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Abstract

Conditional symmetries were introduced by Levi and Winternitz in their 1989 seminal
paper to deal with nonlinear PDEs. Here we discuss their application in the framework
of ODEs, and more specifically Dynamical Systems; it turns out they are closely
related to two established – albeit maybe less widely known – concepts, i.e. orbital
symmetries and configurational invariants. The paper is devoted to studying the
interplay of these notions, and their application in the study of Dynamical Systems,
with special attention to invariant manifolds of these.

This paper is dedicated to the dear memory of Decio Levi and Pavel Winternitz

Introduction

The purpose of this work is to reconsider some notions, all of them related to symmetries
of differential equations and dynamical systems, but which appear so far to have been
considered each by itself, and to investigate their mutual relations.

These notions are the well known one of conditional symmetries introduced by Levi and
Winternitz [1,2] and mainly applied to PDEs (and to partial difference equations, a theme
we will not consider here); the notion of orbital symmetries introduced by Walcher [3, 4]
in the study of dynamical systems; and the notion of configurational invariants – also
called conditional constants of motion – introduced by Sarlet, Leach and Cantrijn [5] in
their study of “weak integrability” (or rather, in the nomenclature we will adopt here,
conditional integrability) of dynamical systems.

More specifically, our main theme will be to consider how the notion of conditional
symmetries applies to dynamical systems (which seems not to have undergone specific
investigation so far); we will then show that the notions of orbital symmetries (defined for
dynamical systems) and configurational invariants (defined for ODEs) recalled above have
a rich interplay among themselves and with conditional symmetries.
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In Section 7 we will discuss several possible extensions (and, at the same time, limita-
tions) of our discussion.

Albeit we cannot claim any substantial new result, we trust that a better understanding
of the interplay between these notions will help to profitably apply them in the study of
Dynamical Systems.

Summation over repeated indices will be routinely understood. By “smooth” we will
always understand C∞. The end of Examples, Proofs and Remarks will be signalled by
the symbols ✷, ♦ and ⊙ respectively.

1 Lie-point symmetries for dynamical systems

We start by recalling some basic facts about symmetry analysis of differential equations
[6–14]; as we are mostly interested in dynamical system [15–18], we will discuss the general
theory in this context – which allows for a slightly lighter notation than in the general
case.

Let M be a smooth manifold, which we think of as embedded in RN , the latter being
equipped with coordinates (x1, ..., xN ). In the following we also write

∂i :=
∂

∂xi
;

the vector operator of components (∂1, ..., ∂n) will be denoted as ∇.

A dynamical system on M is a system of first order autonomous ODEs

ẋ = f(x) (1)

where f : M → TM is a smooth (i.e. C∞) function.

1.1 Symmetry algebra

The dynamical system (1) corresponds to the flow on M under the action of the vector
field

f̂ = f(x)∇ = f i(x)
∂

∂xi
. (2)

The set of vector fields on M equipped with the Lie commutator [., .] form a Lie algebra,
which we denote by V. If f̂ is as in (2) and we consider a new vector field

ŝ = si(x) ∂i , (3)

their commutation is given by

[ŝ, f̂ ] =
(
ŝ(f i) − f̂(si)

)
∂i =

(
sj∂jf

i − f j∂js
i
)
∂i . (4)

Clearly, to any vector field f̂ ∈ V we can associate a smooth vector function f :
M → TM , i.e. a section of the tangent bundle TM for M . The space of such smooth
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functions will be denoted by F ; this is naturally equipped with a Lie-Poisson bracket1

{., .} : F × F → F induced by [., .]; this is given by

{f, g} := (f · ∇) g − (g · ∇) f . (5)

We can now define symmetry vector fields. It should be mentioned that what we
call a “symmetry vector field”, see Definition 1, is, more precisely, the generator of a
one-parameter local group of symmetries; we will adopt this abuse of language (rather
common in the literature) for ease of discussion.

Definition 1. A vector field ŝ ∈ V is a Lie-point time-independent (LPTI) symmetry
of the dynamical system (1) if under the flow of ŝ solutions to (1) are transformed into
(generally, different) solutions to (1).

Lemma 1. In the present setting, ŝ is a symmetry for (1) if and only if

[f̂ , ŝ] = 0 ; (6)

or, in terms of (5),

{f, s} = 0 . (7)

Proof. See any book on symmetries of differential equations [6–14]. ♦

It is easy to see that the vector fields satisfying (6) form a Lie algebra; the same holds
for functions satisfying (7) or even (9). We will denote these, respectively, by Ĝ

f̂
⊂ V and

by Gf ⊂ F .

Remark 1. Here we are considering not only time-autonomous dynamical systems, but
also (symmetry) vector fields which do not act nor depend on time, i.e. Lie-Point Time-
Independent (LPTI) symmetries. The case of general (i.e. non-autonomous and acting
on time) vector fields – in which we deal with M = R×M and with V (the set of vector
fields on M) and F (the set of smooth functions from M to TM) – is readily recovered by
adding a new coordinate x0 whose evolution is given by ẋ0 = 1. If f is autonomous but s
is general, i.e.

ŝ = si(x, t) ∂i , (8)

the relation in terms of commutators of vector fields is just the same as (6), while (7) is
replaced by

st + {f, s} = 0 . (9)

More generally [6–14], LP symmetries would be vector fields on R×M of the form

η = τ(x, t)
∂

∂t
+ ϕi(x, t)

∂

∂xi
. (10)

1Needless to say, this is not to be mistaken with the Poisson bracket met in Hamiltonian Dynamics.
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The determining equations for symmetries are then (with summation over repeated in-
dices)

∂tϕ
i +

(
f j∂jϕ

i − ϕj∂jf
i
)

= f i
(
∂tτ + f j∂jτ

)
. (11)

For τ = c, corresponding to time translations (and including the case τ = 0 of interest
here), we just get

∂t ϕ
i + {f, ϕ}i = 0 , (12)

which is just (9). ⊙

Remark 2. If τ is nowhere zero, we can divide (10) by τ , reaching the form ∂t + ϕ∇; if
τ has some zero, proceeding in this way produces a vector field which is singular at such
points. ⊙

Remark 3. In the study of (autonomous, and not only) dynamical systems it is specially
convenient to consider vector fields not acting on time, i.e. with τ ≡ 0. One reason for this
is the following: we know that a vector field is a symmetry for a given equation if and only
if its evolutionary representative is [6]; for a vector field of the form (3), the evolutionary
representative is

ŝe = Qi ∂i , Qi = si − τ ẋi . (13)

When we restrict this to the solution manifold for (1) we just get

Qi = si − τ f i . (14)

Thus, as si(x, t) are arbitrary functions, the term τ(x, t)f i(x) can be absorbed into the
choice of si(x, t). Note that the same argument holds for non-autonomous dynamical
systems as well. For a more general discussion see e.g. [19–22]. ⊙

1.2 Module structure of the symmetry algebra

We now consider the case where (1) – or f for short – admits a constant of motion (CM);
that is, there is a smooth scalar function P (x) : M → R which is constant under the flow
of (1), i.e. such that

dP

dt
= (ẋ · ∇)P = (f · ∇) P = 0 . (15)

Note that for a given dynamical system these are determined by solving the associate
characteristic system

dx1

f1
= ... =

dxn

fn
.

It turns out that in this case the set of symmetries for the dynamical system has,
beside the structure of Lie algebra, also that of Lie module .(For definition and properties
of modules, see any text in Algebra; or e.g. [23].) In other words, we have:
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Lemma 2. Let the dynamical system (1) admit P as a CM. If ŝ is a symmetry for f̂ ,
then r̂ = g(P )ŝ is also a symmetry for f̂ , for any smooth scalar function g : R → R.

Proof. In fact,

{f, g(P )s} = g′(P ) s (f · ∇)P + g(P ) {f, s} = g(P ) {f, s} , (16)

where we have used first the assumption that P is a CM, and then {f, s} = 0. This
concludes the proof for LPTI symmetries. As for time-dependent ones, we note that the
time derivative is just

∂tr
i = ∂t

(
g(P ) si

)
= g(P ) ∂ts

i + (∂tg(P )) si ; (17)

on the flow on f̂ , ∂tg(P ) = 0 by the assumption P is a CM, and thus eq. (9) reads

g(P )
(
sit + f j∂js

i − sj∂jf
i
)
; (18)

this vanishes if the term in brackets does. ♦

The CM for a given dynamical system form an associative and commutative algebra,
closed under sum and product: if P1 and P2 are CM for f , obviously also P̃ = P1 + P2 is
a CM for f , and similarly for P̂ = P1P2. We denote this algebra by If . Note that the set
I(0) of functions which are constant on M is trivially in If for any f ; we call If/I

(0) the
nontrivial algebra of CM for f .

Lemma 3. The set Gf is a Lie module over the algebra If .

Proof. We have to show that if s1, s2 ∈ Gf and P1, P2 ∈ If , then σ = P1s1 + P2s2 ∈ Gf

as well. This follows from the bilinearity of the Lie-Poisson bracket {., .} via a trivial
computation.

Corollary. If If is nontrivial, then Gf is infinite dimensional as a Lie algebra.

Remark 4. Note that in this case Gf will be in general (for f 6≡ 0) finite dimensional as
a module. ⊙

1.3 Invariant solutions

In the following we will deal with invariant solutions, i.e. functions which are solutions
of a differential equations and which are invariant under the action of a vector field. We
recall that in full generality, i.e. when we consider functions ua(x1, ..., xn) depending on
several independent variables and correspondingly vector fields

v̂ = ϕa(x, u)
∂

∂ua
+ ξi(x, u)

∂

∂xi
, (19)

the function ua = fa(x) is invariant under v̂ if and only if the equations

ϕa = ξi fa
i (20)

are satisfied.
This descends immediately from the fact that under the infinitesimal action of v̂ (i.e.

under exp[εv̂]) the function f is mapped into f̃ with

f̃a = fa + ε
[
ϕa − ξi uai

]
. (21)

We refer e.g. to [6–14] for details.
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1.4 Orbital symmetries

In the case of dynamical systems, it makes full sense to consider, beside ordinary symme-
tries, also so called orbital symmetries [3, 4]. While a symmetry preserves the equation,
an orbital symmetry preserves the equation up to a time reparametrization. In the case of
dynamical systems, this means that the equation can be transformed into a different one
whose solutions have the same trajectories as the original equation. We refer to [3, 4] for
a general discussion of orbital symmetries and their applications. (As orbital symmetries
are likely to be less widely known than standard symmetries, some simple examples of the
former are collected in Appendix A to help the reader not familiar with these to fix ideas.)

Definition 2. Given the dynamical system (1), the vector field (3) or more generally
a vector field (10) is an orbital symmetry for (1) if it maps solutions’ trajectories into
(generally, different) solutions’ trajectories.

Note that vector fields inducing just a reparametrization of time are trivial orbital
symmetries; similarly and for the same reason, in any vector field of the general form (10)
we can drop the part along ∂t, i.e. we can set τ = 0, obtaining a vector field which is fully
equivalent for what concerns being an orbital symmetry (for any dynamical system). We
will thus concentrate only on nontrivial orbital symmetries.

Lemma 4. The orbital symmetries for (1) are the vector fields (8) which satisfy
[
ŝ, f̂

]
= λ f̂ ; (22)

or, in terms of components,

sit + {s, f}i = λ f i . (23)

Proof. Given the dynamical system (1), the dynamical systems having the same trajec-
tories are those which are written as

ẋi = gi(x, t) = λ(x, t) f i(x, t) , λ(x, t) 6= 0 ∀x, t ; (24)

note that λ(x, t) is a (nowhere zero) scalar function; this is sometimes also written as

λ(x, t) = exp[µ(x, t)] ,

in order to emphasize it is nowhere vanishing. A direct computation shows that this is
equivalent to the condition given in the statement. ♦

Lemma 5. The set of orbital symmetries for a given dynamical system has the structure
of a Lie algebra, and also that of a Lie module over the ring of CM for the dynamical
system.

Proof. We prove these statements in the vector fields language; the proof in terms of
component functions is analogous. We also only consider nontrivial orbital symmetries,
the extension being immediate.

If ŝ and r̂ are both orbital symmetries, so that there are nonzero functions σ and ρ
such that

[ŝ, f̂ ] = σ f̂ , [r̂, f̂ ] = ρ f̂ ,
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the using Jacobi identity we obtain

[
[ŝ, r̂], f̂

]
= (ŝ(ρ) − r̂(σ)) f̂ ,

thus showing that [ŝ, r̂] is indeed again an orbital symmetry.

Now, let µ : Rn → R be a CM and ŝ an orbital symmetry for the dynamical system
(1); then

[µŝ, f̂ ] = µ [ŝ, f̂ ] −
(
f̂(µ)

)
ŝ = µλ f̂ ,

thus showing that µŝ is again an orbital symmetry. ♦

Lemma 6. For the dynamical system ẋi = f i(x), any vector field of the form v̂ = ϕi(x, t)∂i
with

ϕi(x, t) = θ(x, t) f i(x) (25)

with θ a smooth nowhere zero function is an orbital symmetry.

Proof. By a direct computation,

ϕi
t + {f, ϕ}i = ϕi

t + f j ∂jϕ
i − ϕj ∂jf

i

= θt f
i + f j (θjf

i + θf i
j) − θ f j f i

j

=
(
θt + f j θj

)
f i .

Note that the function λ(x, t) appearing in the definition (22), (23) of orbital symmetries is
in this case just the total time derivative of θ(x, t) computed on the flow of the dynamical
system, i.e.

λ(x, t) = Dt θ = θt + f j (∂jθ) .

Note also that to have a LPTI orbital symmetry we have to choose θ = θ(x), and in this
case λ = (f · ∇)θ. ♦

1.5 Invariant trajectories

We can ask the same question asked above for full symmetries also in the framework of
orbital symmetries; that is, we can wonder which solutions to a given dynamical system
have trajectories which are invariant under a given vector field. In this case, as we are in
the framework of dynamical systems, the vector fields will be of the form

v̂ = ϕi(x, t)
∂

∂xi
+ τ(x, t)

∂

∂t
; (26)

note that this is considerably more general than (3) or (8), i.e. of those we actually want
to consider here.

Lemma 7. A trajectory γ of the dynamical system ẋ = f(x) is invariant under v̂ if and
only if there is a smooth function θ(x, t) such that

[
ϕi(x, t) − θ(x, t) f i(x)

]
γ

= 0 . (27)
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Proof. A trajectory γ of the dynamical system is invariant under v̂ if and only if the
latter and the dynamical vector field f̂ = f i∂i are collinear on γ; this is just the condition
expressed in eq. (27). ♦

Remark 5. This result should be compared with Lemma 6 above. In fact, it says that
on the invariant trajectory γ orbital symmetries reduce to the trivial ones identified in
Lemma 6. ⊙

2 Symmetry reduction for ODEs and symmetry adapted

coordinates

Let us briefly recall how the knowledge of Gf , or part thereof2, can be used to simplify

the dynamical system (1). If we know a single vector field ŝ = s(x)∇ ∈ Ĝf , we can change
coordinates and pass to new coordinates (w1, ..., wn) (note that our change of coordinates
involve only the “spatial” ones) such that in these the symmetry vector field is written,
say, as

ŝ =
∂

∂wn
. (28)

That is, ŝ is now along one of the coordinate axes; the new coordinates are therefore
symmetry adapted ones.

2.1 Symmetry reduction

The commutation relation [f̂ , ŝ] = 0 being satisfied independently of the choice of coordi-
nates, it will hold also in the new one; and in view of (28), this means that f̂ is independent
of wn. Thus in the new coordinates the system will actually read

ẇ = g(w) , ∂gi/∂wn = 0 ∀i = 1, ..., n . (29)

In other words, we now have a system in (the first) n− 1 coordinates, plus a last equation
which tells how wn(t) evolves in time depending on the solution

(
w1(t), ..., wn−1(t)

)
of

that system. We will refer to this last equation as the reconstruction equation; note that
it actually amounts to an integration, i.e.

wn(t) = wn(t0) +

∫ t

t0

g
[
w1(θ), ..., wn−1(θ)

]
dθ . (30)

Example 1. Consider the system

{
ẋ = α(r2)x − β(r2) y ,

ẏ = β(r2)x + α(r2) y ;
(31)

2This is a relevant aspect of Lie theory: even if we are not able to determine the full symmetry algebra
Gf , we can anyway use any symmetry we have determined. See e.g. [6–14] for details.
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here r2 = x2 + y2, and α, β are smooth functions. This is symmetric under rotations,
generated by the vector field ŝ = y∂x − x∂y. Passing to polar coordinates (r, ϑ) we have
ŝ = ∂ϑ, and the time evolution is given by

{
ṙ = 2 r2 α(r2) ,

ϑ̇ = β(r2) .
(32)

Rotation invariance is now expressed by r.h.s. terms not depending on ϑ. ✷

Remark 6. As shown by this Example, passing to symmetry adapted coordinates may
involve a singular change of coordinates. ⊙

In the case we know a subalgebra G0 ⊆ Gf , the procedure can be iterated d times, where
d is the dimension of a maximal solvable subalgebra3 of G0 [6]; the vector fields in G0 to
be successively rectified should be chosen “in the proper order”, i.e. the one dictated by
the derived series of G0 [6]. In this way (1) is reduced to a (n − d) dimensional system
plus d “reconstruction equations”.

If we know a constant of motion P (x), we can also take advantage of this by passing
to coordinates z(x) such that say zn = P (x). In these new coordinates, eq. (1) will read

{
żi = hi(z) (i = 1, ..., n − 1) ,

żn = 0 .
(33)

Note that the hi do in general also depend on zn.

Example 2. If in (31) we choose α = 0, then r is a constant of motion. In this case the
polar equations (32) are just ϑ̇ = h(r2), ṙ = 0. ✷

More in general, if we know p functionally independent CM {P1(x), ..., Pp(x)} we can
pass to coordinates

(
z1, ..., zn−p;π1, ..., πp

)
with πi(x) = π1[P1(x), ..., Pp(x)] (the simplest

choice being of course πi = Pi(x)); in these coordinates we have

{
żi = hi(z, π) ,

π̇j = 0 .
(34)

Note that the πj enter in (34) only as parameters; the problem is therefore reduced to
the study of a (n− p) dimensional dynamical system with p parameters. Fixing the value
of the π’s identifies a submanifold Mπ ⊂ M , by definition invariant under the flow of (1);
one is therefore legitimate to consider the reduction of (1) to this, i.e.

ẋ = f(π)(x) , x ∈ Mπ , fπ = f |Mπ : Mπ → TMπ . (35)

In the following, we will assume that the reduction corresponding to global CM and/or
symmetries has already been performed.

Remark 7. The CM can be seen as invariant functions for the one-parameter group
exp[λf̂ ]. Then, under suitable assumptions of the action of this group, e.g. that it is

3Note that most often other symmetries, not belonging to G0, will be lost in the procedure.
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compact, or acting properly4, a celebrated theorem of Hilbert (for polynomial functions
[24,25]; extended by Schwarz [26,27] to the smooth case) ensures [28–33] that there exists
a basis {Θ1, ...,Θd} of invariant functions (respectively, polynomials) such that any P (x) ∈
If (polynomial P (x) ∈ If ) can be written as a function (as a polynomial) of the Θ’s, i.e.

as P (x) = P̃ [Θ1(x), ...,Θd(x)]. ⊙

Remark 8. Note that it is not necessary that dim(Mπ) = [dim(M)− p]; e.g. in Example
2 above, for r = 0 we have a zero-dimensional Mπ = {0}. ⊙

Remark 9. It is clear from (34) that a symmetry vector field ŝ will be, in the (z, π)
coordinates, of the form

ŝ = hi(z, π)
∂

∂zi
+ ηj(π)

∂

∂πj
. (36)

This can be checked by an explicit computation. ⊙

Remark 10. It may be worth remarking explicitly that (f · ∇)P = 0 together with
{f, s} = 0 do not imply (s · ∇)P = 0; see Example 3 below. ⊙

Example 3. Consider again (31) with α(r2) = 0 and β(r2) = 1. In this case r is a
CM; the system is symmetric not only under rotations but also under the vector field
ŝ = x∂x + y∂y, which generates scaling transformations and do not leave r invariant. ✷

2.2 Topology of trajectories and Lie-point symmetries

It should be briefly recalled that LP transformations, being smooth and locally invertible5,
cannot transform a set A ⊂ M into a topologically different one.

This applies in particular to the trajectory of a point x ∈ M under the flow of (1); so
trajectories of “topologically special” types, e.g. fixed points, periodic orbits, or quasi-
periodic ones filling densely a (topological) k-dimensional torus, cannot be transformed
into orbits of different types. That is, isolated fixed points, isolated periodic orbits, isolated
k-dimensional invariant tori are invariant under LP transformations [19,22].

Remark 11. Note that if were considering full solutions rather than just their trajectories
– or, in other words, the graph {t, x(t)} rather than the set {x(t), t ∈ R+} – there would
be no topological difference between graphs of solutions corresponding to topologically
different trajectories. In this sense, orbital symmetries turn out to be more relevant than
full ones. ⊙

2.3 Smooth structures and Lie-point symmetries

It should be understood that preservation of topology of trajectories is not the only limi-
tation on the type of solutions which can be connected by a LP transformation. Roughly
speaking, preservation of topology just follows from the fact that LP transformations
are one to one (invertible) and continuous; the fact they are not only C0 but C∞ (or
analytic), and hence not only continuous but also uniformly continuous, poses further
constraints [19,22], as we are going to discuss in this Section.

4If we consider a linear vector field f̂ we have a subgroup of GL (n) and these conditions are satisfied.
5The invertibility is global if we consider proper – that is, not just local – groups of LP transformations.
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A first obvious remark is that a polynomial or C∞ transformation can not map a C∞

solution into a Ck one (k finite); this will play a role in the discussion of center manifolds
(see Section 6.2 below).

Another useful remark is that a polynomial LP transformation cannot connect two
trajectories which diverge exponentially. More in general, let x(t) be the solution to (1)
with initial datum x(0) = x0; this identifies an invariant curve under f̂ , i.e. the trajectory
γ0 ⊂ M of x(t).

Suppose now that the linearization A of f̂ at x0 has positive eigenvalues in some di-
rection ξ ∈ Tx0

M , transversal to γ0; let ŝ be a vector field such that ŝ(x0) = ξ, and
let

x1 = eεŝ x0

with ε small; denote by γ1 the trajectory of (1) issued from x1. We consider an interval
γ0(ℓ) on γ0 of length ℓ > 0, and a tubular neighborhood uδ of γ0, of radius δ > 0.

The γ1 will leave uδ for ℓ long enough, as the trajectories γ0 and γ1 diverge with a
positive Lyapounov exponent [17]. By the uniform continuity of LP transformations, γ1
and γ0 cannot be connected by a LP transformation.

For given δ0 and ℓ, by taking ε < δ0 small enough, we can guarantee that |eεŝx−x| < δ0
∀x ∈ γ0(ℓ); but for any δ0 and ℓ we can find a point x1 = eεŝx0, with ε < δ0, such that
|γ1(λ)− γ0(λ)| > δ0 for λ0 < λ < ℓ.

Remark 12. There is a point, in the above reasoning, that should be emphasized: the
separation of the trajectories is exponential in the curvilinear coordinate along γ0

6, but
this does not necessarily imply that two solutions running on these trajectories separate
exponentially in time.

On the other hand, exponential separation in time of two solutions does not forbid that
the corresponding trajectories are connected by a LP transformation, as Example 4 below
shows. Also, the trajectories can separate exponentially in the curvilinear coordinate even
if the solutions do not separate exponentially in time, see Example 5. ⊙

Example 4. Consider the simple system

{
ẋ = x ,

ẏ = y ;

this has solutions x(t) = x0e
t, y(t) = y0e

t, and trajectories are just straight half-lines
y = cx through the origin, covered at increasing speed. Consider two such motions, with
initial data respectively p0 = (a, 0) and p1 = (a, ε). The LP transformation eηŝ with ŝ the
vector field ŝ = [x∂y − y∂x] and η = arctan(ε/a) transforms the trajectory y = 0 issued
from p0 into the trajectory y = (ε/a)x issued from p1. ✷

Example 5. Consider the system

{
ẋ = f(x)

ẏ = f(x) · y ,

6By taking δ small enough, we can always choose a local system of coordinates in uδ such that γ0
corresponds to, say, x2 = x3 = ... = xn = 0, so the exponential in x1 is well defined. (Notice for this
argument to extend globally it is required that the group action is regular.)
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for which dy/dx = y, i.e. the trajectories are given by

y = c ex

with c a constant (which can be zero). The trajectories (x, 0) issued from p0 = (a, 0) and
(x, εex) issued from p1 = (a, εea) diverge exponentially in t. If f(x) is such that exp[x(t)] is
not an exponential in t (e.g. if f(x) = exp[−x]), the solutions do not diverge exponentially
in time. ✷

3 Conditional symmetries. General setting

We will now briefly recall the setting for the determination and use of conditional symme-
tries, following [1] (see [34–45] for further detail and related topics). The special features
appearing in the dynamical systems case will be discussed in the next Sect.4, while in this
Section, including Example 6 below, we will for a moment consider PDEs – which were
the original framework for conditional symmetries – in order to recall the general theory.

Let us consider a differential equation ∆ and its symmetry algebra G∆; we will denote
by y the independent variables and by u the dependent ones. A generic vector field η̂ will
be written in terms of these variables as

η̂ = ξi(y,u)
∂

∂yi
+ ϕa(y,u)

∂

∂ua
. (37)

If ∆ is of order n, the vector fields η̂ ∈ G∆ are those satisfying
{
η̂(n) ·∆ = 0

∆ = 0 ,
(38)

where η̂(n) is the n-th prolongation of η̂ [6–14].
As already recalled, knowledge of G∆ allows for a reduction of the equation ∆; in

particular, one can look for solutions u = f(y) which are invariant under a subgroup
G0 ⊆ G∆. With this invariance ansatz, eqs.(38) reduce to simpler ones. Indeed, now we
can express u(y) in terms of the differential invariants of G0 [6].

It should be noted that given a vector field η̂0 of the form

η̂0 = ξi0(y,u)
∂

∂yi
+ ϕa

0(y,u)
∂

∂ua
, (39)

the condition of invariance of u = f(y) under η̂ reads

∆0 := ϕa
0 − ξi0

(
∂ua

∂yi

)
= 0 , (40)

so that if we know apriori that η̂0 ∈ G∆, and therefore that (38) is satisfied, the solutions
to ∆ which are invariant under η̂0 can be seen as the solutions of the system made by (38)
and (40), i.e. of the system

{
∆ = 0 ,

∆0 = 0 .
(41)
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The simple key observation here is that it may also happen that a solution to ∆ is
invariant under a vector field which is not in G∆. This suggests that symmetry reduction
could be possible, and useful, also considering symmetries (of solutions) which are not in
G∆ [1].

Definition 3. The vector field η̂0 is a conditional symmetry for the equation ∆ if and
only if there are solutions to this which are invariant under η̂0.

Example 6. Consider the PDE for u = u(x, y) ∈ R written as

uxx + uyy = − 2u + α (x2 + α y2)u − (1 − α) y uy , (42)

where α is a real constant, α 6= 1. This is not invariant for rotations in the (x, y) plane,
generated by the vector field η̂0 = y∂x − x∂y. On the other hand, the function

f(x, y) = exp

[
−
1

2

(
x2 + y2

)]
(43)

is rotationally symmetric, and u = f(x, y) is a solution to (42). ✷

We stress that one is by no means guaranteed that there exist nontrivial solutions to
∆ which are invariant under a given vector field which is in G∆; in any case, the theory of
conditional symmetries aims at detecting solutions which are invariant under vector fields
which are not in G∆, so that one often considers vector fields η̂ ∈ G∆ as trivial conditional
symmetries.

Solving the original equation ∆ = 0 with the ansatz of invariance under η̂0 amounts to
solving (41). Note that there we do not care about the first equation in the system (38).
If we give a generic η̂0, anyway, the system (41) will in general have no solution, so that
this method is useful only if we are able to determine the ∆0 compatible with the original
∆, i.e. the η̂0 which can yield symmetric solutions to ∆.

A method for determining these, and the corresponding invariant solutions, does indeed
exist [8,37,46], and we now briefly illustrate it. We stress that albeit we always (for ease of
notation) discuss invariance under a single vector field, the whole discussion is immediately
extended to a Lie algebra of vector fields, simply by considering invariance under all of its
generators at the same time.

Let us now consider η̂0 mentioned above to be not specified; that is, the functions
ξi0(y,u) and ϕa

0(y,u) are undetermined. The solutions to ∆ which are invariant under η̂0
will still be given by solutions to (41); however this should now be seen not as a system
of equations for just the unknown function f(y) determining u = f(y), but as a system
of equations for the unknown functions ξi0(y,u), ϕ

a
0(y,u), and f(y).

We can apply to (41) the known methods for solving a system of PDEs (we note that
even in the case where ∆ is an ODE, ∆0 is a first order PDE); in particular, we can apply
symmetry methods.

Let us first of all determine the symmetries of (41); the determining equations for this
can be written as




η̂(n) ·∆ = 0

η̂(1) ·∆0 = 0

∆ = 0

∆0 = 0 .

(44)
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Notice that if we choose to consider η̂0 = η̂ which is a full symmetry for the equation ∆
(which is surely possible, as η̂0 is completely generic) the second of these is automatically
satisfied, as ∆0 = 0. This means that (44) is equivalent to (38) and (40), i.e. it yields no
restriction on η̂0.

We can now apply to (41) the usual symmetry reduction method, and obtain (symmet-
ric) solutions in this way. Such solutions to (41) (if they exist) give us a vector field η̂0 and
at the same time a function f , i.e. a solution u = f(y) invariant under η̂0; by construction,
u = f(y) is also a solution to the original equation ∆ = 0. Again by construction, η̂0 is
a symmetry of (41), and if it exists (which we assume from now on, not to repeat over
and over this specification) it is thus obtained by solving the corresponding determining
equations (44).

We can solve the determining equations (44) by the well known algorithms for solving
determining equations [6–9] (also by computer algebra if needed [47]); once this is done, we
can choose a specific η̂0 among the solutions to (44), and pass to consider the corresponding
eq.(41), i.e. determine the η̂0-invariant solutions to the original equation.

The vector fields η̂0 which solve (44) are symmetries of the system (41) but in general
(except for η̂0 ∈ G∆, which represent here the trivial set) not of ∆ = 0 alone. They are
therefore called conditional symmetries of ∆, as they are symmetries of ∆ when this is
subject to the additional condition (40) [1].

Remark 13. Note that the additional (or side) condition (40), i.e. ∆0, depends on η̂0
itself. Therefore the conditional symmetries of a given equation ∆ do not in general form
an algebra, as they are ordinary symmetries of different systems. Note also that the set
of conditional symmetries of ∆ does naturally carry an action of G∆, hence conditional
symmetries for a given equation can be subdivided into conjugacy classes for this action,
thus leading to a classification. ⊙

It should be stressed that albeit the introduction of conditional symmetries was mo-
tivated by the search for invariant solutions, we can very well have vector fields which
leave invariant no solutions to ∆, but which transform a subset of solutions into the same
subset. Such vector fields, to be formally defined in a moment, are then said to be partial
symmetries for ∆. We will not discuss them in detail here, albeit later on we will briefly
refer to the possibility of extending our discussion to such symmetries; for details about
partial symmetries the reader is referred to [48,49].

Definition 4. The vector field η̃0 is a partial symmetry for the equation ∆ if and only if
there is a subset S0 of solutions to ∆ which is globally invariant under η̃0.

Remark 14. Proper symmetries and conditional symmetries are extreme (degenerate)
cases of partial symmetries: for proper symmetries the subset S0 coincides with the set of
all solutions to ∆, while for conditional symmetries the set S0 reduces to a single solution
(or union of solutions, each of them) individually invariant under η̃0). ⊙

Remark 15. Together with the “direct problem”, i.e. determining the possible condi-
tional symmetries of a given equation ∆ (that is, the possible symmetries of its solutions
beside the symmetries of the equation itself), it is of obvious physical interest also the
“inverse problem”: that is, given a symmetry group G determining which equations can
admit solutions with the G symmetry. This problem has been tackled by Levi, Rodriguez
and Thomova [50] and by Pucci and Saccomandi [51,52]. We will not discuss it here. ⊙
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Remark 16. The relations of the Levi-Winternitz theory of conditional symmetries with
the Michel theory on the geometry of group action are briefly commented upon in [53]. ⊙

4 Conditional symmetries and conditional constants

of motion for dynamical systems

In this Section we specialize the general theory discussed in the previous Section to the case
of dynamical systems. We will also discuss the relation between existence of conditional
(LTPI) symmetries and existence of “conditional” constants of motion.

4.1 Conditional symmetries for dynamical systems

Let us now see how the general discussion of conditional symmetries given in the previous
Section specializes in the case of Dynamical Systems. In this case, ∆ will be a system of
first order autonomous ODEs as in (1),

∆ ≡ ẋi − f i(x) = 0 ; (45)

here, as usual, x ∈ M ⊆ RN , f : M → TM . Correspondingly, we write generic LP vector
fields on M ×R as

η̂ = σi(x, t) ∂i + τ(x, t) ∂t (46)

with of course ∂i = ∂/∂xi.
The equation ∆0, see eq.(40), is in this case

σi(x, t) − τ(x, t) ẋi = 0 ; (47)

using (45) this reads simply

σi(x, t) − τ(x, t) f i(x) = 0 . (48)

We want again to focus on autonomous vector fields which do not act on t as well, i.e.
look for Lie-Point Time-Independent (LPTI) symmetries, or actually LPTI conditional
symmetries; these will be called for short configurational symmetries7. Thus we consider
vector fields of the form

η̂ = si(x) ∂i . (49)

Now the equation η̂(1) ·∆ = 0 gives, before restriction to solution of ∆,

ẋj ∂js
i − sj ∂jf

i = 0 , (50)

while a solution x(t) = ξ(t) is invariant under (49) if

∆0 := si[ξ1(t), ..., ξn(t)] = 0 . (51)

7This denomination has a double advantage: on the one hand it stresses that the vector fields depends
only on the configuration of the system (and not on the time at which it is reached); on the other hand it
recalls the concept of configurational invariants [5] which we will meet soon.
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This states that the LPTI vector fields must vanish altogether on the solution.
We could now repeat the discussion of Sect.3; this would just require to consider (45),

(50) and (51) rather than (37) and (40). We will not bore the reader with such a repetition,
and just introduce some definitions which are natural in view of it.

Definition 5. The vector field (49) is a (LPTI) conditional symmetry for the dynamical
system (45) if and only if there are solutions xi = ξi(t) to this, such that (51) is satisfied
for all t.

4.2 Conditional orbital symmetries for dynamical systems

We recall now that (see Sect.1.4) the vector field η̂ is an orbital symmetry [3, 4] of a
dynamical system if it maps solutions trajectories into solution trajectories. We may
extend the concept of conditional symmetries to this kind of symmetries.

Definition 6. The vector field η̂0 is a conditional orbital symmetry for a dynamical
system (1) if there are solution trajectories of the dynamical system which are invariant
under η̂0.

Remark 17. If we do not ask for invariance under (49) of the full solution x = ξ(t), but
only of its trajectory

γξ := {ξ(t) , t ∈ R} , (52)

the invariance equation is (27) discussed above (see Lemma 6 and Lemma 7). In the LPTI
case this reads simply

[
ϕi(x) − θ(x) f i(x)

]
γ

= 0 . (53)

This requires, indeed, that the (orbital) symmetry vector fields and the dynamical one are
collinear on the considered trajectory γ. ⊙

Remark 18. A conditional symmetry leaves some solution invariant; this implies the
trajectory is also invariant, and hence a conditional symmetry is also a (special case of)
conditional orbital symmetry. ⊙

Remark 19. Note that one may have cases in which no single trajectory is invariant under
η̂0, but a subset8 of them is left globally invariant; in this case we will speak of partial
orbital symmetries, due to similarity with the partial symmetries mentioned above [48,49].

An example of this case can be built as follows. Let {0} and r1 be the origin and the
unit circle in R2. Consider the dynamical system in R2\{0}\r1 given in polar coordinates
(̺, ϑ) by

˙̺ = ̺ (1− ̺) + K(̺) α(̺, ϑ) , ϑ̇ = ω + K(̺)β(̺, ϑ) ,

where K(̺) is a smooth function exactly vanishing for ̺ > 1 (but not for ̺ < 1) and α, β
are smooth but sufficiently “strange” functions. Then the inward spiralling trajectories
living in ̺ > 1 are not rotationally invariant but are mapped one into the other by
rotations, while the solutions living in ̺ < 1 are not rotationally invariant and in general
not mapped one into the other. ⊙

8We restrict to a subset because if the whole set of trajectories is globally invariant, we have a proper
orbital symmetry.
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We now note that the discussion of the previous Section 3 shows that (LPTI) conditional
symmetries of ∆ are also obtained as standard (LPTI) symmetries of the system

{
∆ = 0 ,

∆0 = 0 ,
(54)

where ∆0 is given by the invariance condition (40). It is easily seen that the same holds for
conditional orbital symmetries, provided ∆0 is now given instead by (27); or in the LPTI
case by (53). This suggest an alternative definition of conditional orbital symmetries:

Definition 6’. The vector field (49) is a conditional orbital symmetry for the dynamical
system (45) if and only if it is a standard orbital symmetry of the system (54).

Remark 20. It should be stressed that Definition 6 and Definition 6’ are equivalent,
while of course the notions of conditional symmetry and conditional orbital symmetries are
different (with the former implying the latter, see Remark 18), as the foregoing Example
7 does clearly show. ⊙

Example 7. Consider the dynamical system
{
ẋ = α(x, y)x − β(x, y) y ,

ẏ = β(x, y)x + α(x, y) y .
(55)

(Note that here α, β are not necessarily functions of r2 = x2 + y2, at difference with
Example 1 above.) To this is associated the vector field

f̂ = (α(x, y)x − β(x, y) y) ∂x + (β(x, y)x + α(x, y) y) ∂y . (56)

Consider the rotation vector field

η̂0 = −y ∂x + x ∂y . (57)

(a) Choose α(x, y) = 1 − x2 − y2, β(x, y) = ω 6= 0; the trajectories (apart from that
starting and remaining in the origin) are spiralling towards the unit circle r2 = 1 both
from outside and from inside. None of these is rotationally invariant but those starting on
the unit circle itself; obviously a rotation maps a trajectory into a trajectory in all cases.
As for full solutions, again rotations generated by η̂0 do not leave these invariant (apart
from the trivial one) invariant, but map any solution into a different solution.

(b) Consider general functions α, β not being a function of r2 alone. It results
[
η̂0, f̂

]
=

(
x2 αy − x y (αx + βy) + y2 βy

)
∂x

= +
(
x2 βy + x y (αy − βx) − y2 αy

)
∂y .

Thus, as expected, η̂0 is not a symmetry unless

α(x, y) = a(r2) , β(x, y) = b(r2) , r2 = x2 + y2 .

Consider now, with ρ the unit circle, the special case where α and β satisfy

[α(x, y)]ρ = 0 , [β(x, y)]ρ = ω . (58)
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In this case the circle ρ is an invariant manifold; the restriction of our dynamical system
to ρ is given by

{
ẋ = − ω y ,

ẏ = ω x ,
(59)

i.e. by uniform rotations with angular speed ω. Note again that none of these solutions
is invariant under η̂0, which just maps them one into the other; thus (if we decide to
disregard the trivial solution) η̂0 is not a conditional symmetry for the dynamical system
(55) when (58) are satisfied; on the other hand, it is a conditional orbital symmetry. ✷

4.3 Conditional constants of motion for dynamical systems

In the same spirit, it is natural to consider, besides conditional symmetries and conditional
orbital symmetries, also conditional constants of motion; these will be defined more pre-
cisely in a moment. As recalled in the Introduction they were introduced by Sarlet, Leach
and Cantrijn [5] under the name of configurational invariants; they are also implicitly
considered in [1] (see eq. (2.9) therein), provided one restricts the general discussion by
Levi and Winternitz to the case of dynamical systems instead on considering the general
PDE case. For applications of conditional constants of motion, see e.g. [54–56].

Definition 7. A function µ : M̃ → R, where M̃ ⊆ M , is a conditional constant of motion
for the dynamical system (1) if and only if there are level sets of µ which are invariant
under the dynamical vector field f̂ = f i(x)∂i.

Remark 21. We stress that we do not require µ to be defined in all of M ; thus e.g. if
the level set µ−1(0) is the union of several disjoint sets, we can restrict consideration to

M̃ a tubular neighborhood of one of these disjoint sets, and the invariance of one of the
disjoint component of µ−1(0) is enough for µ to qualify as a conditional symmetry. ⊙

Remark 22. Any full constant of motion is also a conditional constant of motion; we
will see these as trivial conditional constants of motion, and focus on “proper” conditional
constants of motion (omitting to specify this at each step). ⊙

Remark 23. One could provide equivalent definitions in the case of µ : M → R; the
details of such an extension are left to the reader. ⊙

We would like to characterize conditional constants of motion in the same way as we
did for conditional symmetries and conditional orbital symmetries. Indeed, in the same
way as a conditional symmetry is a symmetry of the system (54), we have that

Definition 7’. A function P (x), P : M → R, is a conditional constant of motion for ∆
if and only if it is an ordinary constant of motion for the system (54).

Finally, it should be noted that by definition (54) admits solutions only for ∆0 cor-
responding to a conditional symmetry; thus Definition 7 makes sense only in this case.
That is, conditional constants of motion are associated to conditional symmetries (and to
Cicogna’s partial symmetries [48, 49]) and actually to conditional orbital symmetries, as
we are going to discuss in greater detail in the following.
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Before doing this, it is worth considering again – now from the present point of view –
simple examples given in previous Sections.

Example 8. Consider again the simple systems of Examples 1–3, say in M = R2\{0} to
discard trivial solutions, namely

{
ẋ = α(r2)x − β(r2) y ,

ẏ = β(r2)x + α(r2) y ;
(60)

in polar coordinates this is simply ṙ = 2r2α(r), ϑ̇ = β(r2).

If α(r2) has some nontrivial zero, say r = r0, then the solutions on the invariant
circle r0, i.e. the solutions to the system (54) where ∆ is given by (60) and ∆0 by
r = r0, are exchanged among themselves by rotations, i.e. by actions of the vector field
η̂ = y∂x − x∂y = ∂ϑ.

Note that while this shows that r2 = x2 + y2 is a conditional constant of motion in
the sense of Definition 7, and that ∂ϑ is a conditional orbital symmetry in the sense
of Definition 6, we cannot conclude that ∂ϑ is a conditional symmetry in the sense of
Definition 5. In fact, as already mentioned, rotations do exchange solutions on this circle
among themselves so that ∂ϑ is a partial symmetry of ∆ in the sense of Cicogna [48, 49]
but not a conditional symmetry; on the other hand, the vector field

η̂ := β(r20) ∂t + [y ∂x − x ∂y] = β(r20) ∂t + ∂ϑ (61)

is a conditional symmetry for (60) if r0 is such that α(r20) = 0. ✷

Example 9. ConsiderM = R3 with coordinates (x, y, z), and write r2 = x2+y2. Consider
the dynamical system





ẋ = α(r2)x − β(r2) y

ẏ = β(r2)x + α(r2) y

ż = f(z) + g(x, y) r2
(62)

with α, β, f, g smooth functions of their arguments.

It is immediate to check that ∂ϑ = y∂x − x∂y is now a conditional symmetry, corre-
sponding to solutions on the z axis, i.e. such that x(t) = 0 = y(t). Note also that, unless
g(x, y) = g̃(x2 + y2), we have that ∂ϑ is not an ordinary symmetry of (62); note also that
it is an ordinary symmetry for (54). ✷

Remark 24. The previous Example 8 shows that requiring the conditional symmetries of
a dynamical system to be time-independent can be too restrictive a condition, especially
in view of Definition 6; thus one should consider LP vector field of general form. However,
conditional symmetries of a dynamical system can also be time-independent, as shown by
Example 9. ⊙

The discussion above – see in particular Examples 8 and 9 – clearly shows why in the
sense of Definition 6 standard symmetries can also be conditional symmetries, but are not
necessarily so.
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5 Conditional symmetries, conditional constants of motion,

and invariant manifolds

It is clear from the discussion of Sect.4 that a close connection exists between conditional
symmetries and conditional constants of motion of a dynamical system on one hand, and
its invariant manifolds on the other hand. We are now going to discuss this relation in
some detail.

Let us first consider LPTI conditional symmetries; in this case the additional condition
∆0 in (54) is given by (51). In this way, any vector field identifies a manifold S0 ⊆ M , and
solutions to (54) are nothing else than the solutions to ∆ which lie entirely in S0. These
are associated to the set Ξ0 ⊆ S0 of points x for which ẋ ∈ TS0; that is,

Ξs = {x ∈ S0 : ẋ = f(x) ∈ TxS0} . (63)

It is clear that Ξs is an invariant manifold for the dynamical system (45); that is (by
definition)

f : Ξs → TΞs . (64)

Note that if we have a different conditional symmetry with a vector field η̂′ identifying
S′

0 ⊆ M and the same Ξs′ = Ξs (this is the case e.g. for η̂′ = kη̂), this would yield
the same invariant solutions as η̂. This fact, and ease of notation, suggest to consider in
particular the case where Ξs = S0, i.e. the case where S0 is itself an invariant manifold
for the dynamical system:

f : S0 → TS0 . (65)

In both cases (64) and (65), the determination of conditional symmetries greatly sim-
plifies – or even solves – the problem of determining invariant manifolds for the dynamical
system under study. It should be stressed that this simple remark puts at once at our
disposal the powerful and completely algorithmical methods developed for the study of
symmetries and conditional symmetries of differential equations, and allows to use them
for the determination of invariant manifolds of dynamical systems.

Let us now concentrate on the case (65). The invariant manifolds being determined by
(51), it follows at once that the si(x) are conditional constants of motion for the dynamical
system ẋi = f (x) under study. More in general, any function P (x) such that S0 is a level
set for P will be a conditional constant of motion for the dynamical system. Similarly, in
case (64) any function P (x) such that Ξs is a level set for P will be a conditional constant
of motion for the dynamical system. In this case we can first restrict P (x) to S0, call
P0(x) the restricted function, and then consider simply the level sets of P0.

Remark 25. Clearly, if P (x) is a conditional constant of motion for a given dynamical
system, so is also Pc(x) := P (x) + c, where c is a constant. Denoting by I0 the algebra
of constant functions on M , this suggests that we should consider CM and conditional
constants of motion modulo I0. ⊙

Note now that S0 is a level set for P (x) if and only if

(v(x) · ∇) P (x) = 0 (66)
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for any vector field v̂ = vi(x)∂i such that v̂ : S0 → TS0; the latter condition just means
that

vj(x)∂js
i(x) = 0 ∀i on s(x) = 0 . (67)

We have therefore a simple method to determine the P (x) associated to a given conditional
symmetry η̂. Indeed, once si(x) are known, eq.(67) is a linear equation for the vj ,

Ai
j(x) v

j(x) = 0 (68)

where the matrix A is defined by

Ai
j(x) =

(
∂si

∂xj

)

S0

. (69)

Once the general solution v(x) of this is known, we can pass to determine P (x) using
(66), i.e. the characteristic equation

dx1

v1(x)
= ... =

dxN

vN (x)
. (70)

A close connection also exists between conditional orbital symmetries and conditional
constants of motion. Indeed, if ŝ is a conditional orbital symmetry, the (union of) trajec-
tories invariant under it provide invariant manifolds; such trajectories correspond, once
s(x) is fixed, to the manifold χs of points satisfying (52), i.e.

χs := {x ∈ M : |f(x)| · |s(x)| = (f(x), s(x))} . (71)

Note that S0 ⊆ χs; this corresponds to the fact that for dynamical systems, any
conditional symmetry is a conditional orbital symmetry (see Remark 18). We can then
proceed as in (66)–(70), with the role of S0 played by χs.

5.1 Partial symmetries and conditional constants of motion

As already mentioned, it is also interesting to consider partial symmetries [48,49], and cor-
respondingly partial orbital symmetries; these have a relation with conditional constants
of motion.

Indeed, let η̂ = si(x)∂i be a partial symmetry, and let us consider the corresponding set
S0 (see Definition 7) of invariant solutions; as f and s are smooth functions, the trajectories
of these span a manifold which we also call S0. By construction this is invariant under
the flow of f (and of η̂, of course); we can then apply again the discussion between (66)
and (70).

In this way a partial symmetry is also characterized as a vector field η̂ such that it
exists a manifold S0 ⊆ M for which, denoting by ρ0 the operator of restriction to S0,

ρ0 [{f, s}] = 0 ,

ρ0(f̂) : S0 → TS0 , ρ0(η̂) : S0 → TS0 . (72)

Finally, let us consider a partial orbital symmetry, as defined in Sect.4; again the closure
of the invariant set of trajectories T0 (i.e. the union of points x ∈ γ for γ ∈ T0) defines a
manifold in M which is invariant for both f̂ and η̂, and the same considerations apply.
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5.2 Module structure of conditional symmetries

The relation between conditional symmetries and conditional constants of motion and
between orbital symmetries and conditional constants of motion discussed in the previous
Section 5 also means that there is a module structure of conditional symmetries over the
corresponding conditional constants of motion, pretty much analogous to the structure of
G∆ as a module over I∆ discussed in Section 1.2, as we now show.

Let us reverse the point of view of Section 5, and consider manifolds S0 ⊆ M identified
by

si(x) = 0 ∀i = 1, ..., n . (73)

Suppose we have chosen si(x) such that S0 is invariant under f̂ ; then any vector field
η̂ : S0 → TS0 is a partial symmetry (possibly a conditional symmetry) for ∆. Moreover
ŝ = si∂i is then a conditional symmetry for ∆. More in general, we could have several
vector fields which are conditional symmetries for ∆ and which leave invariant one (or
more, or all) solution lying in S0.

It should be stressed that, once S0 has been fixed, the associated partial symmetries
form a Lie algebra, which we will denote as GW

S0
; this follows form the definition of partial

symmetries (see Definition 4), or equivalently from (72).
As for conditional symmetries, those which leave invariant some solutions lying in S0

(not the same solution for different conditional symmetries) do not form an algebra. On
the other hand, if we fix a given set of solutions lying in S0 (possibly all of them), then
the conditional symmetries leaving these invariant do form an algebra. To be specific, let
us consider the conditional symmetries leaving invariant all the solutions in S0, and let us
call their algebra GC

S0
; clearly,

ŝ ∈ GC
S0

⊆ GW
S0

. (74)

Let us also consider the set IS of conditional constants of motion associated to S0, i.e.
the smooth functions P : M → R for which S0 is a level set (the relation between IS0

and
S0 is discussed in Sect.5); these do form an algebra. It is then immediate to remark, as in
Sect.1.2, that GC

S0
and GW

S0
are not only algebras, but also the structure of a Lie module

over IS0
.

Similar remarks, and corresponding results, hold when considering configurational sym-
metries.

6 Special points and manifolds

In this final Section, we will discuss the relations between the different objects we have
been considering – that is, conditional symmetries, orbital symmetries, conditional orbital
symmetries, and conditional constants of motion – and the canonical invariant manifolds
associated to fixed points studied in Dynamical Systems theory [16–18,57,58].

Remark 26. We will only develop consequences of our discussion above, and not aim to
discuss in general the relation between symmetries and invariant manifolds for dynamical
systems (which would require a review in itself). This is a classical topic, see e.g. the early
works by Steeb, Wulfman and Bluman [59–62] as well as more recent contributions [63–65]
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(also, closing the circle, inspired by Olver and Rosenau’s approach to invariant solutions
for PDEs through “side conditions” [66,67]).

6.1 Hyperbolic fixed points, stable and unstable manifolds

In the last two sections we have discussed the relation between conditional symmetries
and conditional constants of motion on the one hand, and invariant manifolds on the
other hand; this was considered under different points of view, which are natural for
the investigation of symmetry properties. We want now to reverse our point of view,
and consider these relations, and the involved symmetry properties altogether, from the
point of view of dynamical systems theory. This discussion is strongly related to the one
developed in the context of ordinary symmetries in [63], to which we refer for further
details in that context.

A number of results are already well known in this direction, but these mainly concern
ordinary rather than conditional symmetries [19, 20, 63, 68–70]; we briefly recall them,
referring to the original papers for details and proofs.

First of all, as already remarked in Sect.2.2, if the smooth dynamical system (1) admits
an isolated fixed point x0,

f i(x0) = 0 i = 1, ..., n , (75)

then any LPTI (ordinary) symmetry η̂ = si(x)∂i must satisfy

si(x0) = 0 i = 1, ..., n . (76)

Note that (76) is not a necessary condition for η̂ to be a conditional symmetry; on the
other hand, it is a sufficient one – the invariant solution being simply x(t) = x0.

Let us now suppose x0 is moreover an hyperbolic fixed point [16–18, 57, 58] (this also
implies it is an isolated one); this means that all the eigenvalues of the linear operator

A := (Df)(x0) (77)

have nonzero real part. In this case one associates to x0 the unique local stable and
unstable manifolds Ws and Wu; these are invariant manifolds under the flow of f̂ (see
e.g. [16–18,57,58] for the role they play in dynamical systems theory).

The situation described above for the fixed point case is, with obvious adaptations,
met again here. That is, it can be proved [20,63,68] that a necessary (but not sufficient)
condition for η̂ = si(x)∂i to be an ordinary symmetry of (1) is that

η̂ : Ws → TWs , η̂ : Wu → TWu . (78)

This implies that the restrictions of η̂ to Ws and Wu are well defined, and indeed it is
immediate to see that a condition (again, necessary but not sufficient) for η̂ to be an
ordinary symmetry is that

[
η̂, f̂

]
Ws

= 0 ,
[
η̂, f̂

]
Wu

= 0 . (79)

Conversely, each of this is clearly a sufficient – but not necessary – condition for η̂ to
be a conditional symmetry9 for (1).

9At first sight, one may think this just guarantees η̂ is a partial symmetry, but (79) also implies (76).
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Moreover, the invariant manifolds Ws, Wu will be identified by equations

ws(x) = 0 , wu(x) = 0 (80)

for certain smooth function ws and wu. Note that these are not unique, albeit Ws and Wu

are: any function with the same zero level set would do. We also note that functions van-
ishing on Ws (respectively, on Wu) form an algebra, which we denote as IsW (respectively,
IuW ).

It is clear that the ws(x), wu(x) are conditional constants of motion for (1). As discussed
above, the functions satisfying either condition in (79) will form a Lie module over the
algebra IsW and respectively IuW .

These considerations extend a fortiori to conditional configuration symmetries.
It should also be mentioned that the property of being invariant under any LPTI

(ordinary) symmetry is not peculiar to stable and unstable manifolds, but extends to any
transversally hyperbolic manifold [63].

6.2 Non hyperbolic fixed points, center manifolds

The case where the fixed point x0 is not hyperbolic is slightly more complicated. In this
case (see [63] for precise conditions and statements of results), together with stable and
unstable manifolds one has to consider center manifolds Wc [16–18,57,58].

Contrary to what happens for stable and unstable manifolds, the center manifold in
not uniquely defined; moreover even in the case the dynamical system is C∞, the center
manifold could be non-smooth, or only smooth of class Ck [16]. Anyway, each of the
center manifolds is still an invariant manifold for f̂ ; nevertheless, the results holding in
the hyperbolic case do not extend immediately to this setting.

The obstacle to such an extension is intimately related to the non-uniqueness of the
center manifold, i.e. to terms beyond all orders in the perturbation expansion of the center
manifold (these are in turn related to resurgent functions [16,71]).

We will therefore consider only the Poincaré-Dulac center manifold W 0
c ; this is defined

to be the (analytic) center manifold constructed perturbatively or, equivalently, the (infi-
nite order) jet of center manifolds [15,16,72]. Thus we are essentially disregarding (setting
to zero) all the terms beyond all orders in perturbation: all the center manifolds differ for
non-perturbative terms and thus share the same jet at all orders.

Example 10. We give a simple example to illustrate the problem with center manifolds.
Consider the dynamical system

{
ẋ = −x3 ,

ẏ = − y .
(81)

It is immediate to see that all the curves

y = α e−1/x2

(82)

are center manifolds, for any α ∈ R. The perturbation expansion for all these is anyway
the same, and just yields y = 0.

Note that albeit all these center manifolds are C∞, the one corresponding to α = 0 is
the only one to be analytic. ✷
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If we consider the Poincaré-Dulac center manifold, the same results given in the previous
Sect.6.1 apply [63, 68], in particular for what concerns eqs. (78), (79) and (80), up to a
simple rephrasing amounting to consider W 0

c instead of Ws or Wu.
We stress that in general, i.e. for generic Wc 6= W 0

c , even η̂ : Wc → TWc does not
hold, and we can only be sure that a LPTI symmetry transforms a solution lying on a
center manifold W a

c into a solution lying on a center manifold W b
c , where W

a
c and W b

c may
happen to coincide but in general are different; see again [63,68].

6.3 Bifurcation of fixed points

In the case where the dynamical system (1) depends on a real control parameter λ, so
that we actually deal with

ẋi = f i(x;λ) , (83)

and x0 is a fixed point for all values of λ (at least within an interval of interest),

f i(x0;λ) = 0 ∀λ (84)

which is undergoing a simple bifurcation [17, 58, 73, 74] at λ = λ0, the setting and results
of the previous Sections 6.1 and 6.2 combine nicely.

Let us suppose, to fix ideas, that x0 is stable for λ < λ0 and only a real eigenvalue, or a
pair of complex conjugate ones, crosses the imaginary axis with positive speed at λ = λ0.
Then, beside stable manifolds Ws(λ), the system has a center manifold Wc for λ = λ0,
and an unstable manifold Wu(λ) for λ > λ0. The theorem on persistence of transversally
hyperbolic manifolds [58] ensures that the center manifold Wc can be uniquely defined by
the requirement to be the limit of Wu(λ) for λ → λ0 (from the right).

Thanks to this property in this case, again, we do no meet the problems related to non-
uniqueness of the center manifold; moreover, as Wu(λ) corresponds to its perturbation
expansion, the limit Wc is precisely the Poincaré-Dulac center manifold. Once again we
refer to [63] for details.

7 Discussion

In this Section we will present a short discussion, in the form of some remarks, in particular
concerning limitations (and hence possible extensions) of our discussion.

Remark 27. As customary in the symmetry theory of differential equations (including
dynamical systems) we made no difference between conservative – in particular, Hamilto-
nian – and dissipative dynamical systems. In fact, we have always worked in the general
case, and in general considered systems for which Energy is not conserved; moreover, even
in the case where Energy is conserved, this is – from the point of view of our discussion –
on equal footing with pother conserved quantities (if any).

It goes without saying that in the Hamiltonian case one can perform a Legendre trans-
formation and pass to a Lagrangian description; in this case symmetry considerations can
to a large extent be encompassed in the formalism of the (general) Noether theorem [6,75].
We believe the present treatment is already too long without entering into the details of
the special features of this case, and have thus confined ourselves to the general case,
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referring the reader to the works mentioned above [6, 75] for the conservative framework.
In this respect, see also [76–80]. ⊙

Remark 28. Needless to say, in between the cases of autonomous dynamical systems
(which we have been considering here) and general time-dependent ones, one could consider
the special case of time-periodic ones. In general terms, it would be natural in this case to
restrict consideration to Lie-point symmetries which are themselves time-periodic (rather
than time-independent).

From the point of view of symmetries, periodic systems are characterized by a discrete
symmetry, corresponding to time translation by the period T . This is not a Lie-point
symmetry, hence this case would not add any special feature in our general discussion.
On the other hand, when we consider conditional symmetries (and conditional constants
of motion), these are – or at least can be – related to discrete symmetries. We hope some
of the readers of the present discussion can investigate periodic systems from this point of
view.

One may note, in this context, that from the point of view of conditional constant
of motions (and possibly conditional full or partial integrability) reflection symmetries
appear to be more fruitful. This can be extended to reversing [81–86] and k-reversing
dynamical systems as well [87,88]. Applications of these to the search of special solutions
of dynamical systems is discussed e.g. in [89–91]; see also e.g. [92, 93] for applications in
Fluid Dynamics. ⊙

Remark 29. Coming back to time-periodicity, one should recall that symmetries, in
particular discrete symmetries, may enforce the appearance of time-periodic solutions
in autonomous systems (this is also related to the spontaneous breaking of continuous
symmetries). In this respect see, among others, [94–101]. ⊙

Remark 30. Orbital symmetries [3, 4, 102] have played a relevant role in our discussion.
One should note that they have already been used (since their introduction) to pinpoint
special solutions to dynamical systems. One can see in this regard – and also about other
features of orbital symmetries – e.g. [3, 4, 64,65,102–109]. The latter references deal with
chemical reactions equations; these are also discussed, from a point of view relevant to our
discussion, in [110,111] (see also [112]). ⊙

Remark 31. We have been considering “full” dynamical systems, without explicit men-
tion of perturbation theory and perturbative approach, except for some mention in Section
6.2. When dealing with dynamical systems admitting a stationary solution (an equilib-
rium), it is entirely natural to consider (Poincaré) normal forms around this. (This also
extends to systems admitting periodic or multi-periodic solutions and normal forms around
these.) This calls immediately for the analysis of symmetries, orbital symmetries, condi-
tional symmetries etc. for systems which are in normal form. This topic has of course
been considered in the literature, and actually it plays a prominent role in several of the
references provided in our discussion above in this Section. We refrain from entering even
a cursory discussion of this topic and the related literature. ⊙

Remark 32. The reader has probably remarked that we only presented very simple
Examples; their goal was indeed to illustrate in the simplest possible terms the concepts
and results discussed in the paper. On the other hand, the (rather ample) bibliography
given in the course of our discussion contains a wealth of applications in many different
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fields; we preferred (also to avoid making this too long paper even longer) giving indications
of the original papers rather than discussing some examples taken from these. ⊙

8 Conclusions

We have considered the well known notion (due to Levi and Winternitz) of conditional
symmetries. Our discussion also naturally called for consideration of an extension of
conditional symmetries, i.e. that (due to Cicogna) of partial symmetries.

We focused on the applications of these notions, originally developed for determining
special solutions to PDEs, to ODEs; and focused in particular on their applications to
Dynamical Systems.

In particular, we have discussed the relations of conditional and partial symmetries with
two other established notions (these confined by their nature to Dynamical Systems), i.e.
orbital symmetries and conditional constants of motion (also known as configurational
invariants, discussing the interrelations among these.

We also looked in more detail, in Section 6, at how the main characters of our discussion
enter in a classical topic, i.e. the relations between symmetry properties and invariant sets
(points, trajectories, manifolds) for dynamical systems.

Albeit we provided no new results, we trust that our discussion clarifies on the one
hand the interrelations between these notions, and on the other hand how concepts – such
as that of conditional symmetries – created in the analysis of PDEs can also be of interest
in the seemingly simpler arena of analysis of Dynamical Systems.

In Section 7 we have also discussed a number of related topics we have not dealt with,
including relevant applications, and provided some references for these.

Appendix A. Simple examples of orbital symmetries

Orbital symmetries have played a relevant role in our discussion. As remarked in Section
1.4, these are less widely known than standards symmetries, so we provide here some
extremely simple examples to help the reader who has not met these before fix ideas. More
substantial examples are to be found in the literature, see in particular [3,4,64,65,102–109].

Example A1. Consider first the system

{
ẋ = −ω(x2 + y2) y ,

ẏ = ω(x2 + y2) x ,
(85)

with ω an arbitrary smooth function satisfying ω(0) = 0; its solutions are given by uniform
circular motions preserving the radius r =

√
x2 + y2; circles are travelled on with constant

angular speed ω(r2). Note this system corresponds to the vector field

X1 = ω(x2 + y2) [− y ∂x + x ∂y] . (86)

The rotation vector field

Xr = −y ∂x + x ∂y (87)
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maps solutions into solutions and is a proper symmetry (and also an orbital one), while
the scaling vector field

Xs = x ∂x + y ∂y (88)

does not map solutions into solutions (unless α reduces to a constant), but it maps solution
trajectories (circles) into solution trajectories (circles, again). ✷

Example A2. Consider now the system

{
ẋ = −β(x, y) y ,

ẏ = β(x, y) x ,
(89)

with β an arbitrary smooth function satisfying β(0, 0) = 0. Its solutions are given by
motions on circles, thus preserving the radius r =

√
x2 + y2; circles are now in general

travelled on with varying angular speed β(x, y), i.e. with an angular speed which depends
in an arbitrary (smooth) way on both r and θ. Note this system corresponds to the vector
field

X2 = β(x, y) [− y ∂x + x ∂y] . (90)

In this case both Xr and Xs defined above are in general not proper symmetries, and they
are both orbital symmetries. ✷

Example A3. For the examples (85) and (89) considered above, it is straightforward to
compute commutators of relevant vector fields, i.e. (86), (86), with the orbital symmetry
ones, i.e. (87) and (88).

We obtain (omitting functional dependencies for ease of notation)

[Xr,X1] = 0 ; [Xs,X1] =

(
2 (r2)ω′

ω

)
X1 ;

[Xr,X2] =

(
xβy − y βx

β

)
X2 ; [Xs,X2] =

(
xβx + y βy

β

)
X2 .

These confirm the result of Lemma 4 above (see Section 1.4). We also note, in view of
Lemma 5 (see again Section 1.4), that [Xr,Xs] = 0. ✷

Acknowledgements

I thank Sebastian Walcher (RWTH Aachen) for a critical reading of a preliminary version
of this work and for suggesting several improvements & corrections. My work is partially
supported by the project “Mathematical Methods in Non-Linear Physics” (MMNLP) of
INFN (CNS4), and by GNFM-INdAM. Most of this work was performed while enjoying
the warm hospitality of SMRI. The final version was improved thanks to the constructive
criticism by an unknown Referee.



]ocnmp[ Conditional symmetries for dynamical systems 29

References

[1] D. Levi and P. Winternitz, “Non-classical symmetry reduction: example of the
Boussinesq equation”, J. Phys. A 22 (1989), 2915-2924

[2] D. Levi and P. Winternitz. “Continuous symmetries of difference equations”, J.
Phys. A 39 (2005), R1-R63

[3] S. Walcher, “Orbital symmetries of first order ODEs”, in Symmetry and perturbation
theory – SPT98 (A. Degasperis and G. Gaeta eds.), World Scientific 1999, pp. 96–113

[4] S. Walcher, “Multi-parameter symmetries of first order ordinary differential equa-
tions”, J. Lie theory 9 (1999), 249-269

[5] W. Sarlet, P.G.L. Leach and F. Cantrijn, “First integrals versus configurational
invariants and a weak form of complete integrability”, Physica D 17 (1985), 87-98

[6] P.J. Olver, Application of Lie groups to differential equations, Springer 1986

[7] P.J. Olver, Equivalence, Invariants, and Symmetry, Cambridge UP 1995

[8] L.V. Ovsijannikov, Group analysis of differential equations, Academic Press 1982;
based on Group properties of differential equations, Novosibirsk 1962

[9] H. Stephani, Differential equations. Their solution using symmetries, Cambridge
University Press 1989

[10] D.V. Alexseevsky, A.M. Vinogradov and V.V. Lychagin, Basic Ideas and Concepts
of Differential Geometry, Springer 1991

[11] G. Cicogna and G. Gaeta, Symmetry and perturbation theory in nonlinear dynamics,
Springer 1999

[12] I.S. Krasil’schik and A.M. Vinogradov, Symmetries and conservation laws for dif-
ferential equations of mathematical physics, A.M.S. 1999

[13] P. Winternitz, “What is new in the study of differential equations by symmetry
methods”, Group Theoretical Methods in Physics (Proceedings XV ICGTMP), R.
Gilmore ed., World Scientific (1987).

[14] P. Winternitz, “Lie groups and solutions of nonlinear partial differential equations”;
in: A. Ibort and M.A. Rodriguez eds., Integrable systems, quantum groups, and
quantum field theories, Springer 1993, pp 429-495

[15] V.I. Arnold, Ordinary Differential Equations, Springer 1992

[16] V.I. Arnold and Yu.S. Ilyashenko, “Ordinary Differential Equations”, in Encyclopae-
dia of Mathematical Sciences, vol.1 (Dynamical Systems I), D.V. Anosov and V.I.
Arnold eds., Springer 1998

[17] J. Guckenheimer and Ph. Holmes, Nonlinear oscillations, dynamical systems, and
bifurcation of vector fields, Springer 1983



30 ]ocnmp[ G Gaeta

[18] F. Verhulst, Nonlinear differential equations and dynamical systems, Springer 1990

[19] G. Cicogna, “Lie-point symmetries and dynamical systems”, pp. 147-153, in Modern
Group Analysis: Advanced Analytical and Computational Methods in Mathematical
Physics ( N. H. Ibragimov, M. Torrisi, A. Valenti eds.), Springer 1993

[20] G. Cicogna and G. Gaeta, “Lie-point symmetries in bifurcation problems”, Annales
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