
ar
X

iv
:2

31
1.

12
99

5v
2 

 [
nl

in
.S

I]
  2

0 
A

ug
 2

02
4

Open Communications in Nonlinear Mathematical Physics ]ocnmp[ Vol.4 (2024) pp 133–156 Article

W1+∞ flows and multi-component hierarchy.

KP case

A. Yu. Orlov

Institute of Oceanology, Nahimovskii Prospekt 36, Moscow 117997, Russia;
National Research University Higher School of Economics

Email: orlovs@ocean.ru

Received February 14, 2024; Accepted August 14, 2024

Abstract

We show that abelian subalgebras of generalized W1+∞ (GW1+∞) algebra gives rise to
the multicomponent KP flows. The matrix elements of the related group elements in the
fermionic Fock space is expressed as a product of a certain factor (generalized content
product) and of a number of the Schur functions and the skew Schur functions.

1 Introduction

This work is the remark concerning a question addressed in very old paper [11] about com-
muting subhierarchies of the “additional symmetries”, later known as Ŵ1+∞.

In KP theory there is the current algebra whose abelien part produce what is called KP
higher flows.

I want to choose any of symmetry operator from Ŵ1+∞ of a given degree and construct
a hierarchy of operators commuting with chosen one, construct multiparametric group flows
and present the answer.

The example is as follows. We choose the Virasoro algebra element L−1 ∈W1+∞ written
in the KP hierarchy higher times and construct the graded abelian algebra which contains
L−1. Then the related abelian flows gives rise the known [10],[3] expression for the two-matrix
model:

∫
e
∑

n>0

(

pn
n

tr(X)n+
p∗n
n
tr(Y )n

)

+
√
−1tr(XY )

∏

i≥j
dℜXi,jdℜYi,j

∏

i<j

dℑXi,jdℑYi,j

= e
∑

n>0
p∗n
n
L(n)(p,N) · 1, (1.1)

where the exponential in the right-hand side is the multiparameter group action of the abelian
flows generated by operators L(n) ∈W1+∞, n = 1, 2, . . . ,

[L(n), L(m)] = 0, n,m = 1, 2, . . . , (1.2)
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where

L(1)(p, N) = Np1 +
∑

i>0

1

i
pi+1

∂

∂pi
. (1.3)

In the right-hand side, p∗n are the group parameters, which are also coupling constants of the
matrix model on the left-hand side of (1.1). Then, for the one-matrix model one obtains

∫
e

1
4
tr(X)2+

∑

n>0
pn
n
tr(X)n

∏

i≥j
dℜXi,j

∏

i<j

dℑXi,j = eL
(2)(p,N) · 1 (1.4)

If we assign deg pn = n, deg p∗n = −n then we are looking for commuting generators L(n),
where degL(n) = n and L(1) is given. We call such sets of graded elements abelian hierarchy.

More general example is the so-called hypergeometric tau function:

τhyp(p,p∗) =
∑

λ

rλsλ(p)sλ(p
∗), (1.5)

which can be also obtained as the action of certain abelian group of W1+∞ algebra, where p∗n
are group parameters; see [10]. In (1.5) sλ is the Schur polynomial, deg sλ = |λ|, where λ is
labeled by a partition λ = (λ1, . . . , λN ), |λ| = λ1 + · +N is the weight of λ (see Appendix)
and

rλ =
∏

(i,j)

r(j − i) (1.6)

is the so-called (generalized) content product, given by the choice {r(i) = ri, i ∈ Z} which
can be vied either as a function of the lattice Z, or just as a set of numbers.

We will use the fermionic approach because it is much more compact than any other.
We will generalize the construction given in [10]. In fact, in the next section we shall

consider the abelian subalgebra of ĝl∞ generated by graded elements (we call it the abelian
hierarchy).

2 ĝl∞ algebra, Ŵ1+∞ algebra and fermions.

Let us remind some notions and facts known from the seminal works of Kyoto school; see [7]
and references therein.

The modes ψi, ψ
†
i of the Fermi operators on the cirle satisfy the canonical relations

[ψi, ψj ]+ = 0 = [ψ†
i , ψ

†
j ]+, [ψi, ψ

†
j ]+ = δi,j , i, j ∈ Z (2.1)

and act in the fermionic Fock space where the (right) vacuum vector |0〉 is annulated by each

of ψ†
i , ψ−i−1, i ≥ 0. In the Dirac sea picture we consider that in the Dirac sea all states below

sea level are occupied by the fermions ψ−1, ψ−2, . . . .
We take

degψn = n, degψ†
n = −n (2.2)

The basis elements Ei,j, i, j ∈ Z of the ĝl∞ algebra of the (generalized Jacobian) infinite
matrices with entries (Ei,j)i′,j′ = δi,i′δj,j′ are realized by the normaly ordered bilinear Fermi
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operators : ψiψ
†
j := ψiψ

†
j − 〈0|ψiψ

†
j |0〉. The central extention of the algebra of the infinite

matrices gl∞ is defined by the cocycle

ω(Ei,j , Ej′,i′) =

{
δi,i′δj,j′, if i < 0, j ≥ 0

0, otherwise
(2.3)

and the charge c = 1

[a, b]→ [a, b] + cω(a, b), a, b ∈ gl∞

and in the fermionic realization it is provided by the symbol of the normal ordering. For
details see, for instance [7].

A special role in the Kyoto school approach play the modes of fermionic current algebra

Jn =
∑

i∈Z
: ψiψ

†
i+n :, n ∈ Z (2.4)

As one can see Jn|0〉 = 0 and 〈0|J−n = 0 for n > 0.
The current operator Jn is related to the matrix

∑
i∈Z Ei,i+n which can be vied as the

diagonal matrix where nonvanisheng entries are located n positions above the main diagonal.

From the commutation relations in ĝl∞ one can see that these modes satisfy relations of
the Heisenberg algebra

[Jn, Jn′ ] = nδn,n′, n, n′ ∈ Z (2.5)

The right hand side is the result of the central extention, see (2.3).

Remark 2.1. Perhaps, the most evident way to understand the number n in right hand side (2.5)
is to consider the action of J−n, n > 0 on the right vacuum vector looking at (2.4), namely at J−n|0〉.
This action pick up and move n fermions ψ−1, . . . , ψ−n from the Dirac sea respectively to the positions
ψn−1, . . . , ψ0 above the Dirac sea level by the action of the terms ψn−1ψ

†
−1, . . . , ψ0ψ

†
−n in (2.4) (other

terms elliminate the vacuum). While the consequent action of Jn place these n fermions back at their
places. Thus, 〈0|JnJ−n|0〉 = n while 〈0|J−nJn|0〉 = 0.

Two commuting parts of the Heisenberg algebra consisting of {Jn, n > 0} and {Jn, n < 0}
are used to form evolutionary operators

Γ±(p±) = exp
∑

n>0

1

n
p±nJ±n, (2.6)

where p± = (p±1, p±2, . . . ) are sets of parameters called KP higher times, which are used in
the fermionic construction of the KP and 2KP tau functions:

τKP
g (p+) = 〈0|Γ+(p+)g|0〉 (2.7)

τ2KP
g (p+,p−) = 〈0|Γ+(p+)gΓ−(p−)|0〉 (2.8)

Here g can be presented as an exponential of the elements of the ĝl∞ and in this sense (under
some restrictions on the choice of ĝl∞) can be viewed as an element of the group of infinite
matrices with the central extention. The choice of the fermionic operator g defines the choice
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of the tau function. Let us note that u(p+) = 2∂p1 log τ
KP(p+) solves the equations of the

famous KP hierarchy.

Let us note that gΓ−(p−) in (2.8) can be viewed as an example of g in (2.7) which depends
on the set of parameters p−1, p−2, . . . .

Let us recall that the tau function is an arbitrary chosen function of any two higher times,
say, p1, p2 and the dependence on other higher times are given by the evolution equation
which are equations of the famous KP hierarchy of integrable equation. We send the readers
to the works of the Kyoto school for details.

In this paper we address the question what do we get if we replace Γ+(p+) or Γ−(p−), or
the both evolutionary operators by the exponentials of elements of different abelian subalge-
bras of ĝl∞. In spite of the fact that it is quite natural question which was mentioned in [11]
it was not studied except of the cases considered in [10] and in [13].

3 Irreducible hierarchies of commuting operators

3.1 Generelized currents J−n, n > 0

Irreducible functions on Z Let us consider a function r on the one-dimensional lattice
Z. However, we prefer to consider r as a function of one variable on the complex plane C,
which can be restricted on Z.

A given such a function r, let us define the following analogue of it’s k-th root ρ (one can
call it quantum root of order k)

r(i) = ρ(i)ρ(i − 1) · · · ρ(i− k + 1), k = 1, 2, 3 . . . , (3.1)

if it exists. As we see it does not exist in case r has either an isolated zero, or k′ consequent
zeries, where k′ < k. As we also see, any, say s consequent zeroes of ρ results in at least k+ s
zeroes of r.

For a given k we call r k-reducible if there exists a solution to equation (3.1). Otherwise,
we call r k-irreducible. Is r k-irrreducible, or it is not the case depends only on the location
of zeroes of r and the number k.

Example 1.

r(x) = xn, n = 1, 2, 3, . . . (3.2)

is k-irreducible. While r(x− a) for non-integer a is k-reducible with ρ(x) =
Γ(x−a−1

k
)

Γ(x−a
k

)
be the

solution to (3.1).

Example 2.

r(x) =

n∏

i

(x− ai)
mi (3.3)

is n-reducible for ai = i+α, i = 1, . . . , n, α ∈ C with ρ(x) = x−a1. It is also reducible in case
each ai is non-integer. And it is n-irreducible, for instance, in case ai = 1, i = 1, . . . , n − 1
and an 6= 0, n.
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Irreducible graded hierarchies of commuting operators Here we will consider ĝl∞
operators parametrized by an integer p 6= 0 and by a function r on Z as follows

Anp(r) =
∑

i∈Z
r(i)r(i− p) · · · r (i− p(n+ 1)) : ψiψ

†
i−pn :, n, p = 1, 2, . . . (3.4)

These operators generalize currents J−pn

J−np(r) =
∑

i∈Z
: ψiψ

†
i−pn :, n, p = 1, 2, . . . (3.5)

If we take degψi = i, degψ†
i = −i, and deg r(i) = 0 then deg J−np = degAnp(r) = −np.

The set {Anp(r), n > 0} generalizes the set {J−pn, n > 0}. The difference between Ap(r)
and J−p is the prefactor r(i). The set of commuting operators {J−np, n > 0} is the subset
of the larger sets of commuting operators {J−n, n > 0}. The similar statement can be either
valid, or not valid depending of the location of zeroes of the function r and the integer p. We
call the hierarchy of operators either reducible or irreducible depending on is there exists an
integer k such that r which enter (3.4) is either k-reducible or k-irreducible. For a given p
and r one can get a set K of different numbers k such that r is k-reducible. The reducible
hierarchy {Apn(r), n = 1, 2, 3, . . . } is a subhierarhy of the hierarchy {Aqn(ρ), n = 1, 2, 3, . . . }
where q = mink, k ∈ K and where ρ is the the quantum root of r of order q.

In what follows we will consider only irreducible hierarchies {Apn(r), n = 1, 2, 3, . . . },
namely hierarchies which are not subhierarchies of another commuting sets {Aqn(ρ), n =
1, 2, 3, . . . }, where q < p (this unequality is important).

Remark 3.1. In the next section we will show that for p > 1 the hierarchy of commuting operators
{Apn(r), n = 1, 2, 3, . . .} is a subhierarchy of different commuting operators {Apn(r

′), n = 1, 2, 3, . . .},
where r′ is a certain p-parametric deformation of r.

Example 3. An example of (3.4) with n = 1 is the element of the Virasoro algebra Lp:

Apr = L−p +NJ−p =
∑

i∈Z
(i+N)ψiψ

†
i−p (3.6)

where r(i) = i+N . The subcase p = −1 is of use in the context of the two-matrix model [3]
where N plays the role of the matrix size.

Example 4. The other example is the following element of W1+∞ algebra

Ap(r) =
∑

i∈Z
(i+N)nψiψ

†
i−p, (3.7)

which also p-irreducible. The case r(i) = (N + i)n and p = 1 is used for the Ginibre ensemble
of the n complex matrices.

Remark 3.2. This is the case where one can send r to a canonical form

r(i)→ θ(i) (3.8)

where θ is either 1 or 0 (one can call θ characteristic function).
Namely there exists a diagonal matrix T , such that

T−1Anp(r)T = Anp(θ) (3.9)
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Here

T = exp


∑

i<0

Tiψiψ
†
i −

∑

i≥0

Tiψ
†
iψi


 (3.10)

and

r(i) = eTi−1−Ti (3.11)

Remark 3.3. From the point of view of the algebra ĝl∞ realized as the algebra of infinite matrices,
the operator A1;p(r) is related to the infinite diagonal matrix A1;p(r) whose diagonal is placed on the
p steps above (below) the main diagonal in case p > 0 (in case p < 0) and (A1;p(r))i,j = r(i)δi,i+p.

Then the matrix related to Anp(r) is the n-th power of A1;p(r). Then if we have an isolated zero on
the diagonal caused by r(i − 1) 6= 0, r(i) = 0, r(i + 1) 6= 0 then the n-th power yields n consequent
zeroes.

Colored partitions and p-component fermions. The structure of an operator
∑

i

r(i)ψiψ
†
i−p (3.12)

prompts to split the set Z of indices i into the subsets classes modulo p. So, let us introduce
multicomponent fermions in a way it was done in [7]:

ψ
(c)
i = ψip+c, ψ

†(c)
i = ψ†

ip+c, c = 0, . . . , p − 1 (3.13)

We get

[ψ
(c)
i , ψ

(c′)
j ]+ = 0 = [ψ

†(c)
i , ψ

†(c′)
j ], [ψ

(c)
i , ψ

†(c′)
j ] = δc,c′δi,j, i, j ∈ Z (3.14)

Then, each basis Fock vector |λ〉 can be decomposed as the direct product of states |λ(c)〉,
where each λ(c) is defined as follows:

We introduce coordinated of Fermi particles which yield the basis vector |λ〉 by the relation

xi := λi − i. (3.15)

Then each coordinate xi has a color c according to the rule

xi = px
(c)
j(i) + c, i = 1, . . . , ℓ(λ), c = 0, . . . , p− 1, (3.16)

where ℓ(λ) denotes the length of the partition λ, or the same, the number of non-zero parts of
λ. The values of j are to be defined, and j(i) > j(i−1). Then we have the set of p partitions
{λ(c), c = 0, . . . , p − 1} defined by

x
(c)
i := λ

(c)
i − i (3.17)

Example: let p = 3 and λ = (5, 5, 1). Then ℓ(λ) = 3 and according to (3.15) we have three
coordinates

x1 = 5− 1 = 4, x2 = 5− 2 = 3, x3 = 1− 3 = −2.

We have c = 0, 1, 2, and we can define the colors of the coordinates and there subscript label:

x1 = 3x
(1)
1 + 1, x2 = 3x

(0)
1 + 0, x3 = 3x

(1)
2 + 1.
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As we see, the coordinate x2 has a color c = 0 and x
(0)
1 = 1. The coordinates x1 and x3 have

the color c = 1, and x
(1)
1 = 1, x

(1)
2 = −1. And there no coordinates with the color c = 2.

Thus, according to (3.17), we get λ(0) = (0), because λ
(0)
1 = x

(0)
1 +1 = 3. Next, λ(1) with two

parts, λ(1) = (3, 3), because (λ
(1)
1 = 2+ 1 and λ

(1)
2 ) = 1 + 2, see (3.17). At last, the partition

λ(2) is empty.

Wider commutative hierachy. Now one can observe that we have more opportunities
to get abelian subalgebras. We have

Anp(r) =

p−1∑

c=0

A
(c)
n;1(r

(c)), (3.18)

where

A
(c)
n;1(r

(c)) =
∑

i∈Z
r(c)(i)r(c)(i− 1) · · · r(c)(i− n+ 1)ψ

(c)
i ψ

†(c)
i−n (3.19)

and r(c)(i), i ∈ Z is the following set of functions

r(c)(i) = r(pi+ c) (3.20)

Therefore one can write

Γp;r(p) := exp
∑

n>0

1

n
pnAnp(r) =

p−1∏

c=0

Γ
(c)

1;r(c)
(p) (3.21)

Matrix elements of the abelian multiparametric group We are interested in

〈λ|Γp;r(p)|µ〉

Using (3.21) and the results of [10] we can write

〈λ|Γp;r(p)|µ〉 = rλ/µsλ/µ(p̃) (3.22)

=

p∏

c=1

r
(c)

λ(c)/µ(c)
sλ(c)/µ(c)(p) (3.23)

4 Generalized currents Jn, n > 0

In the similar way, for a given k and a given function r̃ we consider

r̃(i) = ρ̃(i)ρ̃(i− 1) · · · ρ̃(i− k + 1), k = 1, 2, 3 . . . , (4.1)

and call r̃ k-irreducible if there no ρ̃ which solves (4.1).
For a given p-irreducible r̃ we present the hierarchy of commuting operators

Ãnp(r̃) =
∑

i∈Z
r̃(i)r̃(i+ p) · · · r̃ (i+ p(n− 1)) : ψiψ

†
i+pn :, n ∈ Z (4.2)
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In the same way we obtain

Γ̃p;r̃(p) = exp
∑

n>0

1

n
p̃nÃnp(r̃) (4.3)

For a given p̃ and p̃ = (p̃1, p̃2, . . . ) we define

p̃ = (0, . . . , 0︸ ︷︷ ︸
p−1

, p̃1, 0, . . . , 0︸ ︷︷ ︸
p̃−1

, p̃2, . . . ) (4.4)

and

r̃λ/µ =
∏

(i,j)∈λ/µ
r̃(pj − pi) (4.5)

Lemma 4.1. We have

〈µ|Γ̃p̃;r̃(p̃)|λ〉 = r̃λ/µsλ/µ(p̃) (4.6)

=

p∏

c=1

r̃
(c)

λ(c)/µ(c)
sλ(c)/µ(c)(p̃) (4.7)

where r̃ and r̃(c) are related by (3.20) and p and p̃ are related by (4.4).

5 Discussion

This note is a more complete answer to a remark in the article [11] on commuting flows
built on additional symmetries, and also develops [10], where the exponent of the Abelian
subalgebra isW1+∞ (namely, the one associated with the subalgebra {∂nz , n > 0) was applied
to obtain a series of perturbations for a two-matrix model (see Section B.1 below) and for
the one-matrix model [3]. In [10], the role of the zeros of the r function is also indicated.

It would be interesting to explicitly construct differential equations in which the indepen-
dent variables are the group parameters of abelian symmetries, and analyse these equations.
In particular to get analogues of Leznov-Savel’ev open Toda lattices and to obtain analogues
of open Todov chains of Leznov-Saveliev [25] and also semi-open (“forced”) Toda chains [1].
Let us note that they will posses symmetries related to multicomponent KP flows.

It is interesting to relate this study to the interesting works [26], [27], [28], [29] (and also
[30]. In certain sense it can be viewed as creation-annihilation point of view at the coherent
states formed by abelian subalgebras of W1+∞ algebra.)

The similar example with the BKP hierarchy was considered in [31] and will be considered
in more details in the next article.

6 Acknowledgements

The present work is an output of a research project implemented as part of the Basic Research
Program at the National Research University Higher School of Economics (HSE University).



]ocnmp[ W1+∞ flows and multi-component hierarchy. KP case 141

References

[1] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, “Matrix models of
two-dimensional gravity and Toda theory”, Nuclear Physics B 357 (2-3), 565-618 (1991);
S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, “Matrix models among
integrable theories: Forced hierarchies and operator formalism”, Nuclear Physics B 366
(3), 569-601 (1991)

[2] V.G. Kac and A. Radul, Quasi-finite highest weight modules over the Lie algebra of
differential operators on the circle, Comm. Math. Phys. 157 (1993), 429-457.

[3] J. Harnad and A. Yu. Orlov, “Scalar products of symmetric functions and matrix inte-
grals”, Theoretical and mathematical physics 137 (3), 1676-1690 (2003); A. Yu. Orlov,
Soliton theory, symmetric functions and matrix integrals Acta Applicandae Mathematica
86 (2006) 131-158, arXiv:nlin/0207030

[4] I.G. Macdonald, Symmetric functions and Hall polynomials, Second Edition, Oxford
University Press, 1995

[5] A.V. Mikhailov, “On the Integrability of two-dimensional Generalization of the Toda
Lattice”, Letters in Journal of Experimental and Theoretical Physic s, v.30, p. 443-448,
1979; A.V.Mikhailov, M. A. Olshanetski, A.M.Perelomov, Two-dimentional generalized
Toda lattice, Comm.Math.Phys 79 (1981) no. 4 473-488

[6] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Physica 4D (1982) 343-365

[7] M. Jimbo and T. Miwa, Publ. Res. Inst. Math. Sci. 19 (1983) 943-1001

[8] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton
equations”, In: Nonlinear integrable systems - classical theory and quantum theory,
39-120. World Scientific (Singapore), eds. M. Jimbo and T. Miwa (1983)

[9] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Publ. RIMS, Kyoto Univ. 18 (1982)
1077-1110

[10] A. Orlov, D.M. Shcherbin, Theor.Math.Phys. 128 (2001) 906-926

[11] A. Yu. Orlov, “Vertex operator, ∂̄-problem, symmetries, variational identities and Hamil-
tonian formalism for 2+1 D integrable systems”. Nonlinear and Turbulent Processes in
Physics 1987, ed. V. Baryakhtar., V.E.Zakharov —Singapore (1988)

[12] P. G. Grinevich, A. Yu. Orlov, “ ” in “Research Reports in Physics. Problems of Mod-
ern Quantum Field Theory” eds. A.A. Belavin, A. U. Klimyk, A. B. Zamolodchikov
Springer-Verlag Berlin. Heidelberg 1989 pp. 86-106 (republished in arXiv as arXiv-math-
phys/9804019)

[13] A. Yu. Orlov, Hypergeometric functions as infinite-soliton tau functions, Theoretical and
mathematical physics 146 (2006) 183-206

[14] A. K. Pogrebkov and V. N. Sushko, Quantization of the (sinψ)2 interaction in terms

of fermion variables, Translated from Teoreticheskaya i Mathematicheskaya Fizika, 24
(1975) 425-429 (September, 1975). The original paper was submitted on May 15, 1975

http://arxiv.org/abs/nlin/0207030


142 ]ocnmp[ A. Yu. Orlov

[15] K.Ueno and K.Takasaki, Toda lattice hierarchy, Adv. Stud. Pure Math. 4, 1-95 (1984).

[16] Mironov,A., Morozov,A. and Semenoff,G.: Unitary Matrix Integrals in the Framework
of the Generalized Kontsevich Model, Intern J Mod Phys A 11 (1996) 5031-5080

[17] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Generalized Kazakov-Migdal-
Kontsevich Model: group theory aspects, International Journal of Mod Phys A10 (1995)
p.2015

[18] C.Tracy, H.Widom, “Random Unitary Matrices, Permutations and Painleve”, Commun.
Math. Phys. 207 (1999), 665-685

[19] B.A. Dubrovin, Symplectic field theory of a disk, quantum integrable systems, and Schur
polynomials, arXiv:1407.5824

[20] Y. Eliashberg, Symplectic field theory and its applications, Proceedings of the Interna-
tional Congress of Mathematicians Madrid, Spain, 2006. 2007 Europian Mathematical
Society

[21] A.Yu. Orlov and T. Shiota, “Schur function expansion for normal matrix model and
associated discrete matrix models”, Phys. Lett. A 343, 384-396 (2005)

[22] Chau, L-L. and Zaboronsky, O., “On the Structure of Correlation Functions in the
Normal Matrix Models”, Commun. Math. Phys. 196 (1998) 203-247

[23] Mineev-Weinstein, M., Wiegmann, P. and Zabrodin, A., “Integrable structure of inter-
face dynamics”, Phys. Rev. Lett. 84 (2000) 5106–5109

[24] A. Mironov, A. Morozov, A. Popolitov, “Commutative families in DIM algebra, inte-
grable many-body systems and q,t matrix models”; arXiv:2406.16688

[25] A.N.Leznov, M.V.Saveliev, Communications in Mathematical Physics, A. N. Leznov and
M. V. Saveliev, Commun. Math. Phys. 89 (1983) 59.

[26] A. Mironov, A. Morozov, “Spectral curves and W -representations of matrix models”, J.
High Energ. Phys. 2023 (2023) 116; arXiv:2210.09993

[27] A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, Rui Wang, Wei-Zhong Zhao,
“Interpolating Matrix Models for WLZZ series”, Eur. Phys. J. C 83 (2023) 377;
arXiv:2301.04107

[28] A. Mironov, A. Morozov, “Many-body integrable systems implied by WLZZ models”,
Physics Letters B842 (2023) 137964; arXiv:2303.05273

[29] A. Mironov, A. Morozov, A. Popolitov, “Commutative families in DIM algebra, inte-
grable many-body systems and q,t matrix models”, arXiv:2406.16688

[30] Ya. Drachov, A. Mironov, A. Popolitov, “W1+∞ and W̃ algebras, and Ward identities”,
arXiv:2311.17738

[31] A.Mironov, A.Morozov, S.M.Natanzon and A.Yu.Orlov, “Around spin Hurwitz num-
bers”, Lett.Math.Phys. 111 (2021) 124; arXiv:2012.09847

http://arxiv.org/abs/1407.5824
http://arxiv.org/abs/2406.16688
http://arxiv.org/abs/2210.09993
http://arxiv.org/abs/2301.04107
http://arxiv.org/abs/2303.05273
http://arxiv.org/abs/2406.16688
http://arxiv.org/abs/2311.17738
http://arxiv.org/abs/2012.09847


]ocnmp[ W1+∞ flows and multi-component hierarchy. KP case 143

A KP and W1+∞

In this section we recall and re-write certain known facts about KP symmetries. We consider
abelian subgroups and their action on vacuum. Examples contain three well-known matrix
models.

A.1 Notations

We denote the charged free fermions ψi and ψ
†
i

[ψi, ψ
†
j ]+ = δij , [ψi, ψj ]+ = [ψ†

i , ψ
†
j ]+ = 0, i, j ∈ Z. (A.1)

For a given Dirac sea level n we have

ψi|N〉 = ψ†
−i−1|N〉 = 0 = 〈N |ψ†

i = 〈N |ψ−1−j , i < N. (A.2)

The charged fermionic fields

ψ(z) =
∑

j∈Z
ψjz

j− 1
2 , ψ†(z) =

∑

j∈Z
ψ†
−jz

j− 1
2 . (A.3)

In case we were interested to change the variable z, both fermionic fields transform as semi-
forms (dz)

1
2 , see [12].

Let κ and p = (p1, p2, . . . ) be a set of parameters. The vertex operators

X(z) = e
∑

i>0
1
i
zipieκz∂κ−

1
2 e−

∑

i>0 z−i∂pi =
∑

i∈Z
zi−

1
2Xi, (A.4)

X†(z) = e−
∑

i>0
1
i
zipie−κz

1
2
−∂κe

∑

i>0 z
−i∂pi =

∑

i∈Z
zi−

1
2X†

−i (A.5)

(where z∂κ is the shift operator: z∂κeκ = zeκe∂κ) act in the bosonic Fock space, which consists
on polynomials in the variables p1, p2, . . . times eκN :

Pol(p1, p2, . . . )e
κN , (A.6)

where κ is a formal parameter and the set {ti :=
1
i pi, i > 0} is called the set of KP higher

times. The integer variable N is the discrete time variable of the so-called modified KP and
also the lattice variable of the relativistic Toda lattice [5],[15], which can be viewed as a
certain KP symmetry. The anti-commutation relations of X(z) and of X†(z) coinside with
the anti-commutation relations (A.2), where ψ(z) is replaced by X(z) and ψ†(z) is replaced
by X†(z).

Formula (A.4) sometimes is written as

X(z) =
...eϕ

b(z)..., X†(z) =
...e−ϕ

b(z)... , (A.7)

where

ϕb(z) = κ+ (∂κ −
1
2 ) log z +

∑

i>0

1

i
zipi −

∑

i>0

z−i∂pi , (A.8)

and where
...A

... means that each shift-operator e±∂pi , i > 0 is moved to the right of the factor
e∓

1
i
zipi and the ’zero mode’ shift operator z±∂κ is moved to the right of the factor e±κ.
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Currents. Consider

: ψ(z)ψ†(z) :=
∑

m∈Z
z−m−1J f

m (A.9)

Symbol : A : denotes the fermionic normal ordering, which, for A a bilinear in the fermions
A, can be equated to A− 〈0|A|0〉.

Operators

J f
m =

∑

i∈Z
: ψiψi+m := res

z
zm : ψ(z)ψ†(z) : dz (A.10)

are called fermionic currents.
As one can see

[J f
k, J

f
m] = kδm+k,0 (A.11)

and

J f
0|N〉 = |N〉N, zJ

f
0 |N〉 = |N〉zN . (A.12)

One can introduce the operator J f+
0 by

eJ
f+
0 ψi = ψi+1e

J f+
0 , eJ

f+
0 ψ†

i = ψ†
i+1e

J f+
0 (A.13)

and by

ekJ
f+
0 |N〉 = |N + k〉 , (A.14)

which result in

[J f+
0 , J f

m] = −δm,0. (A.15)

The Fermi fields can be written as

ψ(z) = e
∑

m>0
1
m
zmJ f

−meJ
f+
0 zJ

f
0− 1

2 e−
∑

m>0
1
m
z−mJ f

m (dz)
1
2 , (A.16)

ψ†(z) = e−
∑

m>0
1
m
zmJ f

−me−J
f+
0 z−J

f
0+

1
2 e

∑

m>0
1
m
z−mJ f

m (dz)
1
2 (A.17)

or, it can be written as

ψ(z) =
...eϕ

f (z)..., ψ(z) =
...e−ϕ

f (z)... , (A.18)

where

ϕf(z) = J f+
0 + J f

0 log z +
∑

m>0

1

m
zmJ f

−m −
∑

m>0

1

m
z−mJ f

m , (A.19)

and where
...A

... means that the currents J f
i , i > 0 are moved to the right of the currents

J f
i , i < 0 while ’zero mode’ J f+

0 is moved to the left of J f
0.

The formula of this type was first discovered in the work of Pogrebkov and Sushko [14] 1

Bosonic currents are defined as

Jb
m =





m∂pm , m > 0

p0, m = 0

p−m, m < 0

. (A.20)

1The preprint of this work was not published in journal version for long, because referees decided that it is

too unusual and can be wrong.
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Remark A.1. As one can verify this definition is equivalent to

Jb
m = lim

y→0
res
z
zm
(
...X(z(1 + y

2
))X†(z(1− y

2
))
...− 1

)
dz

y
= res

z
zm

... (D ·X(z))X†(z)
...
dz

z
, (A.21)

where
...A

... (which means that the shift-operators e±∂pi , i > 0 of the both vertex operators are moved
to the right and e±κ are moved to the right), according to the Campbell-Hausedorff formula, is results

in the appearence of the factor
(
1−

1− y

2

1+
y

2

)−1

= 1
y
+O(1).

Fermion-boson correspondence :

ψ(z) ←→ X(z) (A.22)

ψ†(z) ←→ X†(z) (A.23)

|N〉 ←→ eκN (A.24)

In particular, we have

R ←→ eκ (A.25)

J f
m ←→ Jb

m (A.26)

ϕf(z) ←→ ϕb(z) (A.27)

J f
−λ1 · · · J

f
−λk |N〉 ←→ eκNpλ1 · · · pλk (A.28)

We shall omit the superscripts f and b and hope that it does not produce a mess.

A.2 W1+∞ algebra and it’s abelian subalgebras

Let us use few notions from the textbook [4]. Parition is a non-increasing set of nonnegative
integers, say λ = (λ1, . . . , λl), λi ≥ · · · ≥ λl ≥ 0. The sum

∑
i λi =: |λ| is called the weight of

λ. The number of the nonvanishing parts of λ is called the length of λ and denoted by ℓ(λ).
The numbers zλ and z′λ are equal respectively to

∏
imi!i

mi and to
∏
imi! where mi is the

number of times the integer i occurs in λ. For λ = 0 we put z0 = z′0 = 1. (The number z′λ
will be used in (A.35) below). We denote the set of all partitions (including zero partition)
by P.

There is the well-known relation

e
∑

m>0
1
m
pmp̃m =

∑

λ∈P

1

zλ
pλp̃λ , (A.29)

where p = (p1, p2, . . . ) and p̃ = (p̃1, p̃2. . . . ) are two (infinite) sets of parameters and where

pλ =
∏ℓ(λ)
i=1 pλi , p̃λ =

∏ℓ(λ)
i=1 p̃λi . It is assumed that p0 = p̃0 = z0 = 1.

By this relation and by (A.16) one gets:

ψ(x)ψ†(y) =
1

1− yx−1

1

x

(
x

y

)J0− 1
2 ∑

λ,µ∈P

1

z′λz
′
µ

x−|µ|y−|µ|(x/y)′λ(x/y)
′
µJ

f
λJ

f
−µ , (A.30)

where

• Jf
λ :=

∏ℓ(λ)
i=1 J

f
λi

and Jf
0 := 1 (don’t miss with J0)
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• Jf
−µ :=

∏ℓ(µ)
i=1 J

f
−µi and Jf

−0 := 1

• (x/y)λ :=
∏ℓ(λ)
i=1 (x

λi − yλi)
∏ℓ(λ)
i=1

1
λi

in case λ 6= 0 (the last product changes zλ in (A.29)
to z′λ in (A.30)), and (x/y)0 := 1

• (x/y)µ :=
∏ℓ(µ)
i=1 (x

µi − yµi)
∏ℓ(µ)
i=1

1
µi

in case µ 6= 0 and (x/y)0 := 1

I. Let us write x = ze
y
2 , x = ze−

y
2 and assign deg z = 1.

Consider

: ψ(ze
y
2 )ψ†(ze−

y
2 ) :=

∑

i,m∈Z
zm−1e(i−

m
2
)y : ψiψ

†
j := (A.31)

=
∑

m∈Z, n≥0

1

n!
zm−1yn

∑

i∈Z
(i− m

2 )
n : ψiψ

†
i−m :=:

∑

m∈Z, n≥0

1

n!
zm−1ynW f

m,n (A.32)

In other words

W f
m,n = res

z
:
(
z−

m
2 Dnz−

m
2 · ψ(z)

)
ψ†(z) : dz (A.33)

The set {W f
m,n, n ≥ 0, m ∈ Z} is the set of the generators of the W1+∞ algebra.

The bosonic counterparts can be written down as follows. For practical calculations in the
bosonic Fock space one prefers to have normal ordered expressions.

There are two ways to present explicit formulas for it. In both cases, it is convinient to
take into account that : A := A − 〈0|A|0〉 and write the bosonic counterpart of (A.31) as
follows:

X(ze
y
2 )X†(ze−

y
2 )−

1

ze
y
2 − ze−

y
2

=:
∑

m∈Z, n≥0

1

n!
zm−1ynW b

m,n (A.34)

where
...A

... means that the shift-operators parts of the both vertex operators are moved to the
right which, according to the Campbell-Hausedorff formula, is equivalent to the appearence

of the factor eyp0
1−e−y . Thus, this symbol

...
... means the bosonic ordering, in which all derivatives

with respect to pi variables are moved to the right of functions of pi variables.

I The first way to write down

...X(ze
y
2 )X†(ze−

y
2 )
... = ey∂κe

∑

k>0
1
k
zk

(

ek
y
2 −e−k

y
2

)

pke
∑

k>0 z
−k

(

ek
y
2 −e−k

y
2

)

∂pk ,

X(ze
y
2 )X†(ze−

y
2 )−

1

ze
y
2 − ze−

y
2

=
1

ze
y
2 − ze−

y
2

(
...X(ze

y
2 )X†(ze−

y
2 )
...− 1

)

=
z−1

sinh′(1)(
y
2 )


ey∂κ

∑

λ,µ∈P

1

z′λz
′
µ

z|λ|−|µ| sinh′λ(
y
2 ) sinh

′
µ(
y
2 )pλ∂̃µ − 1


 , (A.35)

where
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• pλ := pλ1 · · · pλl , if λl > 0. In case λ = 0 we put p0 := 1

• ∂̃µ =
(
µ1∂pµ1

)
· · ·
(
µk∂pµk

)
, where µk > 0. In case µ = 0 we put ∂̃0 := 1.

• sinh′λ(
y
2 ) := sinh

(
1
2λ1y

)
· · · sinh

(
1
2λ1y

)∏ℓ(λ)
i=1

2
λi

in case λl > 0 and sinh′λ(
y
2 ) := 1 in case

λ = 0

• sinh′µ(
y
2 ) := sinh

(
1
2µ1y

)
· · · sinh

(
1
2µ1y

)∏ℓ(µ)
i=1

2
µi

and sinh′µ(
y
2 ) := 1 in case µ = 0

Let us replace ∂κ by it’s eigenvalue p0.
Let us introduce

eyp0
sinh′λ(

y
2 ) sinh

′
µ(
y
2 )

sinh′(1)(
y
2 )

y1−ℓ(λ)−ℓ(µ) =:
∑

i≥0

yifi(λ, µ, p0) (A.36)

= 1 + yp0 + y2


1

2(p0 −
1
2 )

2 + 1
12 +

1
24

ℓ(λ)∑

i=1

λ3i +
1
24

ℓ(µ)∑

i=1

µ3i


+ · · · , (A.37)

where f0(λ, µ,N) ≡ 1 and f1(λ, µ,N) = N .
In particular,

y

e
y
2 − e−

y
2

=
∑

i≥0

yifi(0, 0, 0) = 1 + y2
2

22
1

3!
+ · · ·

yeyN

e
y
2 − e−

y
2

=
∑

i≥0

yifi(0, 0, N)

Then ∑

m∈Z, n≥0

1

n!
zmynW b

m,n =

=
∑

m∈Z
zm

∑

λ,µ∈P
|λ|−|µ|=m

pλ∂̃µ
z′λz

′
µ

∑

i≥0

yℓ(λ)+ℓ(µ)−1+ifi(λ, µ,N)−
1

e
y
2 − e−

y
2

, (A.38)

which results in

1

n!
W b

0,n =
∑

0≤i≤n+1

∑

|λ|=|µ|
ℓ(λ)+ℓ(µ)+i=n+1

fi(λ, µ,N)
pλ∂̃µ
z′λz

′
µ

− fn+1(0, 0, 0), (A.39)

where p0 = ∂̃0 = z′0 = f0 = 1, and in

∑

n≥0

1

n!
ynW b

m,n =
∑

λ,µ∈P
|λ|−|µ|=m6=0

pλ∂̃µ
z′λz

′
µ

∑

i≥0

yℓ(λ)+ℓ(µ)−1+ifi(λ, µ,N), m 6= 0.

or, the same

1

n!
W b
m,n =

∑

0≤i≤n

∑

λ,µ:|λ|−|µ|=m6=0
ℓ(λ)+ℓ(µ)+i=n+1

fi(λ, µ,N)
pλ∂̃µ
z′λz

′
µ

, m 6= 0. (A.40)
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As one can see for given m,n we get a contribution of terms in the right hand side of
(A.40) conditioned by

|λ| − |µ| = m (A.41)

ℓ(λ) + ℓ(µ) = n+ 1− i, i = 0, . . . , n+ 1 (A.42)

Remark A.2. For m = 0, formula (A.39) yields the generating (in the parameter y) function of the
Hamiltonians of the quantum KdV equation in free fermion point (see [19], [20] where it was written
in another way).

Remark A.3. The case i = n+ 1 is related to the λ = µ = 0 term (the ’free term’) in case m = 0
is fn+1(0, 0, N) − fn+1(0, 0, 0). Due to (A.41) there is no free term in case m 6= 0 and in this case
one studies i = 0, . . . , n. In case m 6= 0 the terms where i ≥ 1 exists only due to the prefactor which
appears thanks to the bosonic ordering while in case m = 0 there is the additional contribution of
the fermionic ordering which enters the free term for any given n. That is why the summation ranges
over i in (A.39) and in (A.40) are different.

Examples.
(a) In (A.39) m = n = 0. Then we have two terms, i = 1 and i = 0 at most in the sum on

the right hand side of (A.39). The case i = 0 is impossible because the conditions |λ| = |µ|
(which follows from m = 0) and the condition ℓ(λ)+ ℓ(µ) = 1 (which follows from n = 0) are
inconsistent. Due to the i = 1 term we get W0,0 = f1(N)− f1(0) = N .

(b) In (A.40) n = 0 and m 6= 0. Then i = 0, 1. The case i = 1 is impossible because
condition (A.42) (where we get λ = µ = 0) is inconsistent with (A.41) where m 6= 0. Then,
for i = 0 we have either λ = (m), µ = 0 in case m > 0, or λ = 0, µ = (−m) in case m < 0.
In both cases z′λ = z′µ = 1 and we get Wm,0 = Jb

−m.
(c) In (A.39) take n = 1 and m = 0. In this case i = 0, 1, 2. The terms with i = 2 and

fi=2(0, 0, 0) form the free term f2(0, 0, N) − f2(0, 0, 0) = 1
2(N −

1
2)

2. The terms i = 1 does
not contribute because (A.41) and (A.42) are inconsistent for i = 1. The terms i = 0 gives
the sum over k ≥ 1 over partitions λ = µ = (k) and in this case z′λ = z′µ = 1. We obtain

W0,1 =
1
2(N −

1
2 )

2 +
∑

k>0

kpk∂pk =: L0 (A.43)

(d) Take n = 1 and m = |λ| − |µ| 6= 0. In this case i = 0, 1; see Remark A.3. The
contribution of i = 1 terms results in either λ = (m), µ = 0 (for m > 0), or in λ = 0, µ =
(−m) (for m < 0), thus, it is equal to fi=1(λ, µ,N)Jb

−m. The contribution of i = 0 terms
consists of two groups. The first group is related to λ = (k,m − k) (if k ≥ m − k) and to
µ = 0 = in case m > 0 and to µ = (k,m − k) (if k ≥ m − k) and to λ = 0 in case m < 0.
The second group is related to λ = (k), µ = (m − k). Taking into account (z′λz

′
µ)

−1 factor
we finelly get

Wm,1 =





Npm +
∑

k>m pk(k −m)∂pk−m
+ 1

2

∑
0<k<m pkpm−k, m > 0

1
2(N −

1
2)

2 +
∑

k>0 kpk∂pk , m = 0

−mN∂p−m
+
∑

k>0 pk(k −m)∂pk−m
+ 1

2

∑
0<k<m k(−m− k)∂pk∂p−m−k

, m < 0

(A.44)

where 1
2 aprior the second sums appear from the restriction k ≥ m−k in partitions (k,m−k)

and separately from the factors z′λ and z′µ for partitions (k, k).
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Remark A.4. The combination

Lm :=W−m,1 −NW−m,0 (A.45)

coincides with the Virasoro algebra element Lj
m presented in formula (3.7) of [12] where we put j = 1

2
.

II it is convinient to take into account that : A := A− 〈0|A|0〉 and write

X(ze
y
2 )X†(ze−

y
2 )−

z−1

1− e−y
=

z−1

1− e−y

(
...X(ze

y
2 )X†(ze−

y
2 )
...e−

y
2 − 1

)

=:
∑

m∈Z, n≥0

1

n!
zm−1ynW b

m,n , (A.46)

where
...A

... means that the shift-operators parts of the both vertex operators are moved to the
right which, according to the Campbell-Hausedorff formula, is equivalent to the appearence

of the factor z−1e−
y
2

1−e−y . Thus, this symbol
...
... means the bosonic ordering, in which all derivatives

with respect to pi variables are moved to the right of functions of pi variables.
Using

res
z
z−m

...
(
e

y
2
DX(z)

) (
e−

y
2
DX†(z)

) ...dz = res
z

...
((
e

y
2
D · z−m · e

y
2
D
)
·X(z)

)
X†(z)

...dz

= res
z
z−m

...
(
ey(D−m

2
) ·X(z)

)
X†(z)

...dz

we can rewrite (A.48)-(A.46) as follows:

W b
m,n =

res
y=0

dy

y
yn−1 y

1− e−y



e

my
2

∑

k≥0

1

k!
yk
[
res
z
z−m

...
(
Dk ·X(z)

)
X†(z)

...
dz

z

]
− δm,0



 (A.47)

= res
y=0

dy

y
yn−1 y

1− e−y



e

my
2

∑

k≥0

1

k!
yk
[
res
z
z−m

...ck(ϕ(z))
...
dz

z

]
− δm,0



 (A.48)

where ck(ϕ(z)) =
(
Dk · eϕ(z)

)
e−ϕ(z) = (zJ(z))k + · · · + Dk−1 · zJ(z), ϕz = J(z), X(z) =

...eϕ(z)
...; see (A.8). As we see the normally ordered bosonic expressions are more involved than

normally ordered ferionic ones.
In what follows we omit the superscripts f and b and hope it does not produce a misun-

derstanding.
In particular the formula (A.48) yields

Wm,0 =





pm, m > 0

N, m = 0

−m∂p−m
, m < 0
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and

Wm,1 = 2





∑
k>0

(
k pk−m∂pk +

1
2k(m− k)∂pk∂pm−k

)
, m > 0

∑
k>0 k pk∂pk +

1
2N

2, m = 0∑
k>0

(
k pk−m∂pk +

1
2pkp−k−m

)
, m < 0

III. The third way is as it was done in [11] (in this work it was done almost without
examples). Consider

: ψ(z + ǫ)ψ†(z) := ψ(z + ǫ)ψ†(z)−
1

ǫ
=:

∑

m∈Z, n≥0

zm−1ǫnΩf
m,n (A.49)

One can write

Ωf
−m,n =

1

n!
res
z
zm :

∂nψ(z)

∂zn
ψ†(z) : dz (A.50)

=
∑

j∈Z
(j − 1

2)(j −
3
2 ) · · · (j − n−

1
2)ψjψ

†
j+m (A.51)

In particular,

Ω−m,1 =
∑

j∈Z
j : ψjψ

†
j+m : −1

2Jm (A.52)

compare to

W−m,1 =
∑

i∈Z
i : ψiψ

†
i+m : +m

2 Jm =: L
j= 1

2
m (A.53)

which is the element of the Virasoro algebra

[Ljm, L
j
n] = (n−m)Ljm+n + (6j2 − 6j + 1)

n3 − n

12
δm+n,0 (A.54)

n−1∑

i=1

(i2 + i) = 1
3(n

3 − n)

m2 +
m−1∑

j=1

j2 = am3 + (b+ 1)m2 + cm+ d = a(m+ 1)3 + b(m+ 1)2 + c(m+ 1) + d

a+ b+ c = 0, 0 = 3a+ 2b, 1 = 3a

m−1∑

j=1

j2 = 1
3m

3 − 1
2m

2 + 1
6m = m(13m

2 − 1
2m+ 1

6)

m−1∑

j=1

j =
m(m− 1)

2

: X(z + ǫ)X†(z) := X(z + ǫ)X†(z)−
1

ǫ
=:

∑

m∈Z, n≥0

zmǫnΩb
m,n (A.55)
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= lim
ǫ→0

(
X(z + ǫ)X†(z)−

1

ǫ

)
+
∑

n≥1

1

n!
ǫn
∂nX(z)

∂zn
X†(z) (A.56)

where the first term with lim contains vanishing ǫ−1 term and also the term ǫ0 (linear in
currents, see below).

The right hand side is not convinient in the bosonic realization. It is convinient to write

X(z + ǫ)X†(z)−
1

ǫ
=

1

ǫ

(
...X(z + ǫ)X†(z)

... − 1

)
(A.57)

∑

n≥0

1

n!
ǫn
...
∂n+1X(z)

∂zn+1
X†(z)

... =:
∑

m∈Z, n≥0

zmǫnΩb
m,n . (A.58)

Or

Ωm,n =
1

n!
res
z=0

zm−1...
∂n+1X(z)

∂zn+1
X†(z)

...dz (A.59)

Then

Ωm,0 = J−m , (A.60)

Ωm,1 =
1
2 res
z=0

z−m
...


1

2

(
∑

k

zk−1Jk

)2
... +
∑

k

(k − 1)zk−2Jk


 dz

z
. (A.61)

Graded elements which we use. For our purposes, the elements of the W1+∞ algebra
in the bosonic Fock space will be [2] chosen as

Wn[F ] = res
z
(znF (D) ·X(z))X†(z)

dz

z
, n 6= 0 D := z

∂

∂z
(A.62)

The case n = 0 will be recalled separetely. The pseudodifferential operator F (D) acts on the
formal series in the powers of z according to the rule F (D) · zk = F (k)zk, k ∈ Z where F is
a function on the lattice. We consider it to be bounded except the case n = 0. Zeroes are
admissible.

In the fermionic Fock space these are

W f
n[F ] = res

z
: (znF (D) · ψ(z))ψ†(z) :

dz

z
(A.63)

=
∑

i∈Z
F (i)ψiψ

†
i+n (A.64)

Here : A : denotes A− 〈0|A|0〉.
In case it does not produce a misunderstanding we shall omit the superscript f which says

that we deal with the fermionic version.
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Definition. For a given function F on the lattice Z, we introduce the characteristic function
F[F ] defined on Z which takes values 1 and 0 and whose zeroes coinsides with the zeroes of
F .

Example: We take F[x+ n](x) = 0 in case x = −n, otherwise it is equal to 1.

We introduce the degree putting deg z = 1, then we get deg(Wn[F ]) = n independent of
the choice of F .

One can verify the

Lemma A.1. For any choice of F1 and F2 we have

[W0[F1],W0[F2]] =
[
W f

0 [F1],W
f
0 [F2]

]
= 0 (A.65)

Proposition A.2. For a given F , there exists T acting in the fermionic Fock space such that

W f
n[F ] = TW f

n[F[F ]]T
−1 (A.66)

and degT = 0.

(Thus, all W f
n[F ] with a given D(F ) belong to the same orbit.)

Proof.

W f
n[F] =

∑

i

F[F ](i)ψiψ
†
i+n (A.67)

Let

T = e
∑

i<0 Tiψ
†
iψi−

∑

i≥0 Tiψiψ
†
i =: eW0[T ] (A.68)

where each Ti is a finite number; then

Tψi T
−1 = e−Tiψi, Tψ†

i T
−1 = eTiψ†

i (A.69)

Formaly, the set {Ti, i ∈ Z} can contain infinite numbers. Then one can get 0 in the right
hand sides of relations (A.69).

Thus,
eTi+n−TiF[F ](i) = F (i)

one can construct the set of {Ti, i ∈ Z} with this property in a recurrent way.

Abelian subalgebras. For a given n and F , introduce the set

Jm(n, F ) := res
z
((znF (D))m ·X(z))X†(z)

dz

z
, m = 1, 2, 3, . . . (A.70)

where J1(n, F ) =Wn[F ]; see (A.62).

Proposition A.3. For a given F and a given n ∈ Z, we have

[Jm(n, F ), Jm′(n, F )] = 0, m,m′ = 1, 2, 3, . . . (A.71)

Remark A.5. In the BKP case below we have different situation: odd and even n are rather
different.
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Proof. We write

Jm(n, F ) =
∑

i

F (i)F (i + n)F (i+ 2n) · · ·F (i+ n(m− 1))ψiψ
†
i+nm (A.72)

and perform the explicit calculation.
We call

T Jm(n, F )T
−1 =

∑

i

F(i)F(i+ n)F(i+ 2n) · · ·F(i+ n(m− 1))ψiψ
†
i+nm (A.73)

canonical form of Jm(n, F ).
Example 1. Consider F ≡ 1. In this case Jm(n, F ) = Jnm, where

Jk :=
∑

i∈Z
ψiψ

†
i+k (A.74)

is the current which is used to construct the KP tau function.
Example 2. Consider F (x) = x+N , where N is a positive number. Then

Jm(n, F ) = res
z
((zn(D +N))m · ψ(z))ψ†(z)

dz

z
= (A.75)

∑

i∈Z
(N + i)(N + i+ n)(N + i+ 2n) · · · (N + i+ n(m− 1))ψiψ

†
i+nm (A.76)

In this case J1(n, F ) = Ln +NJn, where

Ln +NJn :=
∑

i∈Z
(i+N)ψiψ

†
i+n (A.77)

is the Virasoro generator. It’s canonical form is

T
−1 (Ln +NJn)T =

∑

i 6=−N
ψiψ

†
i+n ,

which is different from Jn because the term i=-N is absent in the sum in the right-hand side.
This abelian subalgebra (A.75) with

n = −1 (A.78)

will be of use in matrix models below where N is the size of matrices.

B The model of normal matrices

The model of normal matrices was introduced by O.Zaboronskii in [22].
Consider the following model of normal matrices

IN (p,p
∗) =

∫
e−tr((M†)qMp)e

∑

i>0
1
i (pitrM

i+p∗i tr(M
†)i)dM (B.1)

= C

∫

CN

N∏

i=1

e−z
p
i z̄

q
i +

∑

i>0
1
i (piz

i+p∗i z̄
i
i)d2zi (B.2)
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The case p = q = 1 was intensively studied in the context of Laplacian growth problem
[23]. The perturbation series of the integral (B.1) in the couplinf constants p and p∗ was
considered in [3] and [21].

We have

IN (p,p
∗) =

∑

µ,λ

sµ(p)sλ(p
∗)
∫
sµ(z)sλ(z̄)|∆(z)|2

N∏

i=1

e−z
q
i z̄

p
i d2zi (B.3)

B.1 Action on the vacuum and matrix models

The trivial example is

e
∑

m>0
1
m
smJ−m · 1 = e

∑

m>0
1
m
smpm .

Proposition B.1. For a given n < 0 we obtain

e
∑

m>0
1
m
smJm(n,F ) · 1 =

∑

λ

sλ(s)sλ(p)
∏

(i,j)∈λ
F (j − i) (B.4)

where the sum is performed over the set of all partitions, where sλ is the Schur func-
tion written as a polynomial of the KP higher times where s is the set of higher times
(0, . . . , 0, s1, 0, . . . , 0, s2, 0, . . . ) and t = (t1, t2, t3, . . . ).

Example 1

In particular, if F (x) = x + N we get the commuting hierarchy which includes Virasoro
element L−1.

In this case

e
∑

m>0
1
m
smJm(n,F ) · 1 =

∑

λ

sλ(s)sλ(t)
∏

(i,j)∈λ
(N + j − i) (B.5)

The right hand side is the perturbation series for the famous two-matrix model
∫
etrXY+

∑

m>1(
1
m
smtrXm+ 1

m
pmtrYm)dΩ(X,Y ) (B.6)

where X and Y are both N ×N Hermitian matrices. The identical perturbation series one
gets in case X and Y are complex matrices and Y = X† and also in case X and Y ar

• X, Y both Hermitian

• X = Y † ∈ GLN (C)

• X = Y † normal (= diagonalizable via unitary matrix: X = Udiag(x1, . . . , xN )U
†, U ∈

UN )

Let me recall that the famous one-matrix model can be obtained as the particular case
of the two matrix model (where both matrices are Hermitioan) via the specification of any
of the sets (either s or t) by putting all times to be zero except the second one. Say, is
sm = δ2,m then by Gauss integration over X one obtains one-matrix model. Therefore with
this speicification the series (B.5) serves also the one-matrix model; details see in [3].
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Example ...F = ...

e
∑

m>0
1
m
smJm(n,F ) · 1 =

∑

λ

sλ(s)sλ(t)
∏

(i,j)∈λ
(N + j − i) (B.7)

=

∫
etrX

†Y †+
∑

m>1(
1
m
smtrXm+ 1

m
pmtrYm)dΩ(X)dΩ(Y ) (B.8)

X and Y ar

• X, Y both are unitary

• X, Y are both complex

• X, Y both are normal

e normal matrices and Y = X†.

Remark B.1. For Hermitian matrices X and Y the measure is defined as

dΩ(X,Y ) = CN

∏

i≥j≥N

dℜXi,j

∏

i>j

dℑXi,j

∏

i≥j≥N

dℜYi,j
∏

i>j

dℑYi,j (B.9)

For complex matrices X the measure is defined as
[
e−trXX†

]
dΩ(X,X†) = CN

[
e−trXX†

] ∏

i≥j≥N

dℜXi,j

∏

i≥j≥N

dℑXi,j (B.10)

where the Gaussian weight in square brackets can be included. However later we prefer to include the
weight τ(XY ) given by a KP tau function (details see below).

For normal matrices X = Udiag(x1, . . . , xN )U−1 (where x1, . . . , xN are the eigenvalues of X and
U ∈ UN ) the measure is defined as

dΩ(X,X†) = CN

∏

i<j≤N

|xi − xj |
2
∏

1≤i≤N

e−|xi|
2

d2xid∗U (B.11)

where d∗U is the Haar measure on UN .
Here N is the matrix size. Above it is supposed that, in each case, CN

∫
dΩ = 1.

Let us mark that thank to the factor in the right hand side, actually, the sum is cutted if
the length of λ exceeds N .

The canonical of this example is the sum

T e
∑

m>0
1
m
smJm(n,F≡1)

T
−1 · 1 =

∑

λ
ℓ(λ)≤N

sλ(s)sλ(t) (B.12)

(where T is the bosonic version of T above) where the sum is restricted by partitions whose
length do not exceed N . Such sums is the parturbation series for Brezin-Gross-Witten (BGW)
matrix model [16]

∫

U(N)
e
∑

m>0
1
m
smtrUm+ 1

m
pmtrU−m

d∗U (B.13)

where d∗U is the Haar measure on UN , we assume
∫
UN

d∗U = 1. In different context the
right hand side (B.12) was studied in the paper of Tracy and Widom [18].
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Example 3. Consider F (x) = (x +N)−1 for x 6= −N and F (x) = 0 for x = −N . Such
F has the same characterisitc function as in the previous example. One obtains

e
∑

m>0
1
m
smJm(n,F ) · 1 =

∑

λ
ℓ(λ)≤N

sλ(s)sλ(t)
∏

(i,j)∈λ
(N + j − i)−1

This series is equal to the value of the two-matrix integral where both matrices are unitary:∫

UN×UN

e
∑

m>0
1
m
smtrUm

1 etrU
†
1U

†
2 e

∑

m>0
1
m
pmtrUm

2 d∗U1d∗U2 (B.14)

Example 4. The rather general example is the perturbation series in the parameters
s1, s2, . . . and t1, t2, . . . for the integral∫

τ1(s,X)τ(XY )τ2(Y,p)dΩ(X,Y ) = τ3(s,p) (B.15)

where τ1,2 and τ are the following series

τa(s,X) =
∑

λ

sλ(X)sλ(s)
∏

(i,j)∈λ
fa(j − i), a = 1, 2 (B.16)

and

τ(XY ) =
∑

λ

sλ(XY )sλ(IN )
∏

(i,j)∈λ
g(j − i) (B.17)

each of which is a KP tau function (more precisely: each is KP tau function of the hyperge-
ometric type [17], [10]). Here f1,2 and g are functions on the lattice.

In this case τ3 in the right hand side has the similar type (which was called hypergeometric
type):

τ3(s, t) =
∑

λ

sλ(s)sλ(t)
∏

(i,j)∈λ
F (N + j − i) , (B.18)

where
F (x) = f1(x)f2(x)g(x)κ(x) ,

where the choice of κ depend on the choice of the matrices; see Remark B.1:

• X, Y both Hermitian

• X = Y † ∈ GLN (C)

• X = Y † normal

• X,Y ∈ UN

This case includes the cases form previous examples.
Example 5. The genralization of (B.13):
∫

UN

τ1(s, U)τ2(U
†,p)d∗U =

∑

λ

sλ(X)sλ(s)
∏

(i.j)∈λ
f1(j − i)f2(j − i) (B.19)

where the right hand side is of the similar type.
Thus, the action of abelian groups of KP symmetries on the vacuum tau function (the tau

function equal to 1) results in a number of matrix models.
This was a collection of basically known facts related to matrix integrals and the KP

hierarchy.
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