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Abstract

The results presented in this paper are a natural development of those described
in the paper The Volterra Integrable case. Novel analytical and numerical results
(OCNMP Vol.4 (2024) pp 188-211), where the authors reconsidered the integrable
case of the Hamiltonian N -species Lotka-Volterra system, introduced by Vito Volterra
in 1937. There, an alternative approach for constructing the integrals of motion has
been proposed, and compared with the old Volterra approach. Here we go beyond,
and show that in fact the model introduced by Volterra and studied by us is not just
integrable, but is maximally superintegrable and reducible to a system with only one
degree of freedom regardless of the number of species considered. We present both
analytical and numerical results.

1 Introduction

More than a century ago, independently, A.J.Lotka and V. Volterra [2], [3] [4] elaborated
a simple but quite effective model able to describe the evolution of a two species biological
system, the so-called predator-prey model. Later on, V.Volterra realized that this model
was just the simplest example in a large class of biological, or rather ecological systems
with pairwise interaction. In fact, in the late thirties of the past century he constructed a
dynamical system modelling the pairwise interaction of N-species [4], [6], whose behaviour
fulfilled what he called the three fundamental laws of biological fluctuations (see [6], pp.
20-21). He was working in the framework of conservative models, which certainly are not
the only possible generalization of the original predator-prey system. Indeed, the current
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literature is quite rich of papers dealing both with conservative and dissipative models,
see for instance [7] - [14].

The main ingredients of the system are the natural growth rate ϵj of each species and an
N×N matrix Aj,k describing the interaction between the species j and the species k. Being
interested in conservative models, he postulated the matrix A to be skew-symmetrizable
and in fact he assumed it to be skew-symmetric. He found the Lagrangian and Hamilto-
nian formulation of his system, essentially by duplicating the number of variables through
the introduction of what he called the “quantity of life”, i.e. the time-integrals of the
numerosities of the species. Further he distinguished between even and odd number of
species: in the odd case, the interaction matrix A, being skew symmetric, is singular and
consequently the equilibrium configuration, whenever it exists, is not unique. Volterra
concluded that for non-zero growth coefficients the equilibrium states would have been
impossible, and the number of individuals in some species will have grown indefinitely or
go to zero, so that on the long run only an even number of species would have survived.
As we pointed out in [1], curiously enough, Volterra did not take into account the fact
that complete integrability could change, even drastically, the above scenario. So, the
aim we pursue and in fact attain in the present paper is the characterization of the in-
tegrable Volterra system discovered in [6] and studied in [1] as a Hamiltonian maximally
superintegrable system.

Accordingly, in Section (2), we start by recalling briefly the integrable version of the
N-species Volterra system, observing that the image of the matrix A (hereafter denoted as
I) is a 2-dimensional subspace of the N-dimensional Euclidean space EN , while its kernel,
hereafter denoted asK, is (obviously) (N−2)−dimensional. Then, we parametrize the two
subspaces I and K, decompose a generic vector in its K and I components, and choose
the coordinate system on I as suggested by the structure of the matrix A. We write down
the evolution equations for the N -species Vollterra system in these new coordinates, which
turn out to be canonical ones, and suitable to describe the system as a Hamiltonian system
with one degree of freedom. For the sake of completeness we consider in some detail the
N = 2 case, that exhibits non-trivial differences with respect to any N > 2 case. Finally,
we comment about the existence of equilibrium configurations, whose collection we denote
by E, and establish a connection between E and K.

In Subsection (2.1) we present an alternative approach, algebraic in nature, where
analogous results are derived starting from the spectral decomposition of the matrix A.

In Section (3) we comment about the results contained in [1], and discuss the fate of the
complete integrability structure find out there, concluding that the system under scrutiny
is in fact maximally superintegrable(see for instance [15] - [18]).

In Section (4), in order to get a qualitative insight in the long-time behavior of our
system, we look at its linearized version, identifying sufficient conditions for the existence
of bounded orbits. Also, we remember a sufficient condition for the existence of bounded
orbits in the fully non-linear case given in [1]. In Section (5) we show a number of
examples of orbits and trajectories of the system written in terms of the canonical variables,
corresponding to different choices of the parameters and do the comparison with the
corresponding results displayed in [1].

In Section (6) we raise some comments on the relation between the integrability struc-
ture presented here, the one contained in [1] and the original one proposed by Volterra
in [6]. In the end we mention some possibly interesting developments of the present re-
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search.

2 The integrable Volterra system revised

The equations for the N -species Volterra system read [6]

dNr

dt
= ϵrNr +

N∑
s ̸=r=1

ArsNrNs (r = 1, · · · , N). (1)

In (1), we have set all the parameters introduced in [6] βr = 1 ∀r; ϵr are the natural
growth coefficients of each species and Ars are interaction coefficients between species r
and species s that account for the effects of encountering between two individuals. In the
integrable N−species case, the N ×N interaction matrix A has the form:

Ars = ϵrϵs(Br −Bs) (2)

where all the ϵk and the Bk are real non-zero numbers, and moreover Bj ̸= Bk if j ̸= k.
Formula (2) means that we can write

A = [B, ϵ⊗ ϵ] ≡ (Bϵ)⊗ ϵ− ϵ⊗ (ϵB), (3)

where ϵ is the vector of components ϵj , (j = 1, . . . , N), and B = diag(B1, . . . , BN ), imply-
ing that A has rank 2.
So, I is 2-dimensional andK is (N−2)-dimensional. Moreover I andK are two orthogonal
subspaces with respect to the inner product (u, v) ≡

∑
j ujvj and the N -dimensional

Euclidean space EN can be written as the direct sum of them:

EN = I ⊕K.

We remark that the formula (3) besides telling us that A is a matrix of rank 2, defines
as well its image as a linear operator on EN : I is the linear span of two vectors, which
are linearly independent because the coefficients Bj are all distinct, namely ϵ and η, of
components ϵj and ηj = Bjϵj . It follows that the matrix elements of A are given by
Ajk = ϵkηj − ηkϵj . K is naturally defined as the (N − 2)-dimensional subspace of EN

orthogonal to I, i.e. such that its generic vector X fulfils the linear conditions

(X, ϵ) = (X, η) = 0. (4)

The components of a generic vector X ∈ K will be denoted as xj , and a coordinate
realization will be given in ( 34). On the other hand, the affine variety of equilibrium
configurations E is the set of elements Z fulfilling

(Z, ϵ) = 0, (Z, η) = 1. (5)

Their components will be denoted as zj , and an explicit realization in coordinates will be
given in (35).
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It is convenient to rewrite the evolution equations (1) In terms of the so-called logarithmic
variables defined by yj := logNj , getting:

ẏj = ϵj +

N∑
k=1

Ajk exp(yk) = ϵj + (ηj

N∑
k=1

ϵk − ϵj

N∑
k=1

ηk) exp(yk) (6)

We represent any vector ∈ EN as a linear combination of a vector ∈ I and a vector ∈ K

as follows:

yj = Pϵj +Qηj +
N−2∑
k=1

Rkτ
(k)
j (7)

In (7) the expression
∑N−2

k=1 Rkτ
(k)
j represents the decomposition of a generic element ∈ K

along a given orthonormal basis. The evolution equations (6) take the form:

Ṗ ϵj + Q̇ηj +

N−2∑
k=1

Ṙkτ
(k)
j = ϵj + ηj

N∑
k=1

ϵk exp(yk)− ϵj

N∑
k=1

ηk exp(yk) (8)

entailing:

Ṗ = 1−
N∑
k=1

ηk exp(yk), (9)

Q̇ =
N∑
k=1

ϵk exp(yk), (10)

Ṙk = 0, k = 1...N − 2 (11)

But also one has:

exp(yk) = exp(Pϵk +Qηk +
N−2∑
j=1

Rjτ
(j)
k ) ≡ exp(Pϵk +Qηk)Ck,

where we defined Ck = exp(
∑N−2

j=1 Rjτ
(j)
k ). We can rewrite the equations (9, 10) as:

Ṗ = 1−
N∑
k=1

Ckηk exp(Pϵk +Qηk), (12)

Q̇ =

N∑
k=1

Ckϵk exp(Pϵk +Qηk). (13)

It turns out that the Hamiltonian structure of the above equations is quite simple, being
the standard canonical one. Also, the N − 2 constants of motion appearing in equation
(11) are not just conserved quantities, but a set of Casimirs1 for the Poisson structure
related to (6). Let us remind [1] that the Hamiltonian formulation reads:

ẏj = {yj ,H}
1We remember that, given a Poisson manifold M , a Casimir related to the corresponding Poisson

structure is any nonconstant function on M that Poisson commutes with any function on M , i.e. if P is
the Poisson tensor, the Casimir is a function whose differential belongs to the Kernel of P .
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where the Poisson bracket between two smooth functions on EN , say F,G, is defined as:

{F,G} :=

N∑
j,k=1

∂F

∂yj
Ajk

∂G

∂yk
(14)

The previous Poisson bracket is not kernel-free and indeed we have a set of N−2 Casimirs:
if we consider any vector X belonging to K, whose components xk obey the relations (4),
then the Casimirs are explicitly given by (see also [11]):

N∑
n=1

yn

N−2∑
k=1

Rkτ
(k)
n =

N−2∑
k=1

Rk(Y, τ
(k)) = (Y,X) (15)

Formula (15) is easily proved: for an arbitrary function F one has

{F, (Y,X)} =

N∑
j,k=1

∂F

∂yj
Ajk

∂(Y,X)

∂yk
=

N∑
j,k=1

∂F

∂yj
Ajkxk = 0. (16)

The functions Rk are explicitly given by (Y, τk), i.e. is the projection of the dynamical
variables on the k-th orthonormal base vector spanning the Kernel. These functions can

be taken as a basis for the set of N − 2 Casimirs. The functions Ck = exp(
∑N−2

j=1 Rjτ
(j)
k )

are then an exponential of a linear combination of Casimirs, whose coefficients τ
(j)
k depend

only on the parameters of the models and are constant as well.

From (14) it follows:

Ṗ = −
N∑
k=1

ηk
∂H

∂yk
(17)

Q̇ =

N∑
k=1

ϵk
∂H

∂yk
. (18)

Taking into account the formulas:

∂

∂P
=

N∑
k=1

ϵk
∂

∂yk

∂

∂Q
=

N∑
k=1

ηk
∂

∂yk

we can rewrite the Hamilton equations in the canonical form:

Ṗ = −∂H

∂Q
; Q̇ =

∂H

∂P
(19)

and the Hamiltonian reads:
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H =

N∑
k=1

Ck exp(Pϵk +Qηk)−Q (20)

Let us write the relations linking the coordinates (P,Q) with the vector Y with com-
ponents yj . From the relations (4) and (5) we get:

Q =
(Y,Aϵ)

(η,Aϵ)
, P = −(Y,Aη)

(ϵ, Aη)
, (21)

where (ϵ, Aη) = (ϵ, η)2 − |ϵ|2|η|2 is strictly less than 0 due to Cauchy-Schwartz inequality
(see for instance [19]), since the vectors ϵ and η are not parallel. We notice that, from
equation (7), the coordinate Q can be also written as:

Q = (Y,Z)− (X,Z) (22)

i.e. Q is the projection of the component of Y belonging to I on the space E of equilibrium
configurations. The Hamiltonian (20) depends both on the Casimirs and the equilibrium
configurations: this is indeed well known, see e.g. [1] and references therein. Further,
the term (X,Z) can be omitted in the Hamiltonian since it is just a constant term not
containing the dynamical variables.

It is worthwhile to notice that the N = 2 case, namely the original Lotka-Volterra system
[4], is peculiar. We discuss just the system in the coordinates (P,Q).

1. First of all, only in this case K is an empty set, while E consists of a single point.
Indeed, from (4) and (5) we get:

ϵ1x1 + ϵ2x2 = 0 (23)

η1x1 + η2x2 = 0 (24)

which has no nonzero solutions, since ∆ := ϵ1η2 − ϵ1η2 is ̸= 0, and

ϵ1z1 + ϵ2z2 = 0 (25)

η1z1 + η2z2 = 1 (26)

yielding the equilibrium position:

(z,1z2) = (
ϵ2
∆
,−ϵ1

∆
)

implying that, assuming for instance ∆ > 0 , it belongs to the first quadrant iff
ϵ1 < 0, ϵ2 > 0.
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2. Moreover, for N = 2 we have Ck = 1(k = 1, 2). So, the equations of motion read:

Ṗ = 1−
2∑

k=1

ηk exp(Pϵk +Qηk)

Q̇ =
2∑

k=1

ϵk exp(Pϵk +Qηk)

and clearly constitute a closed nonlinear differential system for the unknowns P,Q.

By introducing the new variables:

Sj = ϵjP + ηjQ (j = 1, 2) (27)

it follows:

P =
η1S1 − η2S2

ϵ1η2 − ϵ2η1
, (28)

Q =
ϵ1S1 − ϵ2S2

ϵ1η2 − ϵ2η1
. (29)

The equations of motion are rewritten as

Ṡ1 = ϵ1 −∆exp(S2) = −∆
∂H

∂S2
(30)

Ṡ2 = ϵ2 +∆exp(S1) = ∆
∂H

∂S1
(31)

where the Hamiltonian is given by:

H =

2∑
k=1

exp(Sk) +
ϵ2S1 − ϵ1S2

∆
, (32)

Of course, the Hamiltonian can be found directly by integrating the orbit equation:

dS1(ϵ2 +∆exp(S1) = dS2(ϵ1 −∆exp(S2) (33)

We end this section by presenting an explicit characterization of the sets K and E.
If one chooses two different arbitrary indices among 1, . . . , N , say m and n, then a coor-
dinate realization of the vectors X (4) can be X = (x1, . . . , xN ), where

xm =
∑
k ̸=m

xkϵk(Bn −Bk)

ϵm(Bm −Bn)
, xn =

∑
k ̸=n

xkϵk(Bm −Bk)

ϵn(Bn −Bm)
, m ̸= n (34)
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Also, a coordinate realization of the elements Z ∈ E is provided by:

zm =
∑
k ̸=m

zkϵk(Bn −Bk)

ϵm(Bm −Bn)
+

1

ϵm(Bm −Bn)
,

zn =
∑
k ̸=n

zkϵk(Bm −Bk)

ϵn(Bn −Bm)
+

1

ϵn(Bn −Bm)
, m ̸= n

(35)

where again m and n are two arbitrary indices 1, . . . , N . The choices of xk and zk, for
k ̸= m,n, are arbitrary. For example, in the N = 3 case, one can take m = 1 and n = 2,
so that the only remaining index is k = 3, i.e. z3 is arbitrary.

2.1 An (alternative) algebraic approach relying on the spectral decom-
position, leading to an analogous Hamiltonian formulation.

The matrix A, being real and skew-symmetric (which ensures that iA is hermitian), is
amenable to a spectral decomposition:

A = iω(v+ ⊗ v̄+ − v− ⊗ v̄−), (36)

where v+ and v− are the mutually orthogonal eigenvectors corresponding to the eigenval-
ues ±iω ∈ iR and the overline denotes complex conjugation. The two eigenvectors are
orthogonal with respect to the complex scalar product: throughout this subsection we set
(u, v) =

∑N
k=1 ūkvk.

Let us remind the definition of vectors ϵ and η:

ϵ := {ϵj}j=1,...N ; η := {Bjϵj}j=1,...N (37)

so that K is given by (4), and in coordinates by (34); on the other hand, the set of
equilibrium configurations is given by (5), and in coordinates by (35).

We notice that from the eigenvalue equation

ϵj

N∑
k=1

ϵk(Bj −Bk)vk = λvj (38)

one has v−j = v̄+j , v−j = v̄+j and we can rewrite (36) in the form:

Ajk = iω(v+j v
−
k − v−j v

+
k ) → A = iω(v+ ⊗ v− − v− ⊗ v+) (39)

which makes its skew-symmetry manifest.

We start again by the evolution equations written In terms of the logarithmic variables
(6), but now we use different local coordinates. By using as a new basis the eigenvectors
v±, we will get a decomposition of the following form

yj = y+v
+
j + y−v

−
j +

N∑
k=1

Rkτ
(k)
j
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As v+ = v̄−, since yj are real, it holds y− = ȳ+, xj ∈ R and the term in the sum is the
same as in (7). To keep working with real quantities, it is natural to set:

y± = (1/
√
2)(p± iq), (40)

v± = (1/
√
2)(u± iw). (41)

It follows:

yj = puj − qwj +

N∑
k=1

Rkτ
(k)
j

To make a close comparison with the procedure and the results obtained in Section 2, we
write the eigenvalue equation (38) In terms of the variables ϵ, η, getting:

N∑
k=1

(ϵkηj − ϵjηk)vk = λvj

By setting

α =
N∑
k=1

ϵkvk, β =
N∑
k=1

ηkvk,

we can write:

ηjα− ϵjβ = λvj .

Through obvious manipulations we arrive at the following homogeneous linear system:

|η|2α− (η, ϵ)β = λβ (42)

(ϵ, η)α− |ϵ|2β = λα (43)

The solution of the secular equation yields the following two complex conjugated eigen-
values:

λ±
.
= ±iω = ±i

√
|ϵ|2|η|2 − (ϵ, η)2. (44)

Notice that ω, i.e. the expression under the square root, is positive because of Cauchy-
Schwartz inequality [19], as already noticed in the previous section. Explicitly we have:

|ϵ|2|η|2 − (ϵ, η)2 = −1

2
Tr(A2) =

∑
k,i>k

(ϵiϵk)
2(Bi −Bk)

2. (45)

Once solved for α, β the system (42), (43), in terms of the variables ϵ, η we get:
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uj =
√
2ρϵj (46)

wj =

√
2ρ

ω
(ϵj(ϵ, η)− ηj |ϵ|2) (47)

ρ2 = 1/(2|ϵ|2) (48)

A straightforward calculation yields the normalization properties:

|u|2 = |w|2 = 1, (u,w) = 0. (49)

Moreover, it turns out that:

Ajk = ϵkηj − ϵjηk = ω(ujwk − wjuk)

implying that the evolution equations (6) become:

ṗuj − q̇wj =
1√
2ρ

uj +ω(uj

N∑
k=1

Ckwk exp(puk−qwk)−wj

N∑
k=1

Ckuk exp(puk−qwk) (50)

Whence:

ṗ =
1√
2ρ

+ ω
N∑
k=1

Ckwk exp(puk − qwk) (51)

q̇ = ω
N∑
k=1

Ckuk exp(puk − qwk) (52)

The Hamiltonian nature of equations (51,52) stems easily from the original Poisson
structure (14), that implies

q̇ = ω
∂H

∂p

ṗ = −ω
∂H

∂q

The two expressions coincide for the Hamiltonian:

H =

N∑
k=1

Ck exp(puk − qwk)−
q√
2ωρ

(53)

We conclude this Section by noticing that the variables (p, q) and (P,Q) are related by a
linear combination, i.e.

p =
1√
2ρ

P +
√
2ρ(ϵ, η)Q,

q =
√
2ρωQ.

(54)

This transformation is not canonical: it is possible to get a canonical transformation by
the rescaling (p, q) → (

√
2ρp, q√

2ρω
)
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3 Old and new results: how to understand them?

In [1] we constructed a complete set of first integral in involution for the system (1) with
the interaction coefficients given by (2), showing that out of the family

e−a
∑

i Ni(t)
N∏
i=1

Ni(t)
ci = I1,..,N , (55)

one can extract N − 1 independent integrals of motion in involution, with respect to
the Poisson brackets (14). In (55) ck are a set of arbitrary constant constrained by the
equation

∑
k ckϵk = 0 whereas a =

∑N
k=1Bkϵkck. Clearly it is always possible to rescale

the constant ck and set a = 1 so that the constants ck can be considered the set of
equilibrium configurations zk given in formulae (35).

It is natural to ask the following question: what is the role of the integrals of motions C̃k

found out in [1]? As we will show, the answer to this question will be clear if one introduces
again the variables (P,Q). First of all, we remind that in term of the logarithmic variables
yj the generating function of the first integrals can be written as a single exponential of
the quantity:

I(c1 · · · , cN ) =

N∑
k=1

ϵkckCk

where

Ck = (yk/ϵk −Bk

N∑
j=1

exp(yj)) (56)

In terms of the Poisson bracket (14) we obtain

{Ck, Cl} = (Bk −Bl)[1−
N∑
j=1

ϵjBj exp (yj)] (57)

of course, under the conditions that the matrix A be of the form (3).

The formula above entails that the differences Ck − Cr, Cl − Cr, r being arbitrary but
fixed, k, l running from 1 to N , provide a family of N −1 integrals of motion in involution.

In terms of the P,Q variables we have (up to an irrelevant additive constant):

Ck = P +Bk

Q−
N∑
j=1

Cj exp (Pξj +Qηj)

 = P −BkH (58)

whence it follows

1. The quantities Ck are functionally independent, since the Jacobian of the pair Ck, Cl

is ̸= 0, being in fact equal to (Bk − Bl)
∂S
∂Q , where S ≡

∑
j Cj exp(Pξj +Qηj), but

are not first integrals.
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2. On the other hand.the differences Ck − Cr, Cl − Cr (r fixed, k, l running from 1
to N), Poisson commute between themselves and with the Hamiltonian, but are of
course functionally dependent, among themselves and on the Hamiltonians, as they
are simply given by (Br −Bk)H.

Our conclusion is that the quantities C̃k ≡ Ck − Cr are genuine independent integrals of
motion for the original system with N degrees of freedom. However, once the original
system is reduced on I so being transformed into a Hamiltonian system with one degree
of freedom, those quantities are no longer independent and in fact become proportional
to the Hamiltonian, which stays as the unique integral motion for the reduced system.

4 The linearized system

It seems not easy to understand under which conditions the dynamical system defined by
the Hamiltonian (20) produces closed orbits and periodic motion. In this respect, it may
be useful to linearize the original system (1) around an equilibrium configuration. We
remember that an equilibrium configuration is any vector with elements zk satisfying the
conditions

N∑
k=1

ϵkzk = 0,

N∑
k=1

ηkzk = 1 (59)

stemming from the matrix equation:

ϵj +
N∑
k=1

Aj,kzk = 0, j = 1, . . . , N.

We remember that a coordinate realization of the set of equilibrium configurations is given
by equations (35). We set

Nk(t) = zk + δk(t), (60)

where the δk’s are assumed to be small. At first order we get from (1)

δ̇j = zj

N∑
k=1

Aj,kδk
.
=

N∑
k=1

Mj,kδk. (61)

The matrix with elements Mj,k = zjAj,k defines the local dynamics of the model (1). We
notice that the matrix Mj,k just defined, like the matrix Aj,k, has rank 2. Its characteristic
polynomial is given by

λN−2

(
λ2 − 1

2
Tr(M2)

)
= 0, (62)

where

Tr(M2) = −
N∑

j,k=1

zjzk(ϵjηk − ϵkηj)
2 (63)
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Since the two eigenvalues different from zero have opposite signs, if they are real the family
of equilibrium configurations is unstable. On the contrary, if the trace of M2 is negative
one has a stable configuration (if the matrix M possesses N independent eigenvectors).
From (63) we notice also that it is sufficient, in order to have a negative trace, that the
coefficients zk be all positive. This in turn implies that at least one of the ϵk is negative,
otherwise equation (59) cannot be satisfied. So we expect to find closed orbits in the case
when the growth coefficients ϵk are of different signs and to find open orbits when the
growth coefficients are all of the same sign.

In the case of periodic motion it is possible to give an interpretation of the equilibrium
configurations in terms of the average values of the numerosities. Indeed, let us define the
average numerosities as the integral over a period normalized by the length of the period
itself, i.e.

N j =
1

T

∫ T

0
Nj(t)dt. (64)

Then, from the equations (1) we get

ln(Nj(T ))− ln(Nj(0)) = 0 = ϵj +

N∑
k=1

Aj,kNk, (65)

showing that indeed the vector with components N j belong to the set of equilibrium
configurations.

It might be interesting to consider the linearization of the dynamical system as it
appears when written in terms of P,Q variables. We start from the equations:

Ṗ = 1−
N∑
k=1

ηk exp(Pϵk +Qηk)Ck (66)

Q̇ =
N∑
k=1

ϵk exp(Pϵk +Qηk)Ck (67)

An equilibrium configuration is a pair (P 0, Q0) satisfying the equations:

0 = 1−
N∑
k=1

ηk exp(P
0ϵk +Q0ηk)Ck (68)

0 =

N∑
k=1

ϵk exp(P
0ϵk +Q0ηk)Ck (69)

So, the equilibrium configurations are defined as:

zk := exp(P 0ϵk +Q0ηk)Ck (70)

We linearize around the equilibrium configuration, setting:

P = P 0 + δP, Q = Q0 + δQ,
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where δP and δQ are small quantities. From the equations of motion (66) and (67) we
get, at first order in δP and δQ

δṖ = ℓ1,1δP + ℓ1,2δQ (71)

δQ̇ = ℓ2,1δP + ℓ2,2δQ (72)

where we set

ℓ2,2 = −ℓ1,1 =

N∑
k=1

zlϵkηk, ℓ1,2 =

N∑
k=1

zkη
2
k, ℓ2,1 =

N∑
k=1

zkϵ
2
k.

We rewrite (71), (72) in matrix form. By denoting

ζ =

(
δP
δQ

)
, L =

(
ℓ1,1 ℓ1,2
ℓ2,1 ℓ2,2

)
(73)

one has:

ζ̇ = Lζ (74)

The secular equation associated to the matrix L reads:

λ2 = −1

2

∑
jk

zjzk(ϵjηk − ϵkηj)
2 (75)

Again we can repeat the considerations after equation (63): from equation (75) it follows
that if the equilibrium configuration numerosities zj have all the same sign (typically,
they are all positive) the motion is bounded and periodic. Otherwise there might be open
orbits. Of course (74) is trivially solvable, yielding (with λ = iν):

ζ(t) = exp(Lt)ζ(0) = [cos(νt)1 + i(sin(νt)/ν)L]ζ(0) (76)

where 1 is the identity matrix.
Finally, in this Section, we would like to remember a result about the compactness of

the orbits in the fully nonlinear case given in [1]. If it is possible to choose the constants
ck in (55) to be positive and if the initial conditions Nk(0) are such that the following
relation is satisfied:

N∏
k=1

Nk(0)
ck

eaNk(0)
<

N∏
k=1

( ck
ae

)ck
, (77)

then the motion occurs on a closed surface isomorphic to the N -sphere, explicitly given
by

N∏
k=1

Nk(t)
ck

eaNk(t)
=

N∏
k=1

Nk(0)
ck

eaNk(0)
. (78)

Clearly, since the constants ck are constrained to satisfy
∑

k ϵkck = 0, it is possible to
choose the constants ck all positive only if the ϵk are not all of the same sign. This result
confirms what found with the linearization and gives a sufficient condition to get closed
orbits in the nonlinear case.
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5 Graphics and Numerics

In this section we would like to give some numerical examples of the dynamics defined by
the Hamiltonian (20) or (53). We start with an example of a closed orbit for 4 interacting
species. The parameters are fixed in the following way:

ϵ1 = 1, ϵ2 = −1, ϵ2 = 1, ϵ4 = 2,

B1 = B3 + 3, B2 = B3 + 1, B4 = B3 + 2.
(79)

The corresponding interaction matrix reads

A =


0 −2 3 2
2 0 −1 2
−3 1 0 −4
−2 −2 4 0

 (80)

We look firstly at the dynamical system in terms of the canonical variables (q, p) defined
by equations (51) and (52). The corresponding values of ω and ρ in (44) and (48) are
respectively given by

√
38 and 1/

√
14. The two Casimirs for the set of equations (6) defined

by the Kernel of the matrix A are H1 = 4y2+2y3+y4 and 21y1−y2+10y3−16y4. At this
point one has to choose the initial conditions. We choose y1(0) = 1, y2(0) = 2, y3(0) = −1
and y4(0) = 1 corresponding to the values q(0) = 5 ·

√
7/38 and p(0) = 0 for the variables

p and q. The numerical trajectories for the variables p(t) and q(t) are displayed in figure
(1).

Figure 1. Plot of the trajectories of the canonical variables q and p corresponding to the initial

conditions q(0)5 ·
√
7/38 and p(0) = 0.

The motion is periodic. Indeed, the corresponding level curve of the Hamiltonian, given
by H(q, p) = (−35 + 76e+ 38e−1 + 38e2)/

√
38 is given in figure (2)
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Figure 2. Plot of the numerical orbit in the phase space corresponding to the initial conditions

q(0) = 5 ·
√

7/38 and p(0) = 0 (in black, left) and the corresponding plot of the analytical level

curve given by H(q, p) = (−35 + 76e+ 38e−1 + 38e2)/
√
38 (blue, right).

We can plot also the lines ṗ = 0 and q̇ = 0 corresponding to the solutions of the right
hand side of equations (51) and (52). They divide the plane (p, q) in four regions, each
possessing a precise sign of p and q. The curves meet at the equilibrium point. The
corresponding plots are given in Figure (3)

Figure 3. Plot of the trajectories of the canonical variables q and p corresponding to the initial

conditions q(0) = 5 ·
√
7/38 and p(0) = 0 together with the curves determined by ṗ = 0 (black)

and q̇ = 0 (red). The arrows show the direction of the flow.

We can give also a plot of the previous closed trajectory in the plane (P,Q). We notice,
however, that the equations of motion (12-13), and hence the trajectories, depend on all
the parameters Bi, differently from the equations of motion (51-52) that depends only on
the differences Bi−Bj . So we must also fix the value of B3 in (79). Let us choose B3 = 1.
The values of the initial conditions are P (0) = −5/2 and Q(0) = 35/38 correspondingly
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to the dame initial conditions for the variables yi, i = 1, ..., 4, as before. The plot is given
in Figure (4). The coordinate Q depend only on the differences Bi − Bj whereas, as can
be seen from equations (54), P depends linearly on B3, so by changing this value one has
a stretching of the closed curve given in Figure (4)

Figure 4. Plot of the trajectory in the plane (Q,P ) corresponding to the initial conditions

Q(0) = 35/38 and P (0) = −5/2.

In the next example we flip the value of ϵ2: from negative to positive. So we set:

ϵ1 = 1, ϵ2 = 1, ϵ2 = 1, ϵ4 = 2,

B1 = B3 + 3, B2 = B3 + 1, B4 = B3 + 2.
(81)

The corresponding interaction matrix reads

A =


0 2 3 2
−2 0 1 −2
−3 −1 0 −4
−2 2 4 0

 (82)

The values of ρ and ω are the same as before, whereas the two integrals of motion for
the set of equations (6) defined by the Kernel of the matrix A are H1 = −4y2 + 2y3 + y4
and 21y1 + y2 + 10y3 − 16y4. We fix the initial conditions to be the same as before, i.e.
y1(0) = 1, y2(0) = 2, y3(0) = −1 and y4(0) = 1 corresponding to the values q(0) = 15/

√
266

and p(0) = 4/
√
7 for the variables p and q. The numerical trajectories for the variables

p(t) and q(t) are displayed in figure (5).
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Figure 5. Plot of the trajectories of the canonical variables q and p corresponding to the initial

conditionsq(0) = 15/
√
266 and p(0) = 4/

√
7 .

Now the motion is unbounded. The corresponding level curve of the Hamiltonian, given
by H(q, p) = (38e2 + 76e− 15 + 38e−1)/

√
38 is given in figure (6)

Figure 6. Plot of the numerical orbit in the phase space corresponding to the initial conditions

q(0) = 15/
√
266 and p(0) = 4/

√
7 (in black, left) and the corresponding plot of the analytical level

curve given by H(q, p) = (38e2+76e−15+38e−1)/
√
38 (blue, right). The black curve on the right

is overlaying the blue one.

The analytical, numerical, and graphic outcomes displayed in this section confirm and
consolidate the results derived in ( [1]).

6 Concluding Remarks

We have seen that all the commuting integrals of motion C̃k ≡ Ck − C1, when evaluated
on I, are functionally dependent among themselves and on the Hamiltonian. Nevertheless
it might be interesting to identify their dynamical meaning, in other words the flow that
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they generate. Let us define the bracket {yi, C̃k} as ∂yi
∂tk

, and {yi,H} as ∂yi
∂tH

. By looking
at equation (58) it is clear that one has

∂yi
∂tk

= (B1 −Bk)
∂yi
∂tH

,

meaning that

tk = tH/(B1 −Bk).

The flow generated by the commuting integrals of motion C̃k is the same as the one
generated by the Hamiltonian, with a properly contracted or dilated time-scale.

Also, we would like to answer to the following question: do the integrals of motion
introduced by Vito Volterra in 1937 ( [4]), in his framework with doubled number of vari-
ables and canonical Poisson bracket, have any correspondence with those derived by us in
our recent paper ( [1])? Let us remember how Volterra doubled the number of coordinates.
He introduced the quantity of life for each species k by defining qk =

∫ t
0 Nk(τ)dτ . The

linear momenta, canonically conjugated to the quantities of life, are then defined as [1]:

pk = log q̇k + 1− 1

2

N∑
n=1

Aknqn (83)

whereas the Hamiltonian HV of the model is given by:

HV =

N∑
k=1

ϵkqk − q̇k (84)

where one has to substitute the value of q̇k in terms of pk and the q’s from (83). Then,
Volterra shows that the quantities

Hr −Hl =
pr − 1

2

∑
sAr,sqs

ϵr
−

pl − 1
2

∑
sAl,sqs

ϵl

are functionally independent conserved quantities also when the matrix A is the degenerate
one leading to complete integrability. By taking also into account equations (83), one has:

Hr −Hl =
log(q̇r) + 1

ϵr
− log(q̇l) + 1

ϵl
− (Br −Bl)

N∑
s=1

ϵsqs (85)

The relations among H, HV and the conserved quantities Ck − Cn and Hk −Hn can be
obtained by using formulae (56) and (58). We can write:

Hk −Hn + (Bk −Bn)HV = Ck − Cn + (Bk −Bn)H+Dk,n, (86)

where Dk,n is a suitable constant depending on the parameters. Clearly, the conserved
quantities Hk − Hn and HV depend also on the integral of the numerosities, whereas
the integrals Ck −Cn and H depend punctually on the numerosities: a direct relationship
between Hk−Hn and Ck−Cn would be not possible, since the integrals of the numerosities
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must be balanced by the term proportional to HV on the right hand side of (86). In other
words the differences between Hk − Hn and Ck − Cn is a conserved quantity and must
be proportional to HV , whereas the difference between HV and a suitable combination of
Hk −Hn is a conserved quantity depending only on the numerosities, not their integral,
and then must be proportional to H. These considerations are quantified by equations
(86).

Let us summarize the findings of this work: we have shown that the Volterra’s inte-
grable system with N -species can be reduced to an Hamiltonian system with only one
degree of freedom. The corresponding motion can be bounded (and, in fact, periodic), or
unbounded. We give a sufficient condition, depending on the parameters of the model and
on the initial conditions, to get a bounded motion. The problem to establish, for a suit-
able choice of the parameters, how many equilibrium configurations exist for the reduced
system in the canonical coordinates (P,Q) or (p, q) could be an interesting question: as
a matter of fact we always get just one equilibrium configuration in the plane (P,Q) (see
e.g. Figure (3), where the equilibrium configuration is given by the intersection of the
red and black curves). The fact that the bounded motion take place on a hypersurface
isomorphic to the N -sphere seems to strength the conjecture that the system of equations
(68)-(69) possesses one solution for bounded motion and zero solutions for unbounded
motion, depending on the values of the parameters. But we cannot give here a proof. If
the conjecture would be true, we can exclude also the existence of more exotic orbits like
homoclinic or heteroclinic orbits.

Finally, other possible, and in our opinion interesting, directions that a forthcoming
research could pursue to extend our results are the following: the search for an exact time
discretization of the results derived here, or, equivalently, the search for auto-Bäcklund
transformations. A second direction would be the generalization of our results to a math-
ematically meaningful N → ∞ limit.
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