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Abstract

We construct soliton solutions of the four-dimensionalWess-Zumino-Witten (4dWZW)
model in the context of a unified theory of integrable systems with relation to the 4d/6d
Chern-Simons theory. We calculate the action density of the solutions and find that
the soliton solutions behave as the KP-type solitons, that is, the one-soliton solution
has a localized action/energy density on a 3d hyperplane in 4-dimensions (soliton wall)
and the n-soliton solution describes n intersecting soliton walls with phase shifts. We
note that the Ward conjecture holds mostly in the split signature (+,+,−,−). Fur-
thermore, the 4dWZW model describes the string field theory action of the open N=2
string theory in the four-dimensional space-time with the split signature and hence
our soliton solutions would describe a new-type of physical objects in the N=2 string
theory. We discuss instanton solutions in the 4dWZW model as well. Noncommuta-
tive extension and quantization of the unified theory of integrable systems are also
discussed.

1 Introduction

Four-dimensional Wess-Zumino-Witten models are analogues of the two-dimensional WZW
models and possess aspects of conformal field theory [32, 43, 51, 52, 55]. Equation of
motion of the 4dWZW model is the Yang equation which is equivalent to the anti-self-
dual Yang-Mills (ASDYM) equation [12]. It is well known for the Ward conjecture that
the ASDYM equations can be reduced to many classical integrable systems, such as the
Korteweg–de Vries (KdV) equation, Toda equation and Painlevé equations. [68, 48]. Fur-
thermore, integrability of the ASDYM equations can be understood in the framework of
twistor theory and hence 4d WZW model possesses aspects of the twistor theory as well.
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On the other hand, 4d Chern-Simons
(CS) theory has connections to many
solvable models such as spin chains and
principal chiral models e.g. [9, 10, 14].
These two theories (4dCS and 4dWZW)
can be derived from a 6dCS theory like
a “double fibrations” as in the above
figure [8, 3]. This fact suggests a non-
trivial duality correspondence between
the 4dWZW model and the 4dCS the-
ory. We note that the Ward conjecture
holds mostly for the split signature (+,+,−,−) which corresponds to the four-dimensional
space-time for open N=2 string theory [62, 44, 1]. Hence a unified theory of integrable
systems (6dCS→4dCS/4dWZW) can be proposed in the context of the split signature2

and classical solutions of 4dWZW model describe classical physical objects in the open
N=2 string theory.

In this paper, we discuss several classical solutions of the ASDYM equations in the
context of 4dWZW models, rather than the Yang-Mills theory. In the split signature, all
of them can be interpreted as classical physical objects in open N=2 string theory. Firstly,
we review our previous work on soliton solutions in the 4dWZW model. The action
densities of the soliton solutions show that the behaviors of the soliton solutions are quite
similar to the Kadomtsev-Petviashvili (KP) solitons, more explicitly, one-soliton solutions
are codimension-one solitons whose action densities are localized on three-dimensional
hyperplanes in four dimensions. n-soliton solutions can be interpreted as a “non-linear
superposition” of n one-soliton solutions with phase shifts. Secondly, we discuss instanton
solutions in the 4dWZW model for the four-dimensional Euclidean signature.

This paper is organized as follows. In section 2, the 4dWZW model is introduced
and our conventions are set up. In section 3, soliton solutions of the Yang equation are
introduced by the method of Darboux transformations. In section 4, the behaviors of the
soliton solutions are discussed in the sense of action density. These three sections can be
considered as a brief review of the paper [27]. In section 5, we discuss the equivalence
between ASDYM equation and Yang equation and then derive G = SL(2,C) instanton
solutions of the Yang equation from GYM = SU(2) Yang-Mills instantons. These are new
results in this paper. In section 6, some examples of the Ward conjecture are reviewed.
Section 7 is devoted to conclusion and discussion where new study directions towards
unification of integrable systems are proposed.

2 Four-Dimensional Wess-Zumino-Witten Model

In this section, we review the four-dimensional Wess-Zumino-Witten (4dWZW) model. In
order to discuss various signatures in a unified way, we introduce a four-dimensional space
M4 with complex coordinates (z, z̃, w, w̃) and the flat metric:

ds2 = gmndz
mdzn = 2(dzdz̃ − dwdw̃), m, n ∈ {1, 2, 3, 4} (1)

2This case of (6dCS→4dCS/4dWZW) is also discussed in [3, 2].
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where (z1, z2, z3, z4) := (z, z̃, w, w̃), that is, g12 = g21 = −g34 = −g43 = 1 and gmn =
0 otherwise. The space M4 can be reduced to three kinds of real spaces by imposing
suitable reality conditions (real slices) on (z, z̃, w, w̃). For example, the Euclidean real
space E (R4 with the Euclidean signature) is given by the real slice z̃ = z, w̃ = −w.
The Ultrahyperbolic real space U (R4 with the split signature) is given by the real slices:
z, z̃, w, w̃ ∈ R or z̃ = z, w̃ = w, which are denoted respectively by U and U

′. In this paper
we do not consider the case of U′ because unitarity condition of J leads to trivial action
densities [27]. Our choices of the real slices are as follows:

E :
√
2(z, z̃, w, w̃) = (x1 + ix2, x1 − ix2, x3 + ix4,−(x3 − ix4)), (2)

U :
√
2(z, z̃, w, w̃) = (x1 + x3, x1 − x3, x4 + x2, x4 − x2). (3)

In this paper, we mainly consider the Ultrahyperbolic space U in sections 2–4 and the
Euclidean space E in section 5.

The action of the 4dWZW model consists of two parts and given as follows:

S4dWZW := Sσ + SWZ, (4)

Sσ :=
i

4π

∫

M4

ω ∧Tr
[
(∂J) J−1 ∧ (∂̃J)J−1

]
, (5)

SWZ := − i

12π

∫

M4

A ∧ Tr
[
(dJ) J−1 ∧ (dJ) J−1 ∧ (dJ) J−1

]
, (6)

where the dynamical variable J is a smooth map from M4 to G = GL(N,C), and ω is the
Kähler two-form on M4 given by

ω =
i

2
(dz ∧ dz̃ − dw ∧ dw̃) , (7)

and the one-form is chosen as A = (i/4) (zdz̃ − wdw̃) so that ω = dA. The exterior
derivatives are defined as follows:

d := ∂ + ∂̃, ∂ := dw∂w + dz∂z, ∂̃ := dw̃∂w̃ + dz̃∂z̃. (8)

The first part Sσ is called the non-linear sigma model (NLσM) term or simply the sigma
model term, and the second part is called the Wess-Zumino (WZ) term.

The equation of motion of the 4dWZW model (4) is the Yang equation:

∂̃
(
ω ∧ (∂J) J−1

)
= 0 ⇐⇒ ∂z̃((∂zJ)J

−1)− ∂w̃((∂wJ)J
−1) = 0. (9)

This is equivalent to the anti-self dual Yang-Mills equation as discussed in section 5.1. We
note that the following transformation acts on the Yang equation covariantly:

J 7→ PJQ, (10)

where P (z, w) and Q(z̃, w̃) be a G-valued function.
The 4dWZW action density (4) can be explicitly written in the flat four-dimensional

real spaces as follows

Sσ = − 1

16π

∫

M4

Tr
[
(∂mJ)J

−1 (∂mJ) J−1
]
dz ∧ dz̃ ∧ dw ∧ dw̃, (11)

=

∫

UorE

Lσdx
1 ∧ dx2 ∧ dx3 ∧ dx4, (12)

Lσ := − 1

16π
Tr
[
(∂µJ) J

−1 (∂µJ) J−1
]
. (13)
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where ∂m := gmn∂n and the metrics are given by (1). The NLσM action density is
denoted by Lσ. Similarly the Wess-Zumino action density LWZ can be read from the
Wess-Zumino action (6). (cf. (43)). The NLσM action density is positive definite in the
case of G = U(N) and E.

The 4dWZW model has conformal field theory aspects such as the Polyakov-Wiegmann
formula [51, 52] and the Sugawara-like construction of current algebras [32, 51, 52].

3 Darboux Transformation and Soliton Solutions

In this section, we review the soliton solutions of the Yang equation which are constructed
by applying the Darboux transformation [57, 19].

3.1 Darboux Transformation for Yang Equation

In this subsection, we focus on G = GL(N,C). A Lax representation of (9) is given by
the following linear system [57]:

L(f) := J∂w(J
−1f)− (∂z̃f)ζ = 0,

M(f) := J∂z(J
−1f)− (∂w̃f)ζ = 0. (14)

The spectral parameter ζ here has been generalized to an N × N constant matrix so
that the Darboux transformation can be a non-trivial transformation. The compatibility
condition L(M(f)) −M(L(f)) = 0 implies that the Yang equation (9) holds. Here the
existence of N -independent solutions of the linear system (14) is an assumption, however,
we will show in section 3.2 that it actually exists for the soliton solution cases. Then the
solution f can be rewritten as an N × N matrix which consists of the N -independent
solutions as column vectors of length N .

The Darboux transformation is an auto-Bäcklund transformation of the linear system
(14). Firstly, we assume that an initial solution J of the Yang equation, and a solution f =
f(ζ) of the linear system (14) are given. In order to define the Darboux transformation,
we prepare a special solution θ(Λ) := f(Λ) for a fixed spectral parameter matrix ζ = Λ.
Then we can define the Darboux transformation as follows:

DΛ :

{
f 7→ f ′ = fζ − θΛθ−1f,
J 7→ J ′ = −θΛθ−1J

(15)

which keeps the linear system (14) invariant in form, that is,

L′(f ′) := J ′∂w(J
′−1f ′)− (∂z̃f

′)ζ = 0,

M ′(f ′) := J ′∂z(J
′−1f ′)− (∂w̃f

′)ζ = 0. (16)

As mentioned before, the transformation (15) becomes trivial if the spectral parameter is
a scalar matrix because Λ commutes with θ in this case.

By applying n iterations of the Darboux transformation to a trivial seed solution J = 1,
we can get a nontrivial solution J = DΛn ◦ · · · ◦DΛ1

(1) which is represented in terms of
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the quasideterminants [18] in a compact form [57, 19]:

J =

∣∣∣∣∣∣∣∣∣∣∣

θ1 · · · θn 1
θ1Λ1 · · · θnΛn 0
...

...
...

θ1Λ
n−1
1 · · · θnΛ

n−1
n 0

θ1Λ
n
1 · · · θnΛ

n
n 0

∣∣∣∣∣∣∣∣∣∣∣

, (17)

where 0 and 1 are N×N zero and identity matrices respectively, and each θj = θj(Λj) (j =
1, 2, · · · , n) is a solution (N ×N matrix) of the initial linear system with J = 1, ζ = Λj:

∂wθj = (∂z̃θj)Λj , ∂zθj = (∂w̃θj)Λj . (18)

For details of quasideterminants, please refer to e.g. [17, 29]. In this paper, we give a
definition of the quasideterminant only for the following type of matrix:

∣∣∣∣∣∣∣

M C1 C2

R1

R2

a b
c d

∣∣∣∣∣∣∣
:=

(
a b
c d

)
−
(
R1

R2

)
M−1

(
C1 C2

)
=

1

|M |




∣∣∣∣
M C1

R1 a

∣∣∣∣
∣∣∣∣
M C2

R1 b

∣∣∣∣
∣∣∣∣
M C1

R2 c

∣∣∣∣
∣∣∣∣
M C2

R2 d

∣∣∣∣


 ,

where a, b, c, d are 1 × 1 elements, and C1, C2 are k-component column vectors, and R1

and R2 are k-component row vectors, and M is a k × k matrix for any k ∈ N.

For our purpose in this paper, we only discuss N = 2 case in the following sections.

3.2 Soliton Solutions for G = U(2)

In this subsection, we present the soliton solutions given by [26]. An example of the
multi-soliton solution for G = U(2) is given by solving the equation (18):

θj =

(
eLj e−Lj

−e−Lj eLj

)
, Λj =

(
λj 0
0 µj

)
, (19)

where the two kinds of spectral parameters λj , µj (j = 1, 2, · · · , n) are complex constants
with the following mutual relationship on each real space:

(λj , µj) =

{
(λj , λj) on U,

(λj ,−1/λj) on E.
(20)

In this paper, we put a further condition |λj| = 1 for all j so that the group G is unitary.
The powers Lj of the exponential function are linear in the complex coordinates:

Lj := λjαjz + βj z̃ + λjβjw + αjw̃, αj, βj ∈ C. (21)

Remark 1: The determinant of the n-soliton solution J is constant [26, 29]:

|J | =
n∏

j=1

λjµj . (22)
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Remark 2: θj can be decomposed into, for instance

θj =

(
eLj e−Lj

−e−Lj eLj

)
=

(
eXj eiΘj

−e−iΘj eXj

)(
e−Lj 0
0 e−Lj

)
, (23)

where Xj := Lj+Lj , iΘj := Lj−Lj. The second factor diag(e−Lj , e−Lj ) can be eliminated
in the n-soliton solutions (17) due to a property of the quasideterminant. Hence the n-
soliton solutions (17) depend only on Xj and Θj .

4 Action Density for Soliton Solutions

In this section, we give a brief summary of soliton solutions in G = U(2) 4dWZW model
[27]. The explicit results of action density for one- and two-soliton are summarized in sec-
tion 4.1. The asymptotic analysis of action density for n-soliton solutions are summarized
in 4.2.

4.1 One-Soliton and Two-Soliton Solutions

The action densities for the one-soliton solution ((19) for j = 1) are as follows:

Lσ(x) =
1

8π
d11 sech

2X1, (24)

LWZ(x) = 0, (25)

where the constant d11 is given in Table 1 and clearly a real number which implies Lσ

is real-valued . The peak of the action density lies on the three-dimensional hyperplane
described by the linear equation X1 = 0 on each real space. Hence we call soliton of
this type (codimension-one solitons) the soliton wall which can be considered as a higher-
dimensional analogue of lower-dimensional solitons, such as the KP solitons. We note that
the action density vanishes identically in the case of α1, β1, λ1 ∈ R on U. All the above
results also hold in the case of E.

Table 1. Summary of Coefficients

Space U E

(signature) (+,+,−,−) (+,+,+,+)

a ∈ R
+ |λ1 − λ2|2>0 |λ1 − λ2|2>0

b ∈ R
∣∣λ1 − λ2

∣∣2>0 −
∣∣λ1λ2 + 1

∣∣2<0
c ∈ R

(
λ1 − λ1

)(
λ2 − λ2

) (
|λ1|2 + 1

)(
|λ2|2 + 1

)

djk
(
αjβk − βjαk

)(
λj − λk

)3 (
αjαk + βjβk

)(
λjλk + 1

)3

(= dkj) λjλk λjλk
ejk (αjβk − βjαk)(λj − λk)

3 (αjβk − βjαk)(λj − λk)
3

λjλk λjλk
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The result of two-soliton ((19), j=1, 2.) becomes more non-trivial and the correspond-
ing NLσM action density is obtained as follows:

Lσ(x) =





ab
[
d11 cosh

2X2 + d22 cosh
2X1

]

+ac

[
d12 cosh

2

(
X1 +X2 − iΘ12

2

)
+ d21 cosh

2

(
X1 +X2 + iΘ12

2

)]

−bc
[
e12 sinh

2

(
X1 −X2 − iΘ12

2

)
+ e12 sinh

2

(
X1 −X2 + iΘ12

2

)]





2π[a cosh(X1 +X2) + b cosh(X1 −X2) + c cosΘ12]
2

(26)

where a, b, c, djk, ejk are defined in the Table 1 for each real space. (The difference between
E and U appears only in the coefficients like the one-soliton case.) Note that the coefficients
in Table 1 also guarantee the NLσM action density to be real-valued on U and E. We can
prove that the action density is everywhere nonsingular.

The configuration (26) can be interpreted as two intersecting one-soliton walls in the
asymptotic region. The asymptotic analysis of the NLσM action density (26) gives the
following results (where double-sign corresponds):

−8πLσ(x) −→
{

(1) X1 is finite, X2 → ±∞ : d11 sech
2 (X1 ± δ)

(2) X2 is finite, X1 → ±∞ : d22 sech
2 (X2 ± δ)

, (27)

where the position shift factor is

δ :=
1

2
log

(λ1 − λ2)(µ1 − µ2)

(λ1 − µ2)(µ1 − λ2)
. (28)

This shift, called the phase shift, results from the non-linear soliton interaction which is
a common phenomenon of solitons in lower dimensions. The Wess-Zumino action density
for the two-soliton is much more complicated, however, it is non-singular and decays to
zero exponentially in any direction of the asymptotic region. We make a conjecture that
the Wess-Zumino action SWZ = 0.

4.2 n-Soliton Solutions (Asymptotic Analysis)

Finally, we show the asymptotic behavior of n-soliton in the sense of action density on
U. Without loss of generality, we consider an asymptotic region RK in which XK is finite
and r := (x1)2+(x2)2+(x3)2+(x4)2 → ∞ for given K ∈ {1, 2, · · · , n}. The NLσM action
density of n-soliton is now asymptotic to one-soliton :

Lσ(x) = − 1

16π
Tr
[
(∂µJ)J

−1(∂µJ)J−1
] RK≃ − 1

8π
dKK sech2 (XK + δK) , (29)

where dKK is defined in Table 1 and the phase shift factor is

δK
U
=

n∑

j=1,j 6=K

log

∣∣∣∣
λK − λj

λK − λj

∣∣∣∣. (30)

Since the result of (29) is valid for arbitrary K in {1, 2, . . . , n}, we can regard the behavior
of (not proved in fact) the n-soliton as a “non-linear superposition” of n mutually non-
parallel one-solitons and each one-soliton (dominated by XK) maintains its form invariant
but is shifted by δK in the asymptotic region RK .
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In conclusion, in the asymptotic region the n-soliton solution possesses n isolated and
localized lumps of the NLσM action density, and we can interpret it as n intersecting
soliton walls. The phase shift factors are also obtained explicitly. The scattering process
of the n-soliton solution is quite similar to that of the KP solitons [59, 33]. On the other
hand, the Wess-Zumino action density identically vanishes in the asymptotic region.

Remark 3: We can define a WZW model in (1+2) dimensional by dimensional reduction
and construct codimension-one soliton solutions (soliton walls) of it. In this reduced
model, we can define the Hamiltonian (energy) density via the Legendre transformation.
We proved that the energy density for the Wess-Zumino term identically vanishes and
therefore the total energy density depends only on the NLσM term and is positive definite
for G = U(N). This is the reason why we always focus our discussion on the NLσM term
in this paper. Furthermore, the total energy density is localized on a two-dimensional
plane in (1+2)-dimensions whose peak coincides with that of the action density and quite
similar to the KP solitons. For the detailed discussion, please refer to section 6 in [27].

5 Action Density for Instanton Solutions

The main purpose of this section is to discuss instanton solutions of the 4dWZW model on
the Euclidean space E. In section 5.1, we review some preknowledge of the ASDYM equa-
tion and the Yang equation, and then discuss the equivalence between the two equations.
In section 5.2, we construct instanton solutions in the 4dWZW model for G = SL(2,C)
which are new results.

5.1 ASDYM Equation and Yang Equation

Before our main discussion, we introduce some preknowledge of anti-self-dual Yang-Mills
equation on the Euclidean space E. Here we use GYM to denote Yang-Mills gauge group
which is in general different from the group G in the 4dWZW model. For our purpose in
this paper, we only consider the case GYM = GL(N,C) or subgroups of it. Then gauge
fields Aµ takes values in the Lie-algebra of GYM. Especially for GYM = U(N), the gauge
fields Aµ are anti-Hermitian matrix.

Covariant derivatives and field strengths are defined respectively by Dµ := ∂µ+Aµ and
by Fµν := [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ]. The ASDYM equation is defined by the
anti-self-duality in the sense of the Hodge dual operator ∗: Fµν = − ∗ Fµν which can be
rewritten in the complex representation:

Fwz = 0, Fw z = 0, Fzz + Fww = 0. (31)

A Lax representation of the ASDYM equation is given by

L(f) := Dwf −Dzfζ = 0,

M(f) := Dzf +Dwfζ = 0. (32)

Here ζ is an N × N constant matrix, called the spectral parameter matrix. The com-
patibility condition L(M(f)) −M(L(f)) = 0 of the linear system (32) gives rise to the
ASDYM equation (31).
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Let g be a G-valued function. The local transformation Dµ 7→ g−1Dµg, f 7→ g−1f is
called the gauge transformation. The gauge transformation acts on the linear system (32)
covariantly and on the gauge fields and the field strengths as the following map:

Aµ 7→ g−1Aµg + g−1∂µg, Fµν 7→ g−1Fµνg. (33)

Moduli space of the ASD gauge fields MASDYM can be defined as the solution space of
the ASDYM equation (31) up to the gauge transformation (33).

In order to discuss equivalence between the ASDYM equation and the Yang equation,
let us define a map from a solution of the former to a solution of the latter. Here we
assume that the spectral parameter matrix ζ is a diagonal matrix. We note that the first
equation of the ASDYM equation (31) is the compatible condition of the linear system
Dzh = 0,Dwh = 0. This can be interpreted as the limit of (32) that all diagonal elements
go to zero. Here we assume that there exists N -independent solutions of this linear system
so that h can be considered as an N ×N regular matrix whose columns consist of the N
independent solutions. (If ζ is a scalar matrix, the existence is guaranteed by the Frobenius
theorem.) Similarly, from the second equation of the ASDYM equation (31), there exists
an N × N regular matrix h̃ which is a solution of the linear system Dzh̃ = 0,Dwh̃ = 0.
(This can be interpreted as the limit of (32) that all diagonal elements go to infinity.)
By defining a new matrix J := h̃−1h, the third equation of the ASDYM equation (31)
becomes the Yang equation (9) in E, which is proved without gauge fixing by showing:
∂z((∂zJ)J

−1) = h̃−1Fzzh̃ [29].
We can define a map from the a solution J of the Yang equation (9) to a solution Am

of the ASDYM equation (31) by decomposing J into two N ×N regular matrices h and
h̃ so that J = h̃−1h. Then we obtain the ASD gauge fields in terms of h and h̃ as follows
(Note that Dzh = 0 ⇔ Az = −(∂zh)h

−1 and so on.):

Az = −(∂zh)h
−1, Aw = −(∂wh)h

−1, Az = −(∂zh̃)h̃
−1, Aw = (∂wh̃)h̃

−1. (34)

By taking the gauge fixing: h̃ = 1 ⇒ Az = Aw = 0, the linear system (32) coincides with
(14). (Under this gauge, gauge fields are represented in terms of J such as Az = −(∂zJ)J

−1

because of h = J .) We can prove that unitary gauge group GYM = U(N) is realized by
the condition that h†h̃ = h̃h† = 1 [70, 29]. In this case, J = h†h is hermitian.

Another moduli space MYang can be defined as the solution space of the Yang equation
(9) up to the holomorphic/anti-holomorphic transformation (10). The gauge transforma-
tion (33) acts on h and h̃ as h 7→ g−1h, h̃ 7→ g−1h̃, and hence leaves J as it is. On
the other hand, the holomorphic/anti-holomorphic transformation (10) acts on h and h̃
as h 7→ hQ(z, w), h̃ 7→ h̃P (z, w)−1, and hence leaves Am as it is. (See (34).) We note
that there is ambiguity in the choice of the solutions h and h̃ of the linear systems in the
map from Am to J , that is, if h is a solution of the linear system Dzh = 0,Dwh = 0,
another h′ := hQ (Q(z, w) ∈ GL(N,C)) also satisfies the linear system, however, this
ambiguity can be absorbed by the degree of freedom of the anti-holomorphic transforma-
tion. There is also ambiguity in the choice of the decomposition of J into h and h̃ in the
map from J to Am, that is, if h, h̃ is a solution in the decomposition J = h̃−1h, another
h′ := gh, h̃′ := gh̃ (g(x) ∈ GL(N,C)) also satisfies J = h̃′−1h′, however, this ambiguity
can be absorbed by the degree of freedom of the gauge transformation of g. Therefore we
can conclude that there is one-to-one correspondence between MASDYM and MYang. This
one-to-one correspondence holds in U as well.



180 ]ocnmp[ M Hamanaka and S-C Huang

5.2 Instanton Solutions for Instanton Solutions for G = SL(2,C)

Let us construct G = SL(2,C) instanton solutions which correspond to GYM = SU(2)
instantons in the Yang-Mills side. The matrix J should be hermitian because of the reason
below Eq. (34) and detJ = 1 by assumption. Then it can be uniquely parametrized as
follows:

J =
1

ϕ

(
1 ρ
ρ ϕ2 + ρρ

)
, (35)

where ϕ is a real-valued function and ρ is a complex-valued function. Then the Yang
equation can be represented in terms of ϕ and ρ. In order to solve this, let us put the
following ansatz [70]:

∂zϕ = −∂wρ, ∂wϕ = ∂zρ, ∂zϕ = −∂wρ, ∂wϕ = ∂zρ. (36)

Then the Yang equation reduces to the four-dimensional Laplace equation for ϕ:

(∂z∂z + ∂w∂w)ϕ = 0, (37)

A fundamental solution of (37) is:

ϕ = 1 +
λ2

zz + ww
, (38)

where λ is a real constant. This actually leads to a class of ’t Hooft one-instanton solutions.

Remark 4: The SU(2) ASD gauge fields are obtained from the solution by decomposing
J into h and h̃ so that J = h̃−1h, h̃† = h−1 and detJ = 1. If we assume further that h is
lower-triangular and h̃ is upper-triangular, this decomposition is uniquely determined and
a gauge is fixed. This is called Yang’s R-gauge. Under this gauge and the ansatz (36),
the gauge fields can be represented in terms of ϕ only and rewritten in the form of the
’t Hooft ansatz. (A detailed derivation can be referred to e.g. in [29].) The Yang-Mills
action density for (38) is calculated as follows:

LYM(x) := −1

2
TrFmnF

mn = 2Tr
(
F 2
zz + FzwFwz

)
=

12λ4

(λ2 + zz + ww)4
, (39)

We note that the action density is nonsingular everywhere while the gauge fields and
field strengths are not. The singularities in the gauge fields and field strengths can be
eliminated by a singular gauge transformation.

In order to calculate the 4dWZW action density for (38), we have to find a solution
ρ such that the differential equations (36) are satisfied. In fact, such solution ρ is not
unique. For instance, the following ρ1 and ρ2 are solutions of (36):

ρ1 :=
λ2w

(zz + ww)z
, ρ2 :=

−λ2z
(zz + ww)w

. (40)

Here we can take a linear combination of ρ1, ρ2 as a new solution of (36):

ρ =
1

2
(ρ1 + ρ2) =

λ2(ww − zz)

2(zz + ww)zw
. (41)
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By substituting (38) and (41) into the following formula: (Here the assumption of constant
determinant for J is necessary.)

Tr(YmYn) =
−1

ϕ
[2(∂mϕ)(∂nϕ) + (∂mρ)(∂nρ) + (∂mρ)(∂nρ)] , (42)

Tr(YmYnYp) =
1

ϕ3

∣∣∣∣∣∣

∂mρ ∂mρ ∂mϕ
∂nρ ∂nρ ∂nϕ
∂pρ ∂pρ ∂pϕ

∣∣∣∣∣∣
, (43)

the NLσM action density and the Wess-Zumino action density are calculated as follows:

Lσ(x) = Tr(YzYz + YzYz + YwYw + YwYw) =
−λ4(zz + ww)3

2(zzww)2(λ2 + zz +ww)2
,

LWZ(x) = Tr(YzYwYw)z +Tr(YzYwYw)z +Tr(YwYzYz)w +Tr(YwYzYz)w

=
−λ8(zz + ww)(zz − ww)2

2(zzww)2(λ2 + zz + ww)4
, (44)

where Ym := (∂mJ)J
−1. We can find that both of the action densities have a peak at the

origin and are asymptotic to zero at infinity. This implies that this solution represents
an instanton in the 4dWZW model. However there exists singular locus specified by
zzww = 0 which results from the singularities in ρ (Cf: (41)). These singularities cannot
be removed by any gauge transformation (33) because J is gauge invariant. It is a future
work to study whether a suitable (anti)holomorphic transformation (10) can remove it.

6 Ward Conjecture

In this section, we give some known examples of the Ward conjecture. The first example
is the KdV equation which is derived from the ASDYM equation [47, 48]. The second and
third examples are the sine-Gordon and Liouville equations which are derived from the
Yang equation [16].

6.1 Reduction to KdV equation from ASDYM equation

Let us start with the SL(2,C) ASDYM equation (31) and take a dimensional reduction
by putting translational invariance along X = ∂w − ∂w̃, Y = ∂z̃. Then the fields depend
on two variables (t, x) ≡ (z, w + w̃) and ΦX := Aw − Aw̃, Φz̃ := Az̃ can be considered as
Higgs fields. The ASDYM eq. (31) becomes

∂xΦz̃ + [Aw̃, Φz̃] = 0, ∂tΦz̃ + ∂xAw − ∂xAw̃ + [Az, Φz̃]− [Aw, Aw̃] = 0, (45)

∂xAz − ∂tAw + [Aw, Az ] = 0. (46)

In order to get the KdV equation, we put the following reduction condition for the gauge
fields:

Aw̃=

(
0 0
u/2 0

)
, Az̃=

(
0 0
1 0

)
, Aw=

(
0 −1
u 0

)
, Az=

1

4

(
∂xu −2u

∂2xu+ 2u2 −∂xu

)
.(47)

Under this condition, the reduced ASDYM eq. (45), (46) automatically satisfied except
for the (2, 1) component of (46). The equality holds if we take the following constraint:

∂tu =
1

4
∂3xu+

3

2
u∂xu, (48)
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which is the KdV equation. We note that the variable t in the KdV equation (48) is the
time coordinate and hence it must be real. In the split signature, this coordinate t = z
can be real as in (3) while in the Euclidean signature, this t = z must be complex as in
(2). Hence the reduced equation (48) cannot be considered as the standard KdV equation
living in (1 + 1) dimensional (real) space-time if we consider the Euclidean signature.
This is the reason why we usually consider the split signature in the context of the Ward
conjecture.

Remark 5: In fact, we can show that the above reduction conditions (47) result from the
standard Lax representation of the KdV equation:

Pψ = (∂2x + u)ψ = λψ, Bψ =

(
∂t − ∂3x −

3

2
u∂x −

3

4
(∂xu)

)
ψ = 0, (49)

where the compatibility condition [P,B] = 0 gives rise to the KdV equation (48). In order
to rewrite the scalar linear system (49) into the 2×2 form, we introduce a two component
wave function:

Ψ =

(
ψ
∂xψ

)
, (50)

then the derivatives of Ψ with respect to x and t are calculated from Eq. (49) as follows

∂xΨ =

{(
0 1
−u 0

)
+ λ

(
0 0
1 0

)}(
ψ
∂xψ

)
, (51)

∂tΨ =

{
1

4

(
−∂xu 2u

−∂2xu− 2u2 ∂xu

)
+ λ

(
0 1

−u/2 0

)
+ λ2

(
0 0
1 0

)}(
ψ
∂xψ

)
,

=

{
1

4

(
−∂xu 2u

−∂2xu− 2u2 ∂xu

)
+ λ

[
∂x +

(
0 0
u/2 0

)]}(
ψ
∂xψ

)
. (52)

It is nontrivial that Eq. (52) becomes linear in λ as in the second line of Eq. (52). From
this representation, we can obtain the reduction condition (47) by identifying the linear
systems (32) with Eqs. (51) and (52) together with ∂w = ∂w̃ = ∂x and ∂z̃ = 0.

6.2 Reduction to sine-Gordon equation from Yang equation

Let us discuss the reduction of the Yang equation (9) for G = SL(2,C) to sine-Gordon
equation [16] by putting the following reduction condition for J :

J = eiσ1w̃g(z, z̃)eiσ1w. (53)

Then the Yang equation (9) reduces to

∂z̃
(
(∂zg)g

−1
)
−
[
σ1, gσ1g

−1
]
= 0. (54)

where Pauli matrices are defined as usual:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (55)

By choosing g = exp [(i/2)σ3u], we get the sine-Gordon equation in the case of U:

∂z∂z̃u = 4 sinu. (56)
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6.3 Reduction to Liouville equation from Yang equation

In the same way, we can obtain the Liouville equation from the Yang equation for G =
SL(2,C) [16]. Let us put the reduction condition:

J = eσ−
w̃g(z, z̃)e−σ+w. (57)

Then the Yang equation (9) reduces to

∂z̃
(
(∂zg)g

−1
)
−
[
σ−, gσ+g

−1
]
= 0, (58)

where σ± := (1/2)(σ1 ± iσ2). By choosing g = exp (σ3u), we get the Liouville equation in
the case of U:

∂z∂z̃u = e2u, (59)

We note that the Liouville equation can be derived from the SU(2) ASDYM equation in
E [69]. Hence the reduction process is not unique.

7 Conclusion and Discussion

In this paper, we introduced soliton solutions of the G = U(2) 4d WZW model by analyz-
ing action densities for them. The behaviors of the soliton solutions are quite similar to the
KP solitons, more explicitly, one-soliton solutions are codimension-one solitons whose ac-
tion densities are localized on three-dimensional hyperplanes in four dimensions. n-soliton
solutions can be interpreted as a “non-linear superposition” of n one-soliton solutions with
phase shifts. In the split signature, our results imply that there exist codimension-one clas-
sical objects in the open N = 2 string theory, and therefore, it is worth studying charges,
mass/tension of the soliton solutions, and fluctuations around them in the context of the
N = 2 string theory. Furthermore, the N=2 string theory relates to mirror symmetries
[54] and the M-theory [35] and our solutions might play any roles in the corresponding
situations.

Classification of the soliton solutions would be important to clarify the moduli space
so that we can perform path-integration in the background of the solitons. If successful,
it might reveal non-perturbative effects in the open N=2 string theory. A key point of
the classification is the existence of Y-shape resonance solitons which are the building
blocks of more complicated soliton interactions. Fortunately, the KP solitons are already
classified in terms of positive Grassmannians elegantly [33, 34] in the real-valued settings.
We anticipate that there is a quite similar description for solitons of ASDYM type because
the dynamics of them are quite similar to the KP-solitons. Therefore, constructing Y-shape
resonance solitons of ASDYM type would be a good starting point toward the classification
of ASDYM solitons. On the other hand, codimension-one solitons of ASDYM type are also
discussed in other contexts, e.g. [11, 37, 39, 40, 41, 46, 63]. The relationship between them
and our solutions should be also clarified. It is also worth investigating other solutions
such as rogue wave solutions (codimension-two solitons) [60], rational solutions and elliptic
solutions. These classical solutions are likely to be some objects in the open N=2 string
theory as well. In order to confirm it, we need to calculate the corresponding action
densities explicitly.
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Extension of our results to noncommutative (NC) spaces is also a significant topic for
physics. It is a well-known fact that gauge theories in noncommutative spaces are equiv-
alent to gauge theories (in commutative spaces) in the background of magnetic fields/B-
fields [7, 13, 64]. Completed instanton moduli spaces includes small instanton singularities
[53] which correspond to the size zero instantons, called the small instantons or ideal in-
stantons. As an example, the Yang-Mills action density (39) is actually singular in the
λ → 0 limit. In the noncommutative spaces, however, the small instanton singularities
are resolved and the small instantons become smooth instantons which are new physical
objects [56, 15]. Therefore, we can also expect that the singularity in the 4dWZW action
densities (44) could be resolved in the noncommutative spaces and some new physical
objects might be found. Fortunately, our solutions are represented by quasideterminants
which are straightforward tools to extend our solutions to noncommutative settings [19].
Furthermore, the discussion of noncommutative Ward conjecture and various examples are
summarized e.g. in [22, 23, 28]. Some other developments in noncommutative integrable
systems related to quasideterminants can be found in e.g. [5, 6, 20, 24, 30, 38, 49, 50, 58]
as well. In physical sense, it is no difficulty to introduce background B-fields [31] into the
N=2 string theory (cf. [21, 36]), therefore, noncommutative version of the unified theory
(6dCS→ 4dCS/4dWZW) of integrable systems could be proposed in the split signature.

aa
aa

   6-dim NC Chern-
  Simons (CS) action

 NC 4dCS NC 4dWZW 

reduction reduction

   various NC
solvable models

       various NC 
integrable systems

duality?

aaaaa

Finally we would like to comment on
quantization of integrable systems in homo-
topy algebra formulations. Lagrange for-
malisms of field theories can be reformulated
in terms of homotopy algebras. This formu-
lation has played important roles in string
field theories (for a review, see e.g. [65]) and
can be applied to the open N=2 string theory
as well. Recently Yuji Okawa gave a formula
of correlation functions for wide class of field
theories in this formalism [61]. This result
can be applied to the open N=2 string field theory action to prove that n(≥ 4)-point
functions vanish. On the other hand, there are other Lagrange formalisms for integrable
systems in which infinite symmetry is manifestly considered: Lagrangian multi-form the-
ories developed by Frank Nijhoff et al. (e.g. [42]) and pluri-Lagrangian systems developed
by Yuri Suris et al. (e.g. [4]). These Lagrange formalisms of integrable systems could be
formulated in terms of homotopy algebras as well. If our prediction is correct, Okawa’s
formula would show property of S-matrix factorizations, and as the result the Yang-Baxter
equations in a universal way. This would be a bridge between classical integrability related
to infinite symmetry and quantum integrability related to the Yang-Baxter equations. Of
course there might be a possibility that integrability is not preserved in the process of
quantizations. In this case, it could be interpreted as the “integrability anomaly.” In
summary, homotopy algebra formulations of the Lagrangian multi-form theory and the
pluri-Lagrangian system would give a systematic quantization of integrable systems to
clarify relationship between classical integrability and quantum integrability together with
the integrability anomaly. Lagrangian multi-form formulation of (6dCS→ 4dCS/4dWZW)
is also a challenging problem. (cf. [45])
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Note added: The authors thank Richard Szabo for informing us, after submission, that
the connections between noncommutative deformations of ASDYM equations, open N=2
strings in background B-fields, and homotopy algebras has been elucidated in [67, 66]. This
sugggests that our results and future directions would have interesting interpretations in
terms of the double copy prescriptions as in [67, 66].
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