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Abstract: In this paper we derive two examples of fully-nonlinear symmetry-integrable evo-
lution equations with algebraic nonlinearities, namely one class of 3rd-order equations and a
5th-order equation. To achieve this we study the equations’ Lie-Bäcklund symmetries and
apply multipotentialisations, hodograph transformations and generalised hodograph trans-
formations to map the equations to known semilinear integrable evolution equations. As a
result of this, we also obtain interesting symmetry-integrable quasilinear equations of order
five and order seven, which we display explicitly.

1 Introduction

In [5] we reported a set of 3rd-order fully-nonlinear symmetry-intergable equations that are
invariant under a projective transformation in u and in [7] we reported some results on
3rd-order fully-nonlinear symmetry-integrable equations with rational functions in the third
derivative. In the current paper we report further results on fully-nonlinear equations whereby
we now focus on two special cases, namely a class of 3rd-order evolution equations and a 5th-
order evolution equation, both with algebraic nonlinearities in their highest derivative. In
particular, we establish the semi-linearisations of the equations by systematically applying the
procedure of multipotentialisation, hodograph transformations and, in some cases, generalised
hodograph transformations. We refer to [1], [2] and [4] for details on the potentialisation of
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evolution equations by the use of adjoint symmetries, whereas further details on generalised
hodograph tranformations can be found in [9] and [12].

The Schwarzian derivative S plays an important role in our discussion and is defined in
terms of the dependent variable u by

S[u] :=
uxxx
ux

− 3

2

u2xx
u2x

, (1.1)

which is applied throughout this paper. See for example [11] for a discussion on the Schwarzian
derivative.

The paper is organised as follows: In Section 2 we consider a class of fully-nonlinear 3rd-
order equations, identify those equations that admit local Lie-Bäcklund symmetries and map
the obtained equations to known semilinear 3rd-order equations. Recursion operators are
found for these equations which provide the associated symmetry-integrable hierarchies. In
Section 3 we consider a single 5th-order fully-nonlinear evolution equation and establish its
Lie-Bäcklund symmetries as well as its mapping to a known 5th-order semilinear integrable
equation. In Section 4 we draw our conclusions of the reported results and mention some
related open problems.

2 A class of third-order fully-nonlinear evolution equations

When seeking symmetry-integrable 3rd-order evolution equations the following statement [7]
is useful to determine the possible nonlinearities in the highest derivative uxxx [5]:

Lemma 1: If a 3rd-order evolution equation of the form

ut = F (x, t, u, ux, uxx, uxxx) (2.1)

is symmetry-integrable for a given function F then this function must satisfy the following
condition:

9

(
∂F

∂uxxx

)2 ∂4F

∂u4xxx
− 45

∂F

∂uxxx

∂2F

∂u2xxx

∂3F

∂u3xxx
+ 40

(
∂2F

∂u2xxx

)3

= 0. (2.2)

In [7] we have reported the general solution of (2.2), namely

F (x, t, u, ux, uxx, uxxx) =
P3 (uxxx + P2)

[(uxxx + P2)2 + P1]
1/2

+ P4, (2.3)

where Pj = Pj(x, t, u, ux, uxx), j = 1, 2, 3, 4, are arbitrary and smooth functions of their
arguments. We listed several singular solutions of (2.2) that are not included in the general
solution (2.3) and used the rational solutions in the classification of fully-nonlinear symmetry-
integrable equations with rational nonlinearities of order three [7].

An additional singular solution of (2.2) that has not been reported in [7] is

F (x, t, u, ux, uxx, uxxx) =
P1(x, t, u, ux, uxx)√

uxxx
+ P2(x, t, u, ux, uxx), (2.4)
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which is the form of F that we will focus on in the current paper. Here P1 and P2 are
arbitrary and smooth functions. We furthermore restrict ourselves to evolution equations
that do not depend explicitly on their independent variables x and t and apply the standard
condition for Lie-Bäcklund symmetries for evolution equations, namely

LE [u]Q

∣∣∣∣
E=0

= 0, (2.5)

where E := ut − F (u, ux, uxx, uxxx), and Q = Q(u, ux, uxx, . . . , unx) is the characteristic of
the Lie-Bäcklund symmetry generator

ZLB = Q(u, ux, uxx, . . . , unx)
∂

∂u
, n > 3. (2.6)

Here LE [u] denotes the linear operator

LE [u] :=
∂E

∂u
+
∂E

∂ut
Dt +

∂E

∂ux
Dx +

∂E

∂uxx
D2

x +
∂E

∂uxxx
D3

x. (2.7)

This leads to

Proposition 1. Equation

ut =
P1(u, ux, uxx)√

uxxx
+ P2(u, ux, uxx) (2.8)

is symmetry-integrable if and only if P1 = Ψ(uxx) and P2 = 0, so that (2.8) is of the form

ut =
Ψ(uxx)√
uxxx

, (2.9a)

where Ψ(uxx) must satisfy the following condition:

Ψ
d2Ψ

du2xx
− 1

3

(
dΨ

duxx

)2

+
3β

4
Ψ−2/3 = 0 (2.9b)

with β an arbitrary constant. A hierarchy of symmetry-integrable equations is generated by

utj = Rj [u]ut, j = 1, 2, 3, . . . , (2.10)

where ut is given by (2.9a) and R[u] is the following recursion operator

R[u] = G2D
2
x +G1Dx +G0 + I1D

−1
x ◦ Λ1 + I2D

−1
x ◦ Λ2 (2.11)

with

G2 =
Ψ2/3

uxxx
(2.12a)

G1 =
Ψ2/3

2

u4x
u2xxx

− 5

3Ψ1/3

dΨ

duxx
(2.12b)
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G0 = −Ψ2/3

2

u5x
u2xxx

+
3Ψ2/3

4

u24x
u3xxx

+
1

3Ψ1/3

dΨ

duxx

u4x
uxxx

− 8

9Ψ4/3

(
dΨ

duxx

)2

uxxx

+
5

3Ψ1/3

d2Ψ

du2xx
uxxx + k0 (2.12c)

I1 = β (2.12d)

Λ1 =
u4x
Ψ2

− 2

Ψ3

dΨ

duxx
(2.12e)

I2 =
Ψ

(uxxx)1/2
(2.12f)

Λ2 =
1

2Ψ1/3

u6x

u
3/2
xxx

− 9

4Ψ1/3

u4xu5x

u
5/2
xxx

− 1

2Ψ4/3

dΨ

duxx

u5x

u
1/2
xxx

− 13

6Ψ4/3

d2Ψ

du2xx
u1/2xxxu4x

+
14

9Ψ7/3
u2xxu

1/2
xxxu4x +

15

8Ψ1/3

u34x

u
7/2
xxx

+
5

12ψ4/3

dΨ

duxx

u24x

u
3/2
xxx

+
76

27Ψ7/3

dΨ

duxx

d2Ψ

du2xx
u5/2xxx

+
41

27Ψ4/3

d3Ψ

du3xx
u5/2xxx −

404

243Ψ10/3

(
dΨ

duxx

)3

u5/2xxx +
2β

Ψ4

dΨ

duxx
u5/2xxx

− β

Ψ3
u1/2xxxu4x. (2.12g)

Here k0 is an arbitrary constant, and Ψ(uxx) and β must satisfy condition (2.9b).

Proof: Using the Ansatz (2.11) with the standard recursion operator condition (see for
example [4])

[LE [u], R[u]] = DtR[u]

∣∣∣∣
E=0

, (2.13)

where E defines the equation (2.8) and LE the linear operator (2.7), we find that P1 = Ψ(uxx),
P2 = 0 with Ψ and β that satisfy equation (2.9b). This establishes that equation (2.9a) is
symmetry-integrable under these conditions. 2

Applying Proposition 1 we find that the second member of the hierarchy (2.10) is given by
the following 5th-order equation:

ut1 = −Ψ5/3

2

u5x

u
5/2
xxx

+
5Ψ5/3

8

u24x

u
7/2
xxx

+
5Ψ2/3

6

dΨ

duxx

u4x

u
3/2
xxx

+
4Ψ2/3

3

d2Ψ

du2xx
u1/2xxx

− 23

18Ψ1/3

(
dΨ

duxx

)2

u1/2xxx +
β

Ψ
u1/2xxx +

k0Ψ

u
1/2
xxx

(2.14)

For solutions of (2.9b) we state the following
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Proposition 2. Equation (2.9b), viz.

Ψ
d2Ψ

du2xx
− 1

3

(
dΨ

duxx

)2

+
3β

4
Ψ−2/3 = 0,

admits the following three solutions:

1. For any constant β the general solution for (2.9b) is

Ψ(uxx) = (2c0)
−3/8

[
(uxx + c)2 − βc0

]3/4
, (2.15)

where c and c0 are arbitrary constants with c0 ̸= 0.

2. For β ̸= 0 an additional solution for (2.9b), besides (2.15), is

Ψ(uxx) = (2β)3/8 (uxx + c)3/4 , (2.16)

where c is an arbitrary constant.

3. For β = 0 an additional solution for (2.9b), besides (2.15) with β = 0, is

Ψ(uxx) = c, (2.17)

where c is an arbitrary constant.

Remark 1: Equation (2.9b) can easily be linearised in a 1st-order ordinary differential
equation via a Bernoulli equation.

Applying Proposition 1 and Proposition 2 we identify the following three cases of fully-
nonlinear 3rd-order symmetry-integrable equations:

Case 1.1: Consider the solution (2.15) whereby we let c0 = 1/2 without loss of generality.
This leads to the symmetry-integrable equation

ut =

[
(uxx + c)2 − β

2

]3/4
√
uxxx

, (2.18)

and by Proposition 1 its recursion operator is given by (2.11) with

Ψ(uxx) =

[
(uxx + c)2 − β

2

]3/4
(2.19)

for any β and any constant c. By introducing the new variable v(x, t) = uxx, equation (2.18)
takes the form

vt = −K
3/4

2v
1/2
x

S[v]− 3v
3/2
x

2K5/4

(
v2

2
+ cv +

c2

2

)
+

v
3/2
x

K1/4
, (2.20)
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where

K = (v + c)2 − β

2
. (2.21)

We note that, for the case c = 0 and β = 0, equation (2.18) becomes

ut =
u
3/2
xx√
uxxx

, (2.22)

and equation (2.20) becomes

vt = −1

2

(
v3

vx

)1/2

S[v] +
3

4

(
v3x
v

)1/2

. (2.23)

In order to establish the semi-linearisation of equation (2.18) we need to consider the following
two subcases, which distinguishes between the cases where β is zero or not:

Subcase 1.1a: Let β = 0. Equation (2.18) then takes the following form:

ut =
(uxx + c)3/2

√
uxxx

. (2.24)

By performing a multipotentialisation of (2.24) we obtain

Vt = V 3Vxxx −
3

24/3
Vx
V
, (2.25)

where

V (x, t) = − 1

21/3

(
uxx + c

uxxx

)1/2

. (2.26)

We prefer not to show here the details of the multipotentialisation that leads to (2.25) but
the interested reader can easily verify (2.26). Applying now the generalised hodograph trans-
formation

GHT :


dX = f1(x, V )dx+ f2(x, V, Vx, Vxx)dt

dT = dt

U(X,T ) = x

(2.27)

we obtain the following semilinear equation

UT = UXS[U ] +
3

27/3
1

UX
, (2.28)

where

f1 =
1

V
(2.29a)
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f2 = −V Vxx +
1

2
V 3
x − 3

27/3
1

V 2
(2.29b)

with V given by (2.26). A 2nd-order recursion operator for equation (2.28) has been reported
in [12].

Subcase 1.1b: Let β ̸= 0. Applying the procedure of multipotentialisation on equation
(2.18), viz.

ut =

[
(uxx + c)2 − β

2

]3/4
√
uxxx

,

we obtain

Qt =
1

Q2
x

S[Q]− 3

2−7/3
Q2

x, (2.30)

where

Qx = − 21/3uxxx[
(uxx + c)2 +

β

2

]1/4 . (2.31)

Furthermore equation (2.30) maps to the semilinear equation

UT = UXS[U ]− 3

27/3
1

UX
(2.32)

by the standard hodograph transformation

HT :


X = Q(x, t)

T = t

U(X,T ) = x

(2.33)

which completes the semi-linearisation of (2.18). A 2nd-order recursion operator for equation
(2.32) has been reported in [3]

Case 1.2: Consider the solution (2.16) where we let β = 1/2, which is for simplicity but
without loss of generality. This leads to the symmetry-integrable equation

ut =
(uxx + c)3/4

√
uxxx

, (2.34)

whereby its recursion operator is given by (2.11) with β = 1/2, c an arbitrary constant, and

Ψ(uxx) = (uxx + c)3/4 . (2.35)
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By introducing the new variable v(x, t) = uxx, equation (2.34) takes the form

vt = −1

2

[
(v + c)3/2

vx

]1/2

S[v]− 3

16

[
v3x

(v + c)5/2

]1/2
. (2.36)

For a semi-linearisation we apply the procedure of multipotentialisation and find that (2.34)
maps to

Vt =
S[V ]

V 2
x

, (2.37)

where

V 2
x = − uxxx

22/3(uxx + c)1/2
. (2.38)

Furthermore, it is well-known that equation (2.37) maps to the Schwarzian KdV

UT = UXS[U ] (2.39)

by the standard hodograph transformation

HT :


X = V (x, t)

T = t

U(X,T ) = x.

(2.40)

A 2nd-order recursion operator for Schwarzian KdV (2.39) is well known and has for example
been reported in [3]

Case 1.3: The symmetry-integrable equation

ut =
1

√
uxxx

, (2.41)

admits the recursion operator (2.11) with Ψ = 1 and β = 0. Letting

W (x, t) = uxxx (2.42)

we obtain

Wt =
Wxxx

W 3/2
− 9

2

WxWxx

W 5/2
+

15

4

W 3
x

W 7/2
. (2.43)

We recall [8] that (2.43) is also obtained from

ũt = −2
ũx√
S[ũ]

(2.44)
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where

W (x, t) = S[ũ] (2.45)

so that the relation between u(x, t) and ũ(x, t) is

uxxx = S[ũ]. (2.46)

In [8] we established that (2.44) maps to the Schwarzian KdV with a hodograph-type trans-
formation. Using this result, we find that equation (2.41) maps to the Schwarzian KdV (2.39),
viz.

UT = UXS[U ]

under the following change of variables:

HT :



X =

∫ √
uxxx dx

T = t

U(X,T ) = x.

(2.47)

For the sake of completeness, we give the recursion operator for the equation

UT = UXS[U ] +
λ

UX
, (2.48)

which includes the semilinear equations (2.28) for λ = 3 ·2−7/3, (2.32) for λ = −2 ·3−7/3, and
(2.39) for λ = 0, namely [3]

R[U ] = D2
X − 2UXX

UX
DX +

UXXX

UX
−
U2
XX

U2
X

− 2λ

3U2
X

+ k0 −
8λ

3
D−1

X ◦ UXX

U3
X

−UXD
−1
X ◦

(
U4X

U2
X

− 4UXXUXXX

U3
X

+
3U3

XX

U4
X

− 2λUXX

U4
X

)
. (2.49)

3 A fifth-order fully-nonlinear evolution equation

When seeking symmetry-integrable 5th-order evolution equations, the following statement [7]
is useful to determine the possible nonlinearities in the highest derivative u5x [8]:

Lemma 2: If a 5th-order evolution equation of the form

ut = F (x, t, u, ux, . . . , u5x) (3.1)

is symmetry-integrable for a given function F then this function must satisfy the following
condition:

5
∂F

∂u5x

∂3F

∂u35x
− 8

(
∂2F

∂u25x

)2

= 0. (3.2)
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The general solution of (3.2) is

F (x, t, u, ux, . . . , u5x) =
F1

(u5x + F2)2/3
+ F3, (3.3)

where Fj = Fj(x, t, u, ux, . . . , u4x) (j = 1, 2, 3) are arbitrary and smooth functions of their
arguments. In the current paper we consider the special case where F1 = 1, F2 = F3 = 0.
Applying now the Lie-Bäcklund symmetry invariance condition (2.5) leads to the following

Proposition 3. The fully-nonlinear 5th-order equation

ut =
1

u
2/3
5x

(3.4)

is symmetry-integrable and admits Lie-Bäcklund symmetries of order 1+6n and order 5+6n,
for every natural number n, so the symmetries are of order {7, 11, 13, 17, 19, . . .}.

Let us give the first two equations in this hierarchy explicitly: The symmetry-integrable
evolution equation associated with the 7th-order Lie-Bäcklund symmetry of equation (3.4) is

ut =
u7x

u
7/3
5x

− 7

6

u26x

u
10/3
5x

(3.5)

and the associated 11th-order symmetry-integrable equation is

ut =
1

u
11/3
5x

(
u11x −

11u6xu10x
u5x

− 77u7xu9x
3u5x

+
682u26xu9x

9u25x
− 33u28x

2u5x
− 374u36xu8x

u35x

+
286u6xu7xu8x

u25x
+

1892u37x
27u25x

− 22066u26xu
2
7x

27u35x
+

107525u46xu7x
81u45x

− 752675u66x
1458u55x

)
. (3.6)

We now turn to the task to semi-linearise equation (3.4): We apply the multipotentialisation
procedure systematically on equation (3.4), which leads to the quasilinear equation

wt =
w5x

w5
x

− 10wxxw4x

w6
x

− 10w2
xxx

w6
x

+
60w2

xxwxxx

w7
x

− 45w4
xx

w8
x

, (3.7)

where

w3
x = −3

2
u5x. (3.8)

Equation (3.7) then takes the quasilinear form

Vt = V 5V5x + 5V 4VxV4x + 10V 4VxxVxxx, (3.9)

with the following change of variables:

V (x, t) =
1

wx
. (3.10)
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Using generalised hodograph transformations we conclude that the fully-nonlinear 5th-order
equation (3.4) maps to the semilinear 5th-order equation

UT = UX

(
∂2S[U ]

∂X2
+ 4S2[U ]

)
(3.11)

by the generalised hodograph transformation

GHT :


dX = f1(x, V )dx+ f2(x, V, Vx, Vxx, Vxxx, V4x)dt

dT = dt

U(X,T ) = x,

(3.12)

where

f1 =
1

V
(3.13a)

f2 = −V 3V4x − 2V 2VxVxxx − 4V 2V 2
xx + 4V V 2

x Vxx − V 4
x (3.13b)

and

V (x, t) = −
(
2

3

)1/5 1

u
1/3
5x

. (3.13c)

Some remarks are in order:

Remark 2: We find that equation (3.4) does not admit a recursion operator of the form

R[u] =
6∑

j=0

GjD
j
x +

3∑
j=1

IjD
−1
x ◦ Λj , (3.14)

whereby we assumed the following dependencies: for the integrating factors Λk = Λk(u, ux,
uxx, . . . , u12x); for the symmetry coefficients Ij = Ij(u, ux, uxx, . . . , u5x), and for the coef-

ficients of Dj
x we assumed that there are no restrictions in the number of derivatives, i.e.

Gj = Gj(u, ux, uxx, . . .). Since a recursion operator of this form does not exist, we expect
that the recursion operator is of a nonlocal type. We will not explore this further here.

Remark 3: The semilinear equation (3.11) is the third potentialisation (see equation (2.6)
[4]) in the chain of multipotentialisations of the Kupershmidt equation

Kt = K5x − 5KxKxxx − 5K2
xx − 5K2Kxxx − 20KKxKxx − 5K3

x + 5K4Kx. (3.15)

A recursion operator of order six has been reported for equation (3.11) in [4], where some
solution-generating formulas are also given for (3.11).
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Remark 4: Let us furthermore point out that equation (3.9), viz.

Vt = V 5V5x + 5V 4VxV4x + 10V 4VxxVxxx,

just like equation (3.4), does not admit a recursion operator of the form (3.18) although (3.9)
is of course symmetry-integrable and hence admits Lie-Bäcklund symmetries of the same
order as equation (3.7) which generates a hierarchy of symmetry-integrable equations. For
example, the 7th-order symmetry-integrable equation in this hierarchy is

Vt = V 7V7x + 14V 6VxV6x + 49V 5V 2
x V5x + 28V 6VxxV5x + 35V 4V 3

x V4x + 140V 5VxVxxV4x

+35V 6VxxxV4x + 70V 5VxV
2
xxx + 70V 5V 2

xxVxxx + 70V 4V 2
x VxxVxxx. (3.16)

Furthermore, the 7th-order equation (3.5) maps to the 7th-order equation (3.16) by the fol-
lowing change of variable:

V (x, t) = u
−1/3
5x . (3.17)

Remark 5: Quite remarkably, equation (3.7), viz.

wt =
w5x

w5
x

− 10wxxw4x

w6
x

− 10w2
xxx

w6
x

+
60w2

xxwxxx

w7
x

− 45w4
xx

w8
x

,

admits the following 6th-order recursion operator:

R[w] =
6∑

j=0

GjD
j
x + 2wtD

−1
x ◦ Λ1 + 2D−1

x ◦ Λ2, (3.18)

where

G6 =
1

w6
x

(3.19a)

G5 = −15wxx

w7
x

(3.19b)

G4 = −32wxxx

w7
x

+
123w2

xx

w8
x

(3.19c)

G3 = −27w4x

w7
x

+
354wxxwxxx

w8
x

− 600w3
xx

w9
x

(3.19d)

G2 = −19w5x

w7
x

+
271wxxw4x

w8
x

+
232w2

xxx

w8
x

− 2040w2
xxwxxx

w9
x

+
1980w4

xx

w10
x

(3.19e)

G1 = −4w6x

w7
x

+
79wxxw5x

w8
x

+
149wxxxw4x

w8
x

− 754w2
xxw4x

w9
x

+
4440w3

xxwxxx

w10
x

+
1126wxxw

2
xxx

w9
x

− 3060w5
xx

w11
x

(3.19f)
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G0 = −3w7x

w7
x

+
63wxxw6x

w8
x

− 690w2
xxw5x

w9
x

+
145wxxxw5x

w8
x

− 2494wxxwxxxw4x

w9
x

+
4794w3

xxw4x

w10
x

+
87w2

4x

w8
x

− 632w3
xxx

w9
x

− 22680w4
xxwxxx

w11
x

+
10326w2

xxw
2
xxx

w10
x

+
11340w6

xx

w12
x

+ k0 (3.19g)

Λ1 = −w4x

w3
x

+
6wxxwxxx

w4
x

− 6w3
xx

w5
x

(3.19h)

Λ2 =
w8x

w7
x

− 28wxxw7x

w8
x

+
396w2

xxw6x

w9
x

− 68wxxxw6x

w8
x

− 106u4xu5x
w8
x

− 3636w3
xxw5x

w10
x

+
1656wxxwxxxw5x

w9
x

+
1060wxxw

2
4x

w9
x

+
23265w4

xxw4x

w11
x

+
1420w2

xxxw4x

w9
x

−18900w2
xxwxxxw4x

w10
x

− 8520wxxw
3
xxx

w10
x

+
63360w3

xxw
2
xxx

w11
x

− 103950w5
xxwxxx

w12
x

+
44550w7

xx

w13
x

. (3.19i)

Here k0 is an arbitrary constant. It is interesting to note that acting R[w] on wx does not
result in a 7th-order symmetry for (3.7). Instead, R[w] maps the x-translation symmetry to
itself, i.e.,

R[w]wx = k0wx. (3.20)

Nevertheless, we find that equation (3.7) does admit a 7th-order Lie-Bäcklund symmetry and
hence a corresponding 7th-order symmetry-integrable equation, namely

wt =
w7x

w8
x

− 21wxxw6x

w8
x

− 49wxxxw5x

w8
x

+
231w2

xxw5x

w9
x

− 28w2
4x

w8
x

+
826wxxwxxxw4x

w9
x

−1596w3
xxw4x

w10
x

+
644w3

xxx

3w9
x

− 3444w2
xxw

2
xxx

w10
x

+
7560w4

xxwxxx

w11
x

− 3780w6
xx

w12
x

. (3.21)

With the change of variable

W (x, t) =
1

wx
(3.22)

equation (3.21) takes the form

Wt =W 8W7x − 6W 7WxW6x + 21W 6WxW6x − 42W 7WxxW5x + 70W 6WxxW5x

+7W 5W 2
xW5x + 30W 6W 2

xW5x − 70W 7WxxxW4x + 105W 6WxxxW4x
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+390W 6WxWxxW4x − 280W 5WxWxxW4x − 120W 5W 3
xW4x + 245W 4W 3

xW4x

+260W 6WxW
2
xxx − 210W 5WxW

2
xxx + 630W 6W 2

xxWxxx − 540W 5W 2
xxWxxx

−2160W 5W 2
xWxxWxxx + 2510W 4W 2

xWxxWxxx + 360W 4W 4
xWxxx

−760W 3W 4
xWxxx − 1800W 5WxW

3
xx + 1830W 4WxW

3
xx + 3960W 4W 3

xW
2
xx

−4800W 3W 3
xW

2
xx − 720W 3W 5

xWxx + 2280W 2W 5
xWxx − 720W 2W 7

x . (3.23)

4 Concluding remarks

In this paper we have introduced the following set of fully-nonlinear evolution equations:

ut =

[
(uxx + c)2 − β

2

]3/4
√
uxxx

, ut =
(uxx + c)3/4

√
uxxx

, ut =
1

√
uxxx

, ut =
1

u
2/3
5x

. (4.1)

We have established that this set of equations is symmetry-integrable in the sense that the
equations admit local Lie-Bäcklund symmetries and that the equations can be mapped to
known semilinear integrable equations using a combination of multipotentialisations, hodo-
graph transformations and generalised hodegraph transformations. The 3rd-order fully-
nonlinear equations in the set (4.1) admit recursion operators of the standard 2nd-order
form which can be applied to generated hierarchies of symmetry-integrable quasilinear equa-
tions. On the other hand, according to our calculations, we find that the fully-nonlinear
5th-order equation listed in (4.1) does not admit a standard recursion operator of order six
or less. It is therefore an open problem to find a recursion operator for this fully-nonlinear
5th-order equation, which we expect to be nonlocal.

Besides the fully-nonlinear equations listed in (4.1) we have obtained a set of quasilinear
5th-order symmetry-integrable equations, namely the equation (2.14) under the condition
(2.9b), as well as the equations (3.7) and (3.9). Furthermore, we have obtained a set of
7th-order quasilinear symmetry-integrable equations, namely (3.5), (3.16), (3.21) and (3.23).
These equations result naturally from the multipotentialisations of the fully-nonlinear equa-
tions (4.1) and as members of the symmetry-integrable hierarchies.

Finally we should mention that the complete classification of fully-nonlinear symmetry-
integrable evolution equations of 3rd and higher order is an ongoing project and the examples
studied here is an addition to the results that have already been reported in [5], [7] and [8].
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and symmetry-integrable equations of order three, Journal of Nonlinear Mathematical
Physics, 27 nr. 4, 521–528, 2020.

[7] Euler M and Euler N, On fully-nonlinear symmetry-integrable equations with rational
functions in their highest derivative: Recursion operators, Open Communications in
Nonlinear Mathematical Physics, 2, ocnmp:10306, 216-228, 2022

[8] Euler M and Euler N, On differential equations invariant under a projective transforma-
tion group, arXiv 2505.09800, doi.org/10.48550/arXiv.2505.09800, 2025.

[9] Euler N and Euler M, A tree of linearisable second-order evolution equations by gener-
alised hodograph transformations , Journal of Nonlinear Mathematical Physics 8, 342–
362, 2001.

[10] Olver PJ, Applications of Lie Groups to Differential Equations, Springer, New York,
1986.

[11] Ovsienko V and Tabachnikov S, What is ... the Schwarzian derivative? Notices of the
AMS, 56 nr. 2, 34–36, 2009.

[12] Petersson N, Euler N, and Euler M, Recursion Operators for a Class of Integrable Third-
Order Evolution Equations, Studies in Applied Mathematics, 112, 201–225, 2004.

[13] Sanders J A and Wang J P, Integrable systems and their recursion operators, Nonlinear
Analysis, 47, 5213–5240, 2001.


