ = Φ̇ M−1 − Φ M−1 Ṁ M−1 ;

moreover we note that (3) implies [M,B] = 0 and

Ṁ = B M = M B .

1Hence the use of the notation Â, leaving B for the specific change of variables (4).
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Inserting these into (8) and recalling (2), we obtain the statement:

ẏ = M Φ−1
[
AΦM−1 −

(
Φ̇M−1 − ΦM−1 Ṁ M−1

)]
y

= M Φ−1
[
AΦM−1 −

(
AΦM−1 − ΦM−1 Ṁ M−1

)]
y

= M Φ−1
[
ΦM−1 Ṁ M−1

]
y = Ṁ M−1 y = B y . (9)

This concludes our computation, i.e. the proof for Theorem 2. ♢

Remark 1. We will in general be interested in considering perturbations of the linear
system (1), i.e. equations of the form

ẋ = A(t)x + N(x, t) , (10)

where N is of higher order in x and possibly explicitly dependent on t. Proceeding in
exactly the same way, we obtain the system

ẏ = B y + F (y, t) , (11)

where F (y, t) is of higher order in y and in general dependent on t and is given by

F (y, t) = P−1N(Py, t) . (12)

Note that even in the case ∂tN(y, t) = 0, an explicit time-dependence will be introduced
in F by P−1 = P−1(t) and by P = P (t).

We also note, with reference to (12) that by construction both A and P (and hence
P−1) depend on t with a T -periodic behavior. Thus, if N(x, t) does not depend explicitly
on time, or if it is also T -periodic, we end up with a time-independent linear system and
a T -periodic perturbation. This same remark also shows that if N depends explicitly on
time in a non T -periodic way, then F will also have such a general t dependence.

Finally, note that examples can be built in which F is actually independent of t: this
is obtained e.g. by choosing N(x, t) = P (t)N0(x), see eq.(12). ⊙

3 A geometrical look at Floquet theory

We have seen that the net effect of the change of variable (5) considered above has been
an affine map between elements of GL(n;R), i.e.

A → Â = P−1AP − P−1 Ṗ , (13)

see (8). This corresponds to a gauge transformation [8–12], and this observation calls for
a geometrical understanding of the classical analytical procedure sketched above.2

Let us go back at the Floquet construction. We can look at the fundamental matrix
Φ(t) = P (t)M(t) – that is, at the set of independent solutions x(k)(t) – as describing a
time-varying reference frame; the time evolution in this moving frame is then trivial.

2This seems not to have been discussed in the literature, at least in the framework of differential
equations; things are somewhat different when we look at counterparts of Floquet’s theory in Physics
(Bloch theory), see the brief discussion in Sect.9.
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This view, however, in general (that is, unless B = 0) requires to consider t ∈ R, i.e.
to lose the essential information that the system is periodic, so that we can think t ∈ S1.

Floquet theorem (see above) suggests to adopt a similar but slightly different approach,
i.e. to focus only on the time-periodic part P (t); this defines a time-periodic reference
frame. In such a periodic frame the evolution is non-trivial, but the net effect after one
period is embodied in the monodromy matrix M, hence – once we know the period T –
in the simple (i.e. constant) matrix B.

Let us discuss this point of view in some more detail. We know, by Floquet’s theorem,
that the fundamental matrix Φ, which by definition satisfies the equation (1), is written
in the form

Φ(t) = P (t) M(t) = P (t) exp[Bt] (14)

Differentiating, we obtain

Φ̇ = Ṗ eBt + P B eBt

= Ṗ
(
P−1 P

)
eBt + P B

(
P−1 P

)
eBt

= Ṗ P−1 Φ + P B P−1 Φ .

On the other hand, we know that, by definition,

Φ̇ = A Φ .

Comparing these two expression, we have

A = Ṗ P−1 + P B P−1 . (15)

We are of course interested in determining the unknown matrix B in terms of the known
matrix A; this yields

B = P−1AP − P−1 Ṗ . (16)

If we interpret P as a connection [8–12], this is just the gauge transform of A via P .
Needless to say, the periodic P (t) is a legitimate connection – more precisely, P (t)dt is a
legitimate connection form – in the bundle with fiber Rn over S1.

Remark 2. If we look at (15) as defining a periodic matrix A(t) in terms of the constant
matrix B and of the periodic matrix P (t), this is a dull equation. On the other hand, if
we look at (16) as defining B in terms of the periodic matrices A(t) and P (t), the fact
that B is constant (and not just periodic) in time is highly nontrivial. This nontrivial fact
is of course tantamount to the Floquet theorem. ⊙

4 Floquet-like theory for non-periodic equations

Floquet theory deals with periodic equations; here we extend it to the non-periodic case,
making use of the point of view discussed in Sect.3 above.
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4.1 Analytical considerations

We can reverse and somehow trivialize the point of view discussed in the previous Section
3. That is, suppose we start from a constant coefficients linear system

ẏ = B y , (17)

and we operate a gauge transformation

x = P y (18)

(note that here the role of P is not the same as in (5), but is reversed) with a periodic
matrix function P (t). This will produce a non-autonomous linear system

ẋ = A(t) x , (19)

with A(t) the periodic matrix function given by (15). Actually, our previous discussion
(that is, Floquet theorem) shows that any time-periodic linear system can be generated
in this way from a constant coefficients system.

But, now we can generalize this construction and consider again the system (17) and
a gauge transformation (5), now with a time-dependent matrix function P (t) having an
arbitrary time dependence.

This will produce a non-autonomous system (19), which now is in general non peri-
odic. However, by reversing the transformation, it can be mapped back into the constant
coefficients system (17), and hence integrated.

This shows at once that there is a class of time-dependent systems which can be in-
tegrated by a suitable gauge transformation. The relevant point is of course if we can
recognize that a given system is in this form, hence integrate it. This requires to look at
(15) considering A as a given matrix, and P (T ) as an unknown function, as well as B an
unknown constant matrix.

Thus we should solve for

dP

dt
= AP − P B , (20)

where both P and B are unknown. In these terms the problem is under-determined, and
it will be helpful to consider cases where either one of P and B is given.

Remark 3. We note that for any given B and any initial condition for P , this system
has a unique solution, as follows from the theory of linear differential equations; see [1] for
details. ⊙

Actually, the case where P (as well as A) is given is trivial: a tentative B is then
determined by

B = P−1AP − P−1 Ṗ ,

and this B is either time-independent (and our problem is then solved) or time-dependent
(in which case we do not have a solution to our problem, but just a transformation to a
different equation of the same nature). So the interesting “intermediate” case is the one
where the target constant matrix B is given and we have to look for the transformation
P (t).
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Consider next the case where both A and B are given. We then have to solve for P (t)
alone, and this amounts to a system of linear equations for its components Pij(t). The
usual existence and uniqueness theorem applies; this involves requirements on the matrices
A and B. Note also that when we want to map from a time-dependent matrix A to a
time-independent matrix B, equation (20) is non-autonomous.

It should be noted that we can deal in the same way with a nonlinear system: if we
start from

ẏ = B y + F(y) , (21)

say with F polynomial, operating the change of variables (5) we get

ẋ = A(t)x + F(x, t) , (22)

where A is as above, and the nonlinear part is

F(x, t) = P−1 F(Px) ; (23)

the time dependence of F originates in the time dependence of P (t).

Note also that if one is able to solve the linear problem, i.e. to determine if A can be
obtained from a constant matrix B via (15), and has hence determined the corresponding
P (t), then it is immediate to check if this same transformation maps the nonlinear terms
F(x, t) into autonomous nonlinear terms. This latter behavior is of course non-generic;
but see next Remark 4.

Remark 4. In general, the new nonlinear term F(x, t) (see above) has a completely
different form from the old F(y). However, if F is covariant under (a representation Tg,
with g ∈ G, of) a group G, i.e.

F(Tgx, t) = Tg F(x, t) ∀g ∈ G (24)

and the map P (t) satisfies P (t) ∈ TG ∀t, then

F(x, t) = F(y, t) (25)

as follows by a straightforward computation.

In this case, in particular, if F is autonomous then also the new nonlinear term F will
be autonomous, and our autonomization of the time-dependent linear part will produce
an overall autonomous system. ⊙

4.2 Geometrical considerations

The geometrical content of our discussion can be summarized as follows. We are intro-
ducing a covariant derivative [8–12]

∇t := ∂t − P−1 Ṗ ; (26)

this also defines a connection in R+×R (or S1×R in the periodic case covered by standard
Floquet–Bloch theory).
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The linear dynamics defined by this covariant derivative is autonomous, in the sense
we have

∇tx = B x (27)

with a constant matrix B. In this sense, we have split the problem of solving the equa-
tion ẏ = A(t)y into two problems: first, determine the covariant derivative ∇t (i.e. the
associated matrix P ) hence the time-dependent change of frame in which the dynamics
becomes autonomous; and then solve for this autonomous dynamics (needless to say, the
total difficulty of the problem is conserved, and lies mainly in the first step). See the
discussion in Remark 4 above for what this implies for the nonlinear terms and hence the
full nonlinear dynamics.

Remark 5. The matrix M = exp[BT ] represents the holonomy of the connection ∇ thus
defined. It should be stressed that this whole construction is possible – and nontrivial –
only because the T periodicity of the problem leads to consider bundles over S1 (the time
interval [0, T ]) rather than over R (the time real line). ⊙

Remark 6. Setting the problem in a geometrical language allows to appreciate the
relations not only with Bloch theory, but also with the Berry phase and Hannay angle,
both for closed paths (which correspond to the periodic case) and for open ones (which
correspond to the non-periodic case). See in this respect [13–28]. ⊙

5 Examples. Rotating reference frame

We start by considering a classical problem in Physics, i.e. the change of reference frame
from a fixed (Newtonian) one to a moving one; these will be denoted as F and M re-
spectively. In order to appreciate the role of gauge transformations we need, contrary to
what is done in elementary Physics classes, to consider the case where the rotation is not
uniform.

The frame M can in general be moving by (time-dependent) translations and rotations
w.r.t. F ; that is, we should consider the Galilei group as the gauge group. To simplify
things, we disregard translations and consider the case where the frames share the same
origin; thus M is rotating w.r.t. F with (in general, non constant neither in direction nor
in modulus) angular velocity A. With an obvious notation (where derivatives refers to
the reference frame they are computed in), given v(t) we have[

dv

dt

]
F

=

[
dv

dt

]
M

+ A ∧ v . (28)

5.1 Example 1

Considering rotations in full three-dimensional space – which requires to consider SO(3)
as gauge group – present some computational complications due to the fact SO(3) is
not parallelizable and hence we need to introduce local charts (this is not a problem in
principles but requires a heavier notation). Computations are usually performed via the
Wei-Norman method [29–31], or we can use the embedding of SO(3) in its covering group
SU(2) [32,33].



]ocnmp[ Floquet-like theory and smooth dynamical systems 65

In order not to be distracted by such technicalities, consider the restricted two-dimensional
problem3, i.e. the case where dynamics takes place in the (x1, x2) plane (in the F coor-
dinates), and the (by assumption, non-uniform) rotation is also within this plane, with
angular velocity ω = ω(t). We write

ϑ(t) := ϑ(0) +

∫ t

0
ω(τ) dτ . (29)

Passing to the mobile frame we introduce new variables w = (w1, w2) with

w = R[ϑ(t)] x , R[ϑ] =

(
cosϑ − sinϑ
sinϑ cosϑ

)
. (30)

Having assumed a non-uniform rotation, we have Ṙ ̸= 0.

Let us now consider, to stay within the scope of our discussion, a first order system
defined in the fixed frame by

ẋ = K x + Φ(x) ; (31)

here x = (x1, x2), K is a constant real matrix, and Φ is the nonlinear part. In the new
variables we have

d

dt
w =

d

dt
(Rx) = Ṙx + R ẋ

= Ṙ R−1w + R
(
KR−1w + Φ(R−1w)

)
(32)

:= Lw + Ψ(w) .

Here L is an explicitly time-dependent (as Ṙ ̸= 0) real matrix,

L = Ṙ R−1 + RK R−1 , (33)

and the nonlinear part Ψ is of course defined by

Ψ(w) := RΦ
(
R−1w

)
. (34)

Note that if Φ is covariant, Φ(Rx) = RΦ(x), then Ψ(w) = Φ(w).

6 Examples. The Abelian case – SO(2)

In this Section we consider some simple examples in R2 with the abelian gauge group
SO(2); these are of course related to the discussion given in the previous Sect.5.

Note however the difference with Example 1: in that case we considered a given mobile
reference frame and considered how the system – autonomous in the ”original” one – looks
in the mobile frame; here we will be looking for a gauge transformation taking the system
(non-autonomous in the frame in which it is given) to an autonomous form.

3This Example was also considered in [1].
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6.1 Example 2

Let (ξ, η) be cartesian coordinates in R2, and consider first the equations{
ξ′ = ω(t) η + (1 − ξ2 − η2) ξ ,

η′ = −ω(t) ξ + (1 − ξ2 − η2) η .
(35)

This simple system describes a linear rotation with time-dependent angular velocity ω(t)
and a nonlinear radial motion driving the system towards the circle of radius r = 1. Here
ω(t) is an arbitrary smooth function of t, so the system is non-autonomous.4

According to our scheme, we should first isolate the linear part of the system{
ξ′ = ξ + ω(t) η ,

η′ = −ω(t) ξ + η ;
(36)

and now look for a gauge transform taking this to an autonomous system.
We write Ξ = (ξ, η) and (36) in the form

Ξ′ = A(t) Ξ (37)

with

A =

(
1 ω(t)

−ω(t) 1

)
. (38)

Note that Ξ can be determined explicitly here, up to a quadrature.
Now we should look for a time-dependent regular linear map

Ξ = P (t) X , (39)

where X = (x, y). Under this map, (37) will be transformed into

X ′ =
(
P−1AP − P−1 P ′) X := B X , (40)

as follows from our general discussion. We should look for a P = P (t) such that B is a
constant matrix. By definition the matrix P satisfies eq. (20), that is P ′ = AP − PB.

We stress that here A is assigned, while B can be any constant matrix; it represents,
in a way, the target dynamics. In some cases, physical or group-theoretical considerations
can lead one to choose a tentative target dynamics, thus simplifying the problem.

In the present case, we may try to eliminate the time-dependence modifying only the
ω(t) term; this means we may e.g. aim at

B =

(
1 0
0 1

)
. (41)

This not only represents a “minimal” modification (of the linear part), but also – not
affecting the radial part of the dynamics – can in principle be reached by an orthogonal
transformation, i.e. one of the form

P (t) =

(
cosβ(t) − sinβ(t)
sinβ(t) cosβ(t)

)
(42)

4The system would of course simplify passing to polar coordinates, but it would then retain its non-
autonomous character.
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where β(t) is a smooth function to be determined.
By (39), with P of the form (42) and B as prescribed by (41), the equation for P reads

as the system5{
sin[β(t)] β′(t) = −ω(t) sin[β(t)] ,

cos[β(t)] β′(t) = −ω(t) cos[β(t)] .
(43)

This reduces to β′(t) = −ω(t), i.e. is solved by

β(t) = β0 −
∫ t

0
ω(τ) dτ . (44)

We have thus solved our problem for (35) at the linear level. We should now go back
to consider the full problem, hence we have to act on our system by the map (44).

In this case, we obtain an autonomous nonlinear system{
x′ =

(
1 − (x2 + y2)

)
x ,

y′ =
(
1 − (x2 + y2)

)
y .

(45)

Note that the nonlinear term has not changed at all. Obviously, this is related to the fact
the nonlinear terms had a very specific autonomous form, i.e. is covariant under orthogonal
transformations, and we have indeed been considering an orthogonal transformation P (t) ∈
O(2) ∀t.

6.2 Example 3

We will consider a slight variation on Example 2, i.e. a system of the same general form
but in which the nonlinear term also has a time dependence:{

ξ′ = ω(t) η + [1 − R−1(t)(ξ2 − η2)] ξ ,

η′ = −ω(t) ξ + [1 − R−1(t)(ξ2 − η2)] η .
(46)

This simple system describes a linear rotation with time-dependent angular velocity ω(t)
and a nonlinear radial motion driving the system towards the circle of radius r = R(t).
Here ω(t) and R(t) > 0 are arbitrary smooth functions of t.

Note that again the nonlinear term F (Ξ, t) = −(ρ2/R)Ξ is covariant under orthogonal
transformations.

The linear part of the system is exactly as in Example 1, so we can proceed in the same
way and make this autonomous. We will just consider the case where the linear part is
taken to the form B1 (the case B2 is completely analogous). By the map (39), (42), (44),
the system (46) is transformed into{

x′ = x − R−1(t)
(
x2 + y2

)
x ,

y′ = y − R−1(t)
(
x2 + y2

)
y .

(47)

5The matrix P has four elements and hence the matrix equation for P corresponds to a four dimensional
system; however the special form of our initial equation (35) – note that A(t) and B commute – and our
ansatz (42) for P make that we have two pairs of identical equations.
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Thus, as expected (see the previous considerations on covariant nonlinear terms), we have
mapped the system into a system with autonomous linear part and a non-autonomous
nonlinear part which has the same form as in the original system (46). Note this non-
autonomous system has a specially simple form, in that it describes purely radial motions;
that is, in polar coordinates we have

θ′ = 0 , ρ′ =

(
1 − ρ2

R(t)

)
ρ .

We stress (just to avoid any possible confusion) that this refer to the “new” (x, y) coordi-
nates, i.e. ρ =

√
x2 + y2, θ = arctan(y/x); and should not be confused with the previously

introduced ones, (ϑ, ϱ) referring to the “original” (ξ, η) coordinates.

6.3 Example 4

Finally, we consider a case where the nonlinear part is autonomous and does not have a
covariant form; we choose e.g.{

ξ′ = ω(t) η + [1 − ξ η] ξ ,

η′ = −ω(t) ξ + [1 − ξ η] η .
(48)

The linear part is still the same as in Examples 1 and 2, and so we operate with the
same map (39), (42), (44). In this case its effect on the full system is to map (48) into{

x′ = x +
[
(1/2) sin(2β(t))

(
y2 − x2

)
− cos(2β(t))x y

]
x ,

y′ = y +
[
(1/2) sin(2β(t))

(
y2 − x2

)
− cos(2β(t))x y

]
y .

(49)

In this case, not only the nonlinear part has changed under our gauge transformation,
but the system – which in its original form (48) had a non-autonomous linear part and
an autonomous nonlinear one – does now have an autonomous linear part and a non-
autonomous nonlinear one.

6.4 Example 5

The previous Examples are in a way abstract ones; we want now to discuss a specific one,
i.e. an oscillator with a time dependent frequency; more specifically, we will consider the
case where this frequency is quasi-periodic in time. The system we will consider can be
integrated in an elementary way, so that the correctness of the result obtained by appying
our approach can be checked directly.

Let Ω(t) denote the function

Ω(t) = ω + a sin(αt) + b sin(βt) , (50)

where a, b as well as ω, α, β are nonzero real constants, and we will focus on the case where
α/β is irrational; thus Ω(t) is a quasi-periodic function.

Consider the dynamical system{
ẋ = −Ω(t) y ,

ẏ = Ω(t)x .
(51)



]ocnmp[ Floquet-like theory and smooth dynamical systems 69

If a and b are small this represents a (quasi-periodic) perturbation of a harmonic oscillator
with frequency ω.

The system is promptly integrated by passing to polar coordinates (ρ, θ); in these we
have ρ = const and

θ(t) = θ(0) +

∫ t

0
Ω(τ) dτ . (52)

We want however, as mentioned above, to use this simple example to illustrate the appli-
cation of our method in a concrete and physically meaningful case.

Our system (51) is written in vector notation as

ẋ = A(t) x , (53)

where x = (x, y) and

A(t) = Ω(t) J , J =

(
0 −1
1 0

)
. (54)

In order to handle the system with our method, we have to consider eq.(20), where both
P (t) and the constant matrix B are unknown. We will make an ansatz for B (see also
Remark 3 in this respect), i.e. that it corresponds to the unperturbed problem obtained
for a = b = 0,

B = ω J .

With this choice, our gauge-determining equation reduces to

dP

dt
= Ω(t) J P − ω P J . (55)

We will thus look for a solution in the form

P (t) =

(
cos[ϕ(t)] − sin[ϕ(t)]
sin[ϕ(t)] cos[ϕ(t)]

)
. (56)

With P (t) of this form, the equation (55) reduces to

−
(
ϕ′(t) − Ω(t) + ω

) ( sin[ϕ(t)] cos[ϕ(t)]
− cos[ϕ(t)] sin[ϕ(t)]

)
; (57)

that is, ϕ(t) is determined by solving

ϕ′(t) = Ω(t) − ω = A sin(αt) + B sin(βt) . (58)

In conclusion, setting to zero the inessential integration constant, we get

ϕ(t) = − A

α
cos(αt) − B

β
cos(βt) ; (59)

plugging this into (56) we obtain the required gauge transformation. In the new variables(
ξ
η

)
= P

(
x
y

)
(60)
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the system reads just{
ξ̇ = −ω η ,

η̇ = ω ξ .
(61)

We can them write the solution for these variables, and go back to the original ones by
inverting (60); we obtain of course (52).

The computation is easily generalized to the case where the nonautonomous term is
given by the superposition of n irrational frequencies.

7 Examples. The non-Abelian case – SU(2)

In this Section we consider simple examples in R4 with the non-abelian gauge group SU2).
Note we are dealing with real vector fields, so we consider the basic real representation
of SU(2) – or more precisely one of its two fundamental representations, differing for
orientation [34, 35]. This is fully equivalent to the standard complex representation in
terms of Pauli matrices.

The generators for such a representation – more precisely for the representation of the
Lie algebra su(2) – can be chosen to be

Y1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , Y2 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

Y3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .

These satisfy

Y 2
i = −I , Yi Yj = ϵijk Yk , [Yi, Yj ] = 2 ϵijk Yk ;

here I is the four-dimensional identity matrix, [., .] is the commutator and ϵijk is the
completely alternating (Levi-Civita) symbol.

Given a generic matrix

A =
3∑

i=1

αi Yi , α2
1 + α2

2 + α2
3 = 1 ,

such that the we get immediately

A2k = (−1)k I , A2k+1 = (−1)k A .

This also guarantees that

exp[ωAt]x = (cos(ωt) I + sin(ωt)A) x .
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Any element g ∈ SU(2) can be represented in this way; on the other hand, if we want to
consider the gauge action of SU(2), we need to promote the constants αi to be smooth
functions of t.

As for the corresponding representation of the group SU(2), this is made of matrices
in the form

M =


a0 a1 a3 a2
−a1 a0 a2 −a3
−a3 −a2 a0 a1
−a2 a3 −a1 a0

 ,

3∑
µ=0

a2µ = 1 ;

writing Y0 = I, these are conveniently written as

M =
3∑

µ=0

aµ Yµ .

Let us now consider the linear, constant coefficients, system

ẋi = Li
j x

j . (62)

Under a change of variables xi = M i
j(t)y

j , as discussed in Section 3, this is mapped into

ẏi =
(
M−1 LM − M−1 Ṁ

)i
j
yj := M̃ i

j y
j . (63)

Conversely, a system of this form is brought to the form (62) by such a transformation.

7.1 Example 6

As a concrete example, let us consider the system

ẏ = K(t) y (64)

where K = K(t) is given by the matrix

K =
η

3− cos2(t)


0 −1 cos(ηt) sin(ηt)
1 0 sin(ηt) − cos(ηt)
− cos(ηt) − sin(ηt) 0 −1
− sin(ηt) cos(ηt) 1 0

 (65)

with η a real parameter. Note that for η irrational, this is not periodic. We will also write,
for ease of notation, ω := 1 + η; if η is rational (irrational), so is ω.

This is mapped into the simple system

ẋ = L x , L =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 (66)

using the gauge transformation
x = M(t) y
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with M as above and

α0(t) =
sin(t)√

2
, α1(t) =

cos(t)√
2

, α2(t) =
sin(ωt)√

2
, α3(t) =

cos(ωt)√
2

.

In other words, we have

M =
1√
2


sin(t) cos(t) cos(ωt) sin(ωt)
− cos(t) sin(t) sin(ωt) − cos(ωt)
− cos(ωt) − sin(ωt) sin(t) cos(t)
− sin(ωt) cos(ωt) − cos(t) sin(t)

 . (67)

7.2 Example 7

We consider a related example; now we write

a := η + 2 , b := η − 2 ,

with η ̸= 0 again a real constant, and deal with (64) where

K =
1

3− cos2 t


0 −a a cos(ηt) a sin(ηt)
a 0 a sin(ηt) −a cos(ηt)
−a cos(ηt) −a sin(ηt) 0 −b
−a sin(ηt) a cos(ηt) b 0

 . (68)

In this case acting with the same transformation – i.e. with the same coefficients αi(t) as
above – the system is brought to the form

ẋ = L x , L =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (69)

Note this satisfies

[Yi, L] = 0 , i = 1, 2, 3 ; (70)

thus the effect of the transformation is only in the affine term M−1Ṁ , see (16).

8 Examples. Riccati equations

The Examples seen above used a given gauge group6. But, in general, when we are faced
with a given non-autonomous equation or system we do not know which gauge group (that
is, which subgroup ofGL(n;R), as we are considering gauged linear transformations) could
be used to autonomize it.

Here we will consider a relevant class of non-autonomous quadratic equations, i.e. Ric-
cati equations, which can be cast as a system of two first order linear equations, and discuss
how our approach applies to them.

6As we consider linear gauge transformations alone, this actually means a given subgroup of GL(n;R),
such as SO(2) ⊂ GL(2;R) or SU(2) ⊂ SO(4) ≃ GL(4;R).
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An equation of the form

dy

dt
= f(t) + g(t) y + h(t) y2 (71)

is said to be a Riccati equation. It is convenient, to avoid degeneration, to assume h(t) to
be nowhere zero.

8.1 Mapping to a linear system

As well known, a Riccati equation (71) can be mapped to a two-dimensional linear system

d

dt

(
u
v

)
=

(
g(t) + α(t) f(t)

−h(t) α(t)

) (
u
v

)
, (72)

where α(t) is an arbitrary smooth function. In fact, it is immediate to check that if
{u(t), v(t)} is a solution to (72), then

y(t) =
u(t)

v(t)

is a solution to (71).
We can then deal with linear equations of the form (72), identified – choosing α(t) = 0

for simplicity – by the matrix

A(t) =

(
g(t) f(t)
−h(t) 0

)
, (73)

and consider gauge transformations generated by P (t) : R → GL(2, R).

Remark 7. We note in passing that a similar property holds for matrix Riccati equations,
which we write as

Ẏ = −Y M21 Y + (M11 Y − Y M22) + M12 (74)

with Y and Mij square N -dimensional matrices.
In fact, the rational map X 7→ X1X

−1
2 (with Xi square N -matrices) sends solutions of

the linear (matrix) equation

Ẋ =

(
Ẋ1

Ẋ2

)
=

(
M11 M12

M21 M22

) (
X1

X2

)
(75)

to solutions of the (matrix) Riccati equation (74), see [36]. ⊙

Remark 8. It may be noted that a common time-dependent factor in the r.h.s. of (71)
can be eliminated by a reparametrization of time; thus transformations multiplying the
coefficients f, g, h by a common factor should be seen as trivial, and one can restrict to
consider P : R → SL(2, R). The connection between Riccati equations and gauge SL(2, R)
transformations has been widely studied, see e.g. [37–40]. As far as we know, however,
these studies did not put such a use of gauge transformations into a general context for
generic ODEs. ⊙
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We know that a gauge transform will map a linear system into a linear system, and
that any linear system can be brought to autonomous form by a gauge transformation (see
Remark 3 above); and we are of course able to solve a constant coefficients linear system.
But the problem lies in determining the appropriate gauge transformation, i.e. in solving
(20) for the A(t) at hand, and this could still turn out to be unfeasible. On the other
hand, the equation can be solved in a number of cases.

8.2 Example 8

Let us consider the Riccati equation

dy

dt
= κ0 e

−βt + κ1 y +
(
κ2 e

βt
)
y2 , (76)

with κi, β real constants; we require κ2 ̸= 0, β ̸= 0 to discard trivial cases. We will also
assume κ0 ̸= 0 (that is, we have a proper Riccati equation and not a Bernoulli equation).
By a rescaling of time we can always set κ2 = 1, which we do.

This Riccati equation corresponds to

ẇ = A(t) w , A(t) =

(
κ1 κ0 e

−βt

−e−βt 0

)
. (77)

The gauge transformation with

P (t) =

(
0 κ0

− eβt −β − κ1

)
(78)

(note that Det(P ) = κ0e
βt is nonzero by our assumption κ0 ̸= 0) maps this into

B =

(
β + κ1 κ0

1 0

)
. (79)

This in turn corresponds to the constants coefficients Riccati equation

dx

dt
= r0 + r1 x − x2 , (80)

where the constants r1 are given in terms of the constants {κ0, κ1;β} appearing in the
original equation (recall we set κ2 = 1) by

r0 = κ0 , r1 = κ1 + β . (81)

8.3 Example 9

Let us consider the Riccati equation

dy

dt
= 2 sec(t) − tan(t) y − cos(t) y2 . (82)

This corresponds to

ẇ = A(t) w , A(t) =

(
− tan(t) 2 sec(t)
cos(t) 0

)
. (83)
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The gauge transformation with

P =

(
tan(t)

2 − sec(t)
1
2 0

)
(84)

maps this into the linear system with matrix

B =

(
0 −1
−1 0

)
(85)

which corresponds to the constant coefficients Riccati equation

dx

dt
= − 1 + x2 . (86)

It should be noted that in this case

Det(P ) = (1/2) sec(t) ,

so that the transformation is singular at t = π/2 + kπ, and we can only work in time
intervals of length π.

8.4 Example 10

Let us now consider the Riccati equation

dy

dt
=

(
1− t

1 + t

) (
2 + t

t2

)
+

(
1

1 + t

) (
2− t2

t

)
y + (1 + t) y2 . (87)

This is singular in t = 0 and in t = −1; we will hence think of this as being defined for
t > 0. (We could of course also consider this for t < −1, or for −1 < t < 0.)

This equation corresponds to ẇ = Aw with

A =

(
2−t2

t(t+1)
2−t−t2

t2(t+1)

−(t+ 1) 0

)
. (88)

The gauge transformation with

P =

(
− t+1

t − t+1
t2

1 + 1
t

1
t2

)
, (89)

which is well defined in t > 0 (in fact, Det(P ) = (1 + t)/t2), takes this matrix into

B =

(
−1 1
1 0

)
. (90)

Thus we obtain in the end the constant coefficients Riccati equation

dx

dt
= 1 − x − x2 . (91)
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9 Discussion and conclusions

In this final Section we will first give a very brief discussion of (some) relations with the
Physics literature and with PDEs & Integrable Systems, in the form of Remarks, and then
draw our conclusions.

Remark 9. Our basic observation, as noted at the beginning of Sect.3, is that the
Floquet change of variables (5) can be given the interpretation of a gauge transformation.
As remarked in Sect.3, this seems not to have been discussed in the literature, at least in
the framework of differential equations; things are different when we look at counterparts
of Floquet’s theory in Physics (Bloch theory).

In this context wide range investigations on the relation between periodicity (not only
in time, but also in parameter space) and geometrical features have been carried out, also
in relation to Berry phase and Hannay angle [13–24]. It should be mentioned that these
encompassed also non-periodic behavior [25–28], in particular in the quasi-periodic case.7

See also, in a quite different physical context – i.e. Fluid Mechanics – the discussion
in [41]. ⊙

Remark 10. Here we have been only concerned with dynamical systems; but it is clear
that the method of considering gauge transformations to produce new systems amenable
to some kind of exact treatment – and conversely, reduce new type of systems to those for
which an exact treatment is available – is more general and not limited neither to dynamical
systems nor to Floquet analysis; e.g. one might produce new integrable systems out of
known ones.

This remark can also be applied for PDEs, not just for Dynamical Systems. E.g., if we
consider the KdV equation

ut = uxxx + κuux (92)

for u = u(x, t) and apply a gauge transformation

u = α(x, t) v , (93)

with α a nowhere zero smooth function and v = v(x, t) the new dependent variable, this
is mapped into

vt = vxxx + 3α−1 (α vxx + αxx vx) + α−1 αxxx v

+ κ (αx v + αvx) v − α−1 αt v . (94)

This is by construction integrable, for any smooth nowhere zero function α(x, t), just
inverting (93); this fact is not at all obvious when one looks at (94) without knowing how
it was derived.

The interrelations between gauge transformations (or gauge theories) and integrable
systems – in the sense of integrable PDEs – are of course well known and widely studied,
see e.g. [48–51]. It appears this was not considered in the context of finite dimensional
dynamical systems, considered here. ⊙

7It is well known that discussing quasi-periodic linear operators and their spectra (in the Physics context
one deals with second order operators, representing the Hamiltonian of the system under study) leads to
difficult problems; see e.g. [42–47].
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Conclusions

We have considered the classical Floquet theory for periodic linear systems of ODEs from
a geometrical point of view, and argued that the same approach can be extended to
(linear) systems with an arbitrary time dependence. The key concept is that of a gauge
transformation; this corresponds to introducing a nontrivial connection in the full phase
space R × Rn seen as a (trivial) bundle with base R and fiber the reduced phase space
Rn. The main difference with standard Floquet theory is that in that case, due indeed to
periodicity, one can work in a bundle over S1 and is naturally led to consider a monodromy.

In this case, determination of the fundamental matrix in concrete cases can be non-
trivial; our approach allows, at least in principles, to subdivide the difficulty of solving a
non-autonomous linear system in two steps, i.e. separate the problem of determining the
trajectories of the system (in geometrical terms, covariantly constant sections of a bundle
over R) from that of the full dynamics, describing the time law on these trajectories.

We have given several Examples, involving both Abelian and non-Abelian gauge groups
(i.e. gauge groups modelled on SO(2) and SU(2) respectively), of applications of our ap-
proach to concrete simple systems. In these Examples the equation (20), determining
the appropriate gauge transformation converting the time-dependent system into an au-
tonomous one, could be determined by inspection, thanks to their simple nature.

In Section 8, we have shown a concrete case in which our method can be employed
without apriori information on the gauge group to map a non-autonomous system of
equations into an autonomous one; this was done considering (the two-dimensional first
order system form of) Riccati equations.

In a companion paper of mathematical character [1], we address the problem of solving
the equation (20) in general cases, i.e. in systems not displaying such a simple form.
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