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Abstract

In the present paper we reconsider the integrable case of the Hamiltonian N -species
Volterra system, as it has been introduced by Vito Volterra in 1937 and significantly
enrich the results already published in the ArXiv in 2019 by two of the present authors
(M. Scalia and O. Ragnisco). In fact, we present a new approach to the construction
of conserved quantities and comment about the solutions of the equations of motion;
we display mostly new analytical and numerical results, starting from the classical
predator-prey model and arriving at the general N -species model.

0 Preface

This paper is dedicated to the memory of one of the authors, namely our dearest colleague
and friend Massimo Scalia, who sadly died on December 10, 2023, after a dramatic car
accident occurred at a crossroad not far from the centre of Rome. In the previous summer,
Massimo had been deeply affected by a major personal tragedy, the death of his beloved
companion (Adele Vannini) who passed away after a long illness. He was able to react to
this tremendous shock, fully devoting himself to the two fields of interest that marked his
whole life, politics and science. We could even say that they were not two different inter-
ests, inasmuch as, all along his career, he tirelessly struggled to establish a bridge between
them. The idea of resuming the brilliant approach to Mathematical Biology introduced by
Vito Volterra [1], recently revived by Giorgio Israel in his beautiful monographs [2], has in
fact characterized several of his recent papers, among which we just quote the most recent
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ones [3, 4, 5]. From [1], Massimo took the key idea that conflicting variables, one econom-
ical and the other ecological, could be thought as forming a pair of conjugated variables
(in the Hamiltonian language) in the spirit of the predator-prey model [6], following the
ideas introduced by Goodwin already fifty years ago [7], in his class struggle model.

The analogy could indeed be pushed forward to involve a larger number of competing
species, so deriving an N -species generalization of the simplest two-species model. Once
recast in a Hamiltonian form, it was then natural to ask whether also such an enlarged
model could enjoy the property of complete integrability. In fact we discovered that
Volterra himself had already addressed and solved this question, that amounted to require
a specific (but simple) structure for the interaction matrix. The present article focusses
on the study of the N -species Volterra model in the integrable case, and as such is a
reformulation and a significant extension of the preprints appeared in the ArXiv [8], whose
contents are here largely incorporated.

1 Introduction.

As well known, the original idea by Vito Volterra [6] was that of determining the evolution
of a two species biological system, the so-called predator-prey model, answering a question
raised by his son in law, the biologist Umberto d’Ancona [9], who was wondering why the
total catch of selachians (mostly sharks) was considerably raising during World War 1,
with respect to other more desirable kind of fishes, in correspondence with the decrease
of fishing activity [10]. To answer that question, Vito Volterra constructed a dynamical
system that enabled him to identify the essential features of what was going on, eluci-
dating the properties entailing the existence of a stable equilibrium configuration and of
periodic orbits, and unveiling the asymptotic behavior of the system under general initial
conditions. He quickly realized that the predator-prey model was just the simplest ex-
ample in a large class of biological, or rather ecological systems with pairwise interaction.
He was soon interested in understanding the mathematical properties of the N species
pairwise interacting model, and expend a considerable effort to find suitable Lagrangian
and Hamiltonian formulations, with the final aim of achieving a description where the
deep analogy with the well established theory of mechanical systems stemming from the
Maupertuis minimal action principle be made transparent. We would say that not the
whole Biological-Mechanical dictionary that he proposed in his famous paper (dating back
to 1937), Principes de Biologie Mathématique [1], resisted the future developments of both
disciplines, and some of the notions he tried to introduce look nowadays a bit artificial.
But we believe that the core of his derivation is still alive, as it has been witnessed by very
widespread applications over about a century in many scientific research subjects, such
as Demography, Biophysics, Biomedicine, Ecology, Economics but also chemical reactions
modeling and the theory of oriented directed graphs. We notice that in [1] his main aim
was the formulation of this generalized model in a Hamiltonian language, with the final
purpose of elucidating the algebraic conditions leading to a completely integrable model.
Actually, the direction he chose, aiming to establish what he called the “Three fundamen-
tal laws of biological fluctuations” [1], pp. 20-21, namely that of looking for a conservative
model, is certainly not the only possible generalization of the original predator-prey sys-
tem. The current literature is quite rich of papers dealing with dissipative models, see for
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instance [11, 12, 13].

Although [1] has been inexplicably neglected by most of the researchers who worked
on Lotka-Volterra systems in their various formulations, we consider it a seminal paper
and take it as our starting point. Accordingly, first of we recall his approach and his
main results, and then propose a novel approach to integrability, in order to extract
new features of the model, first focussing on the three-species case and then generalizing
it to an arbitrary number of species. To perform such task we stayed with the basic
Volterra’s assumption that the interaction matrix A, see (1), be skew-symmetric. We
are aware that this assumption could sound unrealistic, but on the other hand, to the
best of our knowledge, this property, or better its generalization, the so-called skew-
symmetrizability, defined for instance in [11] and in [13], looks fundamental for dealing
with conservative systems, and a fortiori with completely integrable ones. Our paper is
organized as follows. In Section 2 we recall how Volterra constructed his Lagrangian and
Hamiltonian formulation for the general N -species model, and we briefly comment on
different Hamiltonian structures existing in the literature. Also, we present the Volterra’s
approach to complete integrability, and, as a by-product, we exhibit his Hamiltonian
description of the predator-prey model; different, possibly more familiar, Hamiltonian
formulations, are also recalled here and more explicitly in the Appendix. In the end, we
discuss equilibrium configuration for N larger than 2, starting with N = 3, so introducing
the content of the next section. In Section 3 we present an analytical argument and a
geometric evidence to infer the compactness of the space of trajectories for N = 3, and
display a number of periodic examples. Further, a general argument to deal with the
N -species problem is given, and a set of independent integrals of motion is displayed. The
proof of their involutivity is confined to Appendix A. Section 4 is the concluding one: we
make comments on Volterra’s results compared to ours and outline some possible future
developments.

2 The N-species system.

The equations for the N -species Volterra System read

Ṅr = ϵrNr +

N∑
s ̸=r=1

ArsNrNs (r = 1, · · · , N) (1)

In (1) a dot on a function represents the time derivative and we have set all the parameters
introduced in [6] βr = 1 ∀r (which is not totally harmless from the biological point of
view, as Volterra explains in the second paragraph of the first part of his essay); ϵr are
the natural growth coefficients of each species and Ars are interaction coefficients between
species r and species s that account for the effects of encountering between two individuals
(more precisely, according to [1], (1/βr)ArsNrNs denotes the decreasing in unit time of
the individuals of the specie r, while (1/βs)AsrNrNs denotes the corresponding increasing
of the species s). If the matrix A, whose elements are Ars, is nonsingular, then the system
of equations defining equilibrium configurations (other than the trivial one {Nr} = {0}),
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namely

0 = ϵr +

N∑
s=1

ArsN
(0)
s (2)

has a unique solution, say N
(0)
r , r = 1, · · · , N . If, in addition, according to [6], we require

A to be skew-symmetric and N to be even, then the eigenvalues of A will be purely
imaginary and complex conjugate in pairs. On the contrary, in the case of an odd number
of species, a skewsymmetric A will be singular and the system (2) will not have a single
equilibrium solution, but possibly infinitely many. What is more important, however, in
the biological context, is that the roots of (2) be all positive. As a necessary condition,
the natural growth coefficients ϵr cannot have all the same sign. We emphasize that we
will assume Nr > 0 and ϵr ̸= 0 ∀r throughout the whole paper

2.1 Lagrangian and Hamiltonian formulation

As many other researchers of his time, Volterra was feeling more assured if a phenomenon
quantified by Mathematics could find an analogue with Mechanics, that moreover allowed
resorting to the powerful formalism and theorems of the latter. To achieve this goal,
Volterra introduced the quantity of life for each species r being defined as qr =

∫ t
0 Nr(τ)dτ .

The quantities of life were instrumental for the introduction of a biological, or rather
ecological, Lagrangian Φ, defined as:

Φ =
∑
r

ϵrqr +
∑
r

q̇r log q̇r −
1

2

∑
rs

Arsq̇rqs (3)

In terms of (3), (1) can be written as Euler-Lagrange equations

d

dt

∂Φ

∂q̇r
− ∂Φ

∂qr
= 0 (4)

yielding the ODEs

q̈r = (ϵr +
∑
s

Asr q̇s)q̇r (5)

which are just (1), up to the substitution Nr = q̇r. The transition from the Lagrangian
to the Hamiltonian description is performed by Volterra in the usual way. The linear
momenta, canonically conjugated to the quantities of life, are defined as

pr =
∂Φ

∂q̇r
= log q̇r + 1− 1

2

∑
s

Arsqs (6)

whence

q̇r = exp(pr − 1 +
1

2

∑
s

Arsqs) (7)

Through a transformation of Legendre type Volterra defines the Hamiltonian

H = Φ−
∑
r

q̇rpr (8)
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A straightforward calculation allows to rewrite (8) in the form:

H =
∑
r

ϵrqr − q̇r =
∑
r

ϵrqr − exp(pr − 1 +
1

2

∑
s

Arsqs) (9)

Note that, in terms of the original ecological variables the expression
∑

r ϵrqr − q̇r takes
the form:∑

r

ϵrqr − q̇r =
∑
r

ϵr

∫ t

0
dt′Nr(t

′)−Nr (10)

Volterra [1] showed that (1) can be written in the standard Hamiltonian form

q̇r = −∂H
∂pr

(11)

ṗr =
∂H
∂qr

(12)

It is easily seen (see again [4]) that the Hamiltonian system (9)-(12) has the following N
independent non autonomous integrals of motion:

Hr =
pr − 1

2

∑
sArsqs

ϵr
− t r = 1, · · · , N. (13)

whence one can select N − 1 autonomous integrals by taking for instance H1,r ≡ Hr −H1,
and have a complete set by adding the Volterra N − 1 species Hamiltonian (9).
We notice that the choice of the signs in (11) and (12) is opposite with respect to the
standard approach found in literature (see e.g. [15, 16, 17]). Also, it would be preferable
to have a minus sign in the definition of the Hamilton function H (54), so that H(t = 0) =∑

r Nr. We however prefer here to keep the notation used by Volterra himself in [1]. Also,
the term +1 appearing in (6) is not crucial and could be replaced by any constant factor
for example by adding in the Lagrangian (3) a combination of the variables q̇r. A more
modern approach to the Hamiltonian structure underlying the generalized Volterra system
can be found for instance in [11, 12, 13] where a Poisson morphism is established between
the original system, living in RN and equipped with a quadratic Poisson structure, and
then one recast, after Volterra, in a canonical Hamiltonian form and thus living in R2N , see
also [14]. We will come back to such Hamiltonian formulations, possibly more widely used
than Volterra’s one, in subsection (2.3) and in the Appendix. Let us remark that different
Hamiltonian descriptions of the Lotka-Volterra exist (see e.g. [12], where a map between
them is also given): if the Hamiltonian (9) is rewritten in terms of the numerosities Nr

with respect to the Poisson bracket given in [12], then the standard logarithmic terms of
the numerosities of the populations appears. In our opinion, the question whether there
exists a special form of the matrix elements Ars entailing involutivity of the complete set
of integrals of motion (H,H1,r) is a relevant one to ask both mathematically and from the
point of view of applications: indeed, broadly speaking, if on one hand the integrability
structure leads to a very rich and assorted type of dynamical behavior, on the other hand
it is expected that these properties may give a useful insight to the understanding of a
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wide variety of phenomena in a number of different fields. It turns out that this form has
been found by Volterra himself [1] and is the following:

Ars = ϵrϵs(Br −Bs) r, s = 1, · · ·N (14)

where N is the number of competing populations and the Br are distinct real numbers.
Clearly, (14) can be cast in the compact form:

A = {Ars} = [B, ϵ⊗ ϵ] (15)

where B = diag(B1, · · · , BN ), and ϵ is the vector (ϵ1, · · · , ϵN )t, meaning that A is the
commutator of a diagonal matrix with distinct entries and a rank one matrix.

2.2 A note about the equilibrium conditions.

So, if we require integrability, (15) shows that the invertibility of A has to be given up for
N > 2. Indeed, in the integrable case Ker(A) has dimension N − 2, and correspondingly
its range is two-dimensional. Accordingly, the equilibrium conditions (2) read:

N∑
s=1

ϵs(Bs −Br)N
0
s = 1

where we have denoted by N0
s (s = 1, · · · , N) the equilibrium population numerosities,

implying that the equilibrium configuration be defined as the intersection of the two hy-
perplanes∑

s

ϵsN
0
s = 0 (16)∑

s

ϵsBsN
0
s = 1 (17)

Consequently an admissible equilibrium configuration can exist only if the ϵs have not all
the same sign as already remarked at the end of section 2. Moreover, a unique equilibrium
position exists only for N = 2; setting µ = B1 −B2, we get:

N0
1 =

1

µϵ1
; N0

2 = − 1

µϵ2
(18)

For instance, in the case N = 3, we have a one parameter family of equilibrium solutions,
reading (0 < ρ < 1)

ϵ1N
0
1 =

ρ

B1 −B3
; ϵ2N

0
2 =

1− ρ

B2 −B3
; ϵ3N

0
3 = −(ϵ1N

0
1 + ϵ2N

0
2 ). (19)

In (19), in order the equilibrium species populations be positive, we have to require (B1−
B3)ϵ1, and (B2 −B3)ϵ2 to be positive quantities, while the ratios ϵ1/ϵ3 and ϵ2/ϵ3 have to
be negative. We end the present subsection by remarking that in all cases, whether they
are integrable or not, the N-species Volterra system enjoy a sort of box structure, being
equipped with a number of invariant submanifolds, obtaining when only a subset of species
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is alive, this fact being dictated just by the initial conditions. So, for the two species case,
the axes N1 = 0 and N2 = 0 are invariant submanifolds, for the three-species case we
have the 6 invariant submanifolds given by the axes and by the planes Ni = 0, and so
forth. In particular the three-species case gives rise to three Lotka-Volterra systems. Once
realized that integrability implies the non-uniqueness of the equilibrium configuration (∀
N > 2), we would like to stress that, for the special form of the matrix A given by (14), the
integrals of motion are still functionally independent. This is readily seen as (13) shows
that the linear dependence of those integrals upon the momenta pr is in no-way affected
by the specific form of the matrix A (while the requirement that the Br be all distinct is
mandatory!), so that the rank of the Jacobian matrix constructed with the gradients of
the integrals of motion with respect to the canonical coordinates is maximal (namely N)
whatever be that form. So, the integrable version of the N -species Volterra system is again
a genuine Hamiltonian system with N degrees of freedom. Here we write down explicitly
the expression of the Hamiltonian and of the integrals of motion in the integrable case,
resuming what we sketched in formulas (13)-(15). Denoting now by Hint the Hamiltonian
(9) we have:

Hint =

N∑
r=1

ϵrqr − exp[pr − 1 + (ϵr/2)

N∑
s=1

ϵs(Br −Bs)qs] (20)

and

Hr = pr/ϵr − (1/2)

N∑
s=1

ϵs(Br −Bs)qs − t r = 1, · · · , N (21)

so that

Hrl ≡ Hr −Hl = pr/ϵr − pl/ϵl −
1

2
(Br −Bl)

N∑
s=1

ϵsqs, s = 1, · · · , N. (22)

The constants of motion (22) are mutually in involution. So we can take for instance l = 1
and get N −1 independent integrals of motion in involution. The set can be completed by
adding any function of the Hamiltonian, for instance the Hamiltonian itself. The above
formulas clearly show that, in the integrable case, both the Volterra Hamiltonian and
the involutive family of integrals of motion depend on the quantities of life only through
the inner products (ϵ,Q) and (ϵ, BQ), where Q is the vector of components qj , while by
BQ we have denoted the vector of components Bjqj . However, even in the completely
integrable case, we did not succeed in reducing our problem to quadratures for N larger
than 2, although this possibility is a well known result in Classical Mechanics [15, 16]. It
might be convenient to take as integrals of motion the exponentials of the quantities (21)

exp(ϵrHr) = exp[pr − ϵr/2

N∑
s=1

ϵs(Br −Bs)qs − ϵrt] (23)

hence choosing exp(Hrl) as an alternative legitimate form for an involutive family of
integrals of motion. In the simplest nontrivial case, N = 2, (20) reads (the subscript V
refers to Volterra):

HV = ϵ1q1+ϵ2q2−exp[p1+(1/2)ϵ1ϵ2(B1−B2)q2]−exp[p2−(1/2)ϵ1ϵ2(B1−B2)q1] (24)
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The above formula can be slightly simplified through the canonical transformation (in
fact, just a rescaling):

pj → p̃j = pj/ϵj ; qj → q̃j = ϵjqj (25)

that maps (22) into:

Hrl = p̃r − p̃l + (1/2)(Br −Bl)
∑
j

q̃j (26)

and (24) into:

HV = q̃1 + q̃2 − exp[ϵ1(p̃1 + 1/2)(B1 −B2)q̃2)]− exp[ϵ2(p̃2 − (1/2)(B1 −B2)q̃1] (27)

2.3 Integration of the N = 2 case via the canonical formalism and other
Hamiltonian formulations.

Let us slightly simplify the notations in (27), by setting µ := B1 − B2, and introducing
the new canonical variables:

P1 =
1
√
µ
(p̃1 +

1

2
µq̃2); Q1 =

1
√
µ
(−p̃2 + µ

1

2
q̃1) (28)

P2 =
1
√
µ
(p̃1 − µ

1

2
q̃2); Q2 =

1
√
µ
(p̃2 +

1

2
µq̃1) (29)

In terms of these new variables, the first integral:

H12 = p̃1 − p̃2 − (µ/2)(q̃1 + q̃2) (30)

takes the form

H12 =
1
√
µ
(P2 −Q2) (31)

while the two-particle Hamiltonian reads:

HV =
1
√
µ
[Q1 +Q2 + P1 − P2]− exp

√
µ(ϵ1P1)− exp[−√

µ(ϵ2Q1)] (32)

Inserting the first integral (31), on the level surface H12 = C, up to an irrelevant additive
constant we can finally write:

HV =
1
√
µ
(Q1 + P1)− exp[

√
µ(ϵ1P1)]− exp[−√

µ(ϵ2Q1)] (33)

It follows that, in terms of these new coordinates, the above Hamiltonian is a one-body
Hamiltonian (integrable by definition), which is nothing but the traditional Lotka-Volterra
Hamiltonian. One may pervene to more elegant formulas by defining:

x ≡ exp
√
µ(ϵ1P1); y ≡ exp[−√

µ(ϵ2Q1)]
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leading to:

ẋ = ϵ1x(1− µϵ2y) (34)

ẏ = ϵ2y(1 + µϵ1x) (35)

The (nontrivial and stable) equilibrium position is the pair (x(0) = − 1
µϵ1

, y(0) = 1
µϵ2

)
whence it follows that it can belong to the first quadrant only if the coefficients of spon-
taneous growth have opposite sign, as it is natural if we require that the predator species
can survive eating the prey one. As well known [1, 10], the equations for the orbits of (37)
and (38) can be written in closed form:

(x exp(µϵ1x))
ϵ2 = K(y exp(−µϵ2y))

ϵ1 (36)

where K is a positive constant. For the sake of completeness, we recall here the standard
form of the predator-prey equations (keeping skew-symmetry) and of their hamiltonian
formulation, that might be useful to compare with that described at the beginning of this
subsection. Denoting by x and y the two species, we have.

ẋ = ϵ1x− axy (37)

ẏ = ϵ2y + axy (38)

which coincide with (37) and (38) if we set a = µϵ1ϵ2 There are two equiilbrium positions:
the trivial one (0, 0), and the center (ϵ1/a,−ϵ2/a). Assuming a > 0 (and thus µ < 0), it
belongs to the first quadrant provided ϵ1 > 0, ϵ2 < 0. The invariant curve, that defines
the family of orbits and plays also the role of Hamiltonian, reads:

h(x, y) = ϵ2 lnx− ϵ1 ln y + a(x+ y) (39)

The equations (37),(38) can be cast in the following Hamiltonian form:

ẋ = −xy
∂h

∂y
(40)

ẏ = xy
∂h

∂x
(41)

which involves the Poisson matrix

P =

(
0 −xy
xy 0

)
(42)

The simple change of variables: x = exp(x̃), y = exp(ỹ) transforms (37,38) into:

˙̃x = ϵ1 − a exp(ỹ) (43)

˙̃y = ϵ2 + a exp(x̃) (44)

the Hamiltonian (39) into:

h̃(x̃, ỹ) = ϵ2x̃− ϵ1ỹ + a(exp(x̃) + exp(ỹ)) (45)

and the Poisson matrix (42) into the canonical one

J =

(
0 −1
1 0

)
(46)
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2.4 The N-species system: integration through the Volterra’s approach.

Here we briefly recall the procedure followed by Volterra to integrate the N-species system
in terms of the natural coordinates, i.e.the population numerosities. In the following, we
do not preclude the possibility to have an odd number of species, so N can be even or odd.
Volterra defines the quantities N :=

∑
s ϵsNs and M := 1 −

∑
s ϵsBsNs, then rewriting

the original dynamical system (1) as:

Ṅr = ϵrNr(1 +
∑
s

(Br −Bs)ϵsNs)

or, in other terms:

Ṅr = ϵrNr(BrN +M)

namely:

(1/ϵr)d/dt logNr = (BrN +M)

Note that the previous equation implies
∑

r(Ṅr−ϵrNr) = 0, which is just the conservation
of the Hamiltonian (9). It is evident that the involutivity constraints on the coefficients
Ars entail a typical Mean Field dynamics. Each species interacts with the others through
the collective variables N and M. By taking two different values of the index r and
subtracting, the variable M can be eliminated, resorting to:

(1/ϵr)d/dt logNr − (1/ϵs)d/dt logNs

Br −Bs
= N ,

that yields N − 2 integrals of motion. Indeed, in term of the variables

Yk ≡ (1/ϵk) logNk, (47)

we get the linear formula

1

Br −Bj
(Yr − Yj)−

1

Bs −Bj
(Ys − Yj) = Crs.

The simplest non-trivial case is the three-species case, where an elementary calculation
shows that the three equations above are indeed the same, yielding:

(B2 −B3)Y1 + (B3 −B1)Y2 + (B1 −B2)Y3 = const. (48)

We remind the form of the equations of motion for the integrable three species case:

Ṅ1 = ϵ1N1 + ϵ1ϵ2 (B1 −B2)N1N2 + ϵ1ϵ3(B1 −B3)N1N3 (49)

Ṅ2 = ϵ2N2 + ϵ2ϵ1(B2 −B1)N2N1 + ϵ2ϵ3(B2 −B3)N2N3 (50)

Ṅ3 = ϵ3N3 + ϵ3ϵ1(B3 −B1)N3N1 + ϵ3ϵ2(B3 −B2)N3N2 (51)

and add the expression of the integrals of motion for the system (49)-(51) in terms of the
numerosities and of the quantities of life. Taking into account (47), formula (48) takes the
form

N
(B2−B3)/ϵ1
1 N

(B3−B1)/ϵ2
2 N

(B1−B2)/ϵ3
3 = I123 (52)
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Of course, (52) has a meaning only for nonzero initial data, where it can be written as
well as:

(N1/N1(0))
(B2−B3)/ϵ1(N2/N2(0))

(B3−B1)/ϵ2(N3/N3(0))
(B1−B2)/ϵ3 = 1 (53)

The Hamiltonian H is written as:

H =

N∑
r=1

ϵr

∫ t

0
Nr(t

′)dt′ −Nr (54)

implying that its value equals minus the total population at t = 0. The involutive integrals
exp(Hr) read:

exp(Hr) = Nr exp[−
∑
s

(Br −Bs)ϵrϵs

∫ t

0
Ns(t

′)dt′] (55)

so each of them equals the corresponding initial population. In the next section, in which
we will give both analytical and numerical results, we will focus attention on the three
species integrable case, which escapes the general analysis presented by Volterra in [1],
focussed on the study of an even number of species, mostly assuming invertibility of the
interaction matrix A. To our knowledge, Volterra copes with the three species problem
only in the case of null spontaneous growth coefficients, where he proves the existence of
periodic orbits. By the way, a full treatment of the integrable three species case can be
found in [13], denoted as “A three species food chain”.

3 Novel numerical and analytical results: from 3 to N .

In this section we propose a way to construct the integrals of motion for the model under
scrutiny which is alternative to the one followed by Volterra, recalled in the previous
section and in [8]. In the first subsection we present the case N = 3, by giving also
a numerical integration of the equations of motion (49)-(51) for different choices of the
relevant parameters. In the second subsection we extend the construction to the generic
N -species case.

3.1 The three species case.

We consider the case N = 3 here. To simplify a little bit the notations, let us set:

B1 −B2 = α; B2 −B3 = β (56)

whence B1 − B3 = α + β. Recalling (19), we notice that, if ϵ1, ϵ2 are positive quantities,
we have to require:

β > 0, α+ β > 0 (57)

implying that, if α is negative, its absolute value has to be less than β. We start from the
equations of motion

Ṅ1 = ϵ1N1 + ϵ1ϵ2αN1N2 + ϵ1ϵ3(α+ β)N1N3 (58)

Ṅ2 = ϵ2N2 − ϵ2ϵ1αN2N1 + ϵ2ϵ3βN2N3 (59)

Ṅ3 = ϵ3N3 − ϵ3ϵ1(α+ β)N3N1 − ϵ3ϵ2βN3N2 (60)
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and look for an integral of motion written as

eA(N1(t)+N2(t)+N3(t))N1(t)
mN2(t)

nN3(t)
k, (61)

for suitable constants A,m, n, k. By deriving (61) with respect to time, dividing by (61)
itself and making use of (49)-(51) we find

ϵ1N1 (A− nαϵ2 − k(α+ β)ϵ3) + ϵ2N2 (A+mαϵ1 − kβϵ3)+

+ ϵ3N3 (A+ nβϵ2 +m(α+ β)ϵ1) + ϵ1m+ ϵ2n+ ϵ3k = 0.
(62)

The coefficients of the N ′
is, i = 1, 2, 3, are all compatible each other if ϵ1m+ ϵ2n+ ϵ3k = 0,

giving e.g. A = kβϵ3 −mαϵ1. So, the following quantity

e(kβϵ3−mαϵ1)(N1(t)+N2(t)+N3(t))N1(t)
mN2(t)

nN3(t)
k = Im,n,k (63)

is a conserved quantity if the parameters (m,n, k) satisfies ϵ1m + ϵ2n + ϵ3k = 0. Notice
that (52) can be rewritten as:

N
β/ϵ1
1 N

α/ϵ3
3

N
(α+β)/ϵ2
2

= I123, (64)

This conserved quantity, that corresponds to the choice (m,n, k) = (β/ϵ1,−(α+β)/ϵ2, α/ϵ3)
coincides with that of formula (53). Of the three parameters (m,n, k), only two are inde-
pendent because of the relation ϵ1m+ ϵ2n+ ϵ3k = 0. It is possible to write two different
surfaces by choosing properly the values of the constants m,n, k: if these surfaces intersect
by defining a closed curve, the corresponding motion defined by (49-51) will be periodic.
Let us make an example. If we take

α = 1, β = 2 ϵ1 = ϵ2 = 1, ϵ3 = −1.

Then, two conserved quantities are given by

N2
1

N3
2N3

= I1, e−2(N1+N2+N3)N2N3 = I2. (65)

We give the plot of the closed orbit (N1(t), N2(t), N3(t)) numerically obtained by taking
the initial conditions N1(0) = N2(0) = N3(0) = 1, the plot of I1, of I2 and of the closed
orbit all together: as it can be seen from the last figure the two surfaces I1 and I2 intersect
in a closed curve and the motion is constrained on this curve.
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Figure 1. Plot of the closed orbit (N1(t), N2(t), N3(t)) corresponding to the initial conditions

N1(0) = N2(0) = N3(0) = 1

Figure 2. Plot of N3 =
N2

1

N3
2
and e−2(N1+N2+N3)N2N3 = e−6 with the numerically obtained closed

orbit (in black)

Together with the geometrical picture given by the orbits, we have the dynamical picture
associated with the time-behavior of the system. We will consider two different cases



]ocnmp[ The Volterra Integrable case 201

of periodic behavior, one with α > 0, and the other with α < 0, with different initial
conditions. Case 1: ϵ1 = ϵ2 = 1; ϵ3 = −1;α = 0.5;β = 2.5.

N1(0) = 1, N2(0) = 1, N3(0) = 1, t ∈ [0, 30]

Ṅ1 = N1 + 0.5N1N2 − 3N1N3, (66)

Ṅ2 = N2 − 0.5N1N2 − 2.5N2N3 (67)

Ṅ3 = −N3 + 3N1N3 + 2.5N3N2 (68)

(69)

The corresponding plots of Ni, i = 1, ..., 3 are given in figure (3). Case 2: ϵ1 = ϵ2 = 1; ϵ3 =
−1, α = −1/2, β = 1.

N1(0) = 1, N2(0) = 1/2, N3(0) = 1/2, t ∈ [0, 30]

Ṅ1 = N1 − 0.5N1N2 −N1N3

Ṅ2 = N2 + 0.5N1N2 − 0.5N2N3

Ṅ3 = −N3 +N1N3 + 0.5N3N2

The corresponding plots of Ni, i = 1, ..., 3 are given in figure (4).

Figure 3. Oscillations of N1 (in red), N2 (in blue) and N3 (in black) corresponding to the initial

conditions N1(0) = 1, N2(0) = 1, N3(0) = 1 α = 1/2, β = 5/2.
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Figure 4. Oscillations of N1 (in red), N2 (in blue) and N3 (in black) corresponding to the initial

conditions N1(0) = 1, N2(0) = 1, N3(0) = 1 α = −1/2, β = 1.

To conclude this subsection it sounds appropriate comparing the fully nonlinear picture
described above with the one corresponding to the linearized evolution in the neighbour-
hood of (one suitable point) of the equilibrium configuration. To this aim, let us set

Ni(t) = N0
i + xi(t), i = 1, 2, 3 (70)

where xi are small quantities. At first order in the xi, the set of equations (1) becomes

ẋ1 =
B1 −B2

B1 −B3
ρϵ2x2 + ρϵ3x3,

ẋ2 =
B2 −B1

B2 −B3
(1− ρ)ϵ1x1 + (1− ρ)ϵ3x3,

ẋ3 =

(
B1 −B3

B2 −B3
+ ρ

B2 −B1

B2 −B3

)
ϵ1x1 +

(
1− ρ

B1 −B2

B1 −B3

)
ϵ2x2.

(71)

We need the eigenvalues of the matrix of the coefficients, given by

M =

 0 B1−B2
B1−B3

ρϵ2 ρϵ3
B2−B1
B2−B3

(1− ρ)ϵ1 0 (1− ρ)ϵ3(
B1−B3
B2−B3

+ ρB2−B1
B2−B3

)
ϵ1

(
1− ρB1−B2

B1−B3

)
ϵ2 0

 (72)

The characteristic polynomial is given by:

λ3 − λ2Tr(M) +
λ

2

(
Tr(M)2 − Tr(M2)

)
−Det(M) = 0, (73)
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and, since Tr(M) and Det(M) are both equal to zero, it reduces to

λ(λ2 − 1

2
Tr(M2)) = 0. (74)

We see that an eigenvalue is always zero, the sum of the other two is zero. So the three
eigenvalues are (0, λ1,−λ1). If λ1 is real, then the fixed point is unstable. If λ1 is imaginary
(it happens if Tr(M2) < 0) then the matrix M must have three independent eigenvectors
in order the point to be stable [10]. The eigenvector corresponding to the eigenvalue 0
is (B2−B3

ϵ1
, B3−B1

ϵ2
, B1−B2

ϵ3
) whereas the other two must be independent. The point is not

asymptotically stable obviously. So, if Tr(M2) < 0 one has periodic orbits, the period

being T = 2
√
2π√

|Tr(M2)|
. By setting B1 = B2 + α and B2 = B3 + β, we get:

Tr(M2) = 2ϵ3 (ϵ2 + ρ(ϵ1 − ϵ2))− 2αρ(1− ρ)
ϵ1(ϵ2 − ϵ3)α+ ϵ3(ϵ2 − ϵ1)β

β(α+ β)

Recalling that, in all cases we have considered, we always choose ϵ1 = 1 ϵ2 = 1, ϵ3 = −1,
the above expression becomes:

−2− 4
α2ρ(1− ρ)

β(β + α)

which is surely negative, ∀0 < ρ < 1, provided α
β ∈ (−1,+∞). Once fulfilled, the condition

will hold for any point on the equilibrium line. Finally, let us compare the behaviour of
the nonlinear model and its linearization, given in subsection (2.2) (see equations (71)
and the discussion after these equations). We make two numerical examples by taking the
following values of the parameters:

ϵ1 = ϵ2 = 1, ϵ3 = −1, α = 1, β = 2. (75)

The equilibrium positions are given by

N0
1 =

ρ

3
, N0

2 =
1− ρ

2
, N0

3 =
1

2
− ρ

6
. (76)

We start with an initial condition close to the equilibrium point (N0
1 , N

0
2 , N

0
3 ) = (16 ,

1
4 ,

5
12)

corresponding to ρ = 1
2 : we choose (N1(0), N2(0), N3(0)) = (16 +0.1, 14 ,

5
12). The trajectory

determined by the numerical solution of the non-linear system (1) and the one determined
by the analytical solution of the set of equation (71) are compared in figure (5). Also, the
evolution of the population N1(t) and the evolution of N0

1 + x1(t) is given in figure (6)
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Figure 5. Plot of the closed orbit (N1(t), N2(t), N3(t)) for the system (1) corresponding to the

initial conditions N1(0) =
1
6 + 0.1, N2(0) =

1
4 ,N3(0) =

5
12 with ϵ1 = ϵ2 = 1, ϵ3 = −1, α = 1, β = 2

(in black) and of ( 16 + x1(t),
1
4 + x2(t),

5
12 + x3(t)), where (x1(t), x2(t), x3(t)) are solution of the

system (71) with initial conditions x1(0) = 0.1, x2(0) = 0, x3(0) = 0 (in red).

Figure 6. Plot of the evolution of N1(t) for the system (1) corresponding to the initial conditions

N1(0) = 1
6 + 0.1, N2(0) = 1

4 ,N3(0) = 5
12 with ϵ1 = ϵ2 = 1, ϵ3 = −1, α = 1, β = 2 (in black)

and of 1
6 + x1(t), where x1(t) is the solution of the system (71) with initial conditions x1(0) = 0.1,

x2(0) = 0, x3(0) = 0 (in red).
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Figure 7. Plot of the closed orbit (N1(t), N2(t), N3(t)) for the system (1) corresponding to the

initial conditions N1(0) = 1
6 + 0.01, N2(0) = 1

4 ,N3(0) = 5
12 with ϵ1 = ϵ2 = 1, ϵ3 = −1, α = 1,

β = 2 (in black) and of ( 16 + x1(t),
1
4 + x2(t),

5
12 + x3(t)), where (x1(t), x2(t), x3(t)) are solution of

the system (71) with initial conditions x1(0) = 0.01, x2(0) = 0, x3(0) = 0 (in red).

Now we take an initial condition closer to the equilibrium point (N0
1 , N

0
2 , N

0
3 ) = (16 ,

1
4 ,

5
12)

with respect to the previous one. We choose (N1(0), N2(0), N3(0)) = (16 + 0.01, 14 ,
5
12).

Again, the trajectory determined by the numerical solution of the non-linear system (1)
and the one determined by the analytical solution of the set of equation (71) are compared
in figure (7). Also, the evolution of the population N1(t) and the evolution of N0

1 +x1(t) is
given in figure (8). As it can be seen by the figures the trajectories are really close. Also,

the period of the linear system T = 2
√
2π√

|Tr(M2)|
is a very good approximation for the period

of the system in these cases. The agreement between the exact (numeric) nonlinear pic-
ture and the linearized (analytic) one looks extremely, and somehow astonishingly, good.
The global or local character of this agreement will be discussed in a separate work.

3.2 Extension to N species.

We recall that the integrable case of the Volterra equations with N species reads

dNr

dt
= ϵrNr +

N∑
s ̸=r=1

ArsNrNs (77)

where the matrix of the interactions s taken as

Ars = ϵrϵs(Br −Bs) r, s = 1, · · ·N (78)
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Figure 8. Plot of the evolution of N1(t) for the system (1) corresponding to the initial conditions

N1(0) =
1
6 + 0.01, N2(0) =

1
4 ,N3(0) =

5
12 with ϵ1 = ϵ2 = 1, ϵ3 = −1, α = 1, β = 2 (in black) and

of 1
6 + x1(t), where x1(t) is the solution of the system (71) with initial conditions x1(0) = 0.01,

x2(0) = 0, x3(0) = 0 (in red).

Let us look for an integral of motion of the type:

eA
∑

i Ni(t)
N∏
i=1

Ni(t)
wi , (79)

where A and wi are N+1 suitable constants. By requiring that the derivative of (79) with
respect to time is zero and by using equations (77), we get, after some manipulations:

N∑
k=1

ϵkwk = 0, A = −
N∑
k=1

Bkϵkwk, (80)

so that the quantities

e−
∑N

k=1 Bkϵkwk(
∑

i Ni(t))
N∏
i=1

Ni(t)
wi = I1,..,N , (81)

are a parametric family of conserved quantities, depending on N − 1 parameters since the
constraint

∑N
k=1 ϵkwk = 0 must be satisfied. Notice that equation (81) can be written as

the following product of functions of a single variable:

N∏
i=1

Nwi
i

eANi
= I1,..,N (82)
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where A is defined in (80). The function f(x) = xw/eax plays a crucial role in a quite
simple proof that the orbits of the original two-populations Volterra model is periodic (see
e.g. [10]). Indeed, for x positive, it has a maximum in x = w/a and decreases to zero by
going to x = 0 and x = ∞, similar to a gaussian bell shaped curve. Let us look at equation
(82) supposing to vary just the value of the parameter I1,..,N (the other parameters being
fixed):

f1(N1) · f2(N2) · . . . · fN (NN ) = I1,...,N , fi(Ni)
.
=

Nwi
i

eANi
(83)

Each of the functions fi(Ni) has a maximum in Ni = wi/A equal to Mi =
(
wi
Ae

)wi : it
follows that if

I1,...,N >

N∏
i=1

Mi (84)

then the equation (83) has no real solution. Also, if

I1,...,N =
N∏
i=1

Mi (85)

then equation (83) has just one real solution, given by Ni = wi/A, i = 1, ..., N . Let us
suppose now that

I1,...,N <
N∏
i=1

Mi. (86)

We set

I1,...,N = λ

N∏
i=2

Mi, λ < M1 (87)

and look at the equation

f1(N1) · f2(N2) · . . . · fN (NN ) = λ

N∏
i=2

Mi, λ < M1 (88)

The equation f1(N1) = λ has just two real solutions, let us call them N−
1 and N+

1 , since
f1(N1) increases from zero to M1 and then decreases to zero at infinity. Clearly one has
N−

1 < w1/A and N+
1 > w1/A. It follows that if N1 = N−

1 or N1 = N+
1 equation (90)

has just one real solution (the other Ni being given by Ni = wi/A, i = 2, ..., n). When
N1 < N−

1 or N1 > N+
1 equation (90) has no solution, since one has

f2(N2) · . . . · fN (NN ) =
λ

f1(N1)

N∏
i=2

Mi >

N∏
i=2

Mi. (89)
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Finally it remains the case N1 ∈ (N−
1 , N+

1 ). In this case, having fixed the value of N1, we
can repeat the above reasoning on N2, since now we have

f2(N2) · . . . · fN (NN ) =
λ

f1(N1)
M2

N∏
i=3

Mi = λ̂
N∏
i=3

Mi, λ̂ < M2 (90)

and there will be two real solutions to the equation f2(N2) = λ̂, N−
2 < w2/A and N+

2 >
w2/A. By repeating the same until the last N , we see that equation (90), for Ni > 0, i =
1, ..., N , represents a compact closed surface, isomorphic to the N -sphere. We just give
two examples. Firstly, we choose again N = 3 so that we can also plot the complete
surface. We take

N2
1

e2N1

N3
2

e2N2

N4
3

e2N3
= 0.001. (91)

The maximum of the function
N2

1

e2N1

N3
2

e2N2

N4
3

e2N3
equals to 54e−9 ∼ 0.0067 so equation (91)

possesses solutions. The corresponding surface is plotted in figure (9). The next example
is about N = 4. We take:

N2
1

e2N1

N3
2

e2N2

N4
3

e2N3

N3
4

e2N4
= 0.0005. (92)

Now, the maximum of the function
N2

1

e2N1

N3
2

e2N2

N4
3

e2N3

N3
4

e2N4
equals to 729/4e−12 ∼ 0.00112. In

order to get a plot in three dimension, we fix the value of N4 to be equal to 2 (since the
value of N3

4 /e
2N4 must be greater than 0.0005e9/54 ∼ 0.075). The corresponding closed

surface, projected in the three dimensional space, is given in figure (9). Thanks to our
approach we have been able to construct a new (we did not find anything analogous in the
literature) N − 1 parameter family of integrals of motion, written in terms of the original
dynamical variables, and moreover we give a proof of the fact that one can extract from
it N − 1 first integrals in involution.

Figure 9. Plot of
N2

1

e2N1

N3
2

e2N2

N4
3

e2N3
= 0.001 (left) and of the projection of

N2
1

e2N1

N3
2

e2N2

N4
3

e2N3
= 0.0005 in

the space (N1, N2, N3) (right). The value of N4 has been fixed to be equal to 2.
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4 Concluding remarks.

A general comment is needed here, on the comparison between our results and those
displayed on pages 245-250 of [1], where the three basic properties of fluctuations in
conservative associations are stated and explained. There, first of all Volterra distinguishes
between even and odd number of species. In the odd case in fact the coefficient matrix
A, being skew symmetric, has to be singular: Volterra concludes that for nonzero growth
coefficients equilibrium states will be impossible, and the number of individuals in some
species will grow indefinitely or go to zero, and on the long run, only an even number of
species will survive. Curiously enough, Volterra did not take into account the fact that
complete integrability could change, even drastically, the above scenario. In fact, in section
3 we have shown that even for an odd number of species with nonzero growth coefficients,
in spite of the singular nature of the matrix A, there are bounded trajectories and periodic
orbits, and we conjecture that such behavior is actually valid for any N, even or odd, just
because of integrability. In Appendix A we will come back to the approaches followed in
[11, 12, 13] showing that complete integrability holds true for a different Poisson structure,
and relies just to the assumed specific form of the matrix A.

Appendix A.

In this Appendix we investigate the following issues:

1. For completeness, we identify the analytic expression of the Hamitonian of the N -
species Volterra system associated to the degenerate Poisson bracket (see also [12]):

{f, g} =
∑
jk

NjNkAj,k
∂f

∂Nj

∂g

∂Nk
(93)

2. We will show that out of the family of first integrals

e−
∑n

k=1 Bkϵkwk(
∑

i Ni(t))
n∏

i=1

Ni(t)
wi = I1,..,n. (94)

one can extract N − 1 independent integrals of motion, in involution with respect to
the Poisson bracket (93).

1. For easiness of reading, we remind the explicit form of the N -species Volterra equa-
tions:

Ṅr = ϵrNr +
N∑
s=1

ArsNrNs (r = 1, · · · , N) (95)

and look for a Hamiltonian function K such that (95) can be cast in the form:

Ṅr = {Nr,K}
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where the Poisson bracket is given by (93). Notice that we cannot expect this
Hamiltonian to be uniquely defined, as Ker(A) is non-empty, and thus is defined up
to Casimir functions. The family of Hamiltonians K for the system (95) is given by:

K =
∑
k=1

Nk −N0
k log(Nk) (96)

where the constant coefficients N0
k belong to the equilibrium configuration and thus

satisfy ϵk +
∑N

s=1AksN
0
s = 0. In the three-species case, a possible parametrization

is given by equations (19). The proof is by direct computation.

2. Since we are interested in the involutivity, we can take a function of the integrals
(94). Let us take the logarithm, by defining:

J(w1 · · · , wN ) =

N∑
k=1

ϵkwkDk (97)

where the coefficients Dk read:

Dk = (1/ϵk) log(Nk)−Bk

∑
j

Nj .

We are obviously assuming that the matrix A is not just skew-symmetric, but of the
form Ar,s = ϵrϵs(Br −Bs). A troublesome though straightforward calculation yields

{Dk, Dj} = (Bk −Bj)

(
1−

∑
i

ϵiBiNi

)
implying once again that the Poisson brackets {Dj − Dr, Dk − Dr} (r fixed, j, k
running from 1 to N) vanish, then providing N −1 integrals of motion in involution.

So, we have been able to write the Hamiltonian and the integrals of motion in terms of
the biological variables. We notice that Volterra was the only one who derived the special,
and singular form of the matrix A that ensures complete integrability.
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