
ar
X

iv
:2

40
5.

09
82

6v
3 

 [
nl

in
.S

I]
  1

3 
A

ug
 2

02
4

Open Communications in Nonlinear Mathematical Physics ]ocnmp[ Vol.4 (2024) pp 114–132 Article

Lie symmetry analysis of (2+1)-dimensional time

fractional Kadomtsev-Petviashvili equation

Jicheng Yu1,∗ and Yuqiang Feng1,2

1 School of Science, Wuhan University of Science and Technology, Wuhan 430081,
Hubei, China
2 Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan
430081, Hubei, China
∗ yjicheng@126.com

Received May 20, 2024; Accepted August 13, 2024

Abstract

In this paper, Lie symmetry analysis method is applied to the (2+1)-dimensional
time fractional Kadomtsev-Petviashvili (KP) equation with the mixed derivative of
Riemann-Liouville time-fractional derivative and integer-order x-derivative. We ob-
tained all the Lie symmetries admitted by the KP equation and used them to reduce
the (2+1)-dimensional fractional partial differential equation with Riemann-Liouville
fractional derivative to some (1+1)-dimensional fractional partial differential equa-
tions with Erdélyi-Kober fractional derivative or Riemann-Liouville fractional deriva-
tive, thereby getting some exact solutions of the reduced equations. In addition, the
new conservation theorem and the generalization of Noether operators are developed
to construct the conservation laws for the equation studied.

1 Introduction

The (2+1)-dimensional Kadomtsev-Petviashvili equation, named after B. B. Kadomtsev
and V. I. Petviashvili [1], is an important nonlinear partial differential equation in math-
ematical physics. It is given by

uxt − uuxx − u2x − uxxxx = uyy, (1.1)

which is one of the few integrable equations in high dimensions and comes from the
study of long gravity waves in a single layer or multilayered shallow fluid when the waves
propagate predominantly in one direction with a small perturbation in the perpendicular
one [2]. It also appears in many other fields, such as plasma physics, gas dynamics, etc.
Due to the widespread application of Eq. (1.1), it has attracted the interest of many
scholars. Especially, Chen [3] found the Backlund transformations related to symmetries
and integrability of the KP equation in 1975. Cheng and Li [4] discussed the constraint
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of the KP equation and its special solutions. Lou [5] derived an explicit and simple
constructive formula for the symmetries of the KP equation. Biondini and Pelinovsky
[6] discussed the two-dimensional localized solution and resonant two-soliton solution and
their properties for the KP equation. Ma [7] presented a class of lump solutions, rationally
localized in all directions in the space, to the KP equation through symbolic computation
with Maple. In addition, a large number of research results on the KP equation have
emerged in recent years (see [8, 9, 10, 11, 12, 13, 14, 15] and the references therein).

In this paper, we applied Lie symmetry analysis method to study the following (2+1)-
dimensional time fractional KP equation:

Dα
t ux − uuxx − u2x − uxxxx = uyy, 0 < α < 1, (1.2)

with Riemann-Liouville fractional derivative defined by [16]

aD
α
t f(t, x) = Dn

t aI
n−α
t f(t, x) =











1
Γ(n−α)

∂n

∂tn

∫ t

a
f(s,x)

(t−s)α−n+1 ds, n− 1 < α < n, n ∈ N

Dn
t f(t, x), α = n ∈ N

for t > a. We denote the operator 0D
α
t as Dα

t throughout this paper, while D−α
t = Iαt

is Riemann-Liouville fractional integral. Recently, many researchers have used different
methods and techniques to study the fractional KP equation (see [17, 18, 19, 20, 21, 22,
23, 24] and references therein). Especially, Borluk et al. [22] proved the existence of pe-
riodically modulated solitary wave solutions of the fractional KP equation by dimension-
breaking bifurcation and discussed the line solitary wave solutions and their transverse
(in)stability. They also proved existence of lump solutions for the fractional KP equa-
tion via a variational approach, and presented numerically generated lump solutions and
observed the cross-sectional symmetry of the solutions numerically in [23].

As a generalization of the classical calculus, fractional calculus can be traced back to
the letter written by L’Hôspital to Leibniz in 1695. Since then, it has gradually gained
the attention of mathematicians. Especially in recent decades, it has developed rapidly
and been successfully applied in many fields of science and technology [25, 26, 27, 28].
Therefore, it is very important to find the solution of fractional differential equation. So far,
there have been some numerical and analytical methods, such as Adomian decomposition
method [29], finite difference method [30], homotopy perturbation method [31], the sub-
equation method [32], the variational iteration method [33], Lie symmetry analysis method
[34], invariant subspace method [35] and so on. Among them, Lie symmetry analysis
method has received an increasing attention.

Lie symmetry analysis method was founded by Norwegian mathematician Sophus Lie
at the end of the nineteenth century and then further developed by some other mathemati-
cians, such as Ovsiannikov [36], Olver [37], Ibragimov [38, 39, 40] and so on. As a modern
method among many analytic techniques, Lie symmetry analysis has been extended to
fractional differential equations (FDEs) by Gazizov et al. [34] in 2007. It was then effec-
tively applied to various models of the FDEs occurring in different areas of applied science
(see [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]). Lie symmetry analysis method can treat
differential equations uniformly regardless of their forms, transforming some solutions of
these equations into other forms of solutions by means of continuous point transformations
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[51]. The algorithm of its using for fractional partial differential equations (FPDEs) is as
follows:

1. To get the symmetry group admitted by the considered FPDEs by constructing local
one-parameter continuous point transformations.

2. In order to achieve dimensionality reduction, the obtained group generators are used
to perform similarity reductions on FPDEs.

3. For the reduced FDEs, various analytical and numerical methods are used to find
their solutions. For high-dimensional reduced FPDEs, go back to procedure one for iter-
ation.

The aim of this paper is to find all Lie symmetries for Eq. (1.2) by using Lie sym-
metry analysis method. Subsequently, for each Lie symmetry, we reduce Eq. (1.2) to
(1+1)-dimensional time fractional partial differential equations or time fractional ordi-
nary differential equations. Moreover, we obtain some exact solutions for the reduced
equations and construct the conservation laws by the new conservation theorem and the
generalization of Noether operators.

This paper is organized as follows. In Section 2, Lie symmetry analysis of Eq. (1.2)
is presented. In Section 3, the similarity reductions and invariant solutions for Eq. (1.2)
are obtained. The conserved vectors for all Lie symmetries admitted by Eq. (1.2) are
constructed in Sections 4. The conclusion is given in the last section.

2 Lie symmetry analysis of Eq. (1.2)

Consider the (2+1)-dimensional time fractional Kadomtsev-Petviashvili equation (1.2),
which is assumed to be invariant under the one-parameter (ǫ) Lie group of continuous
point transformations, i.e.,

t∗ = t+ ǫτ(t, x, y, u) + o(ǫ), x∗ = x+ ǫξ(t, x, y, u) + o(ǫ),

y∗ = y + ǫθ(t, x, y, u) + o(ǫ), u∗ = u+ ǫη(t, x, y, u) + o(ǫ),

Dα
t∗u

∗
x∗ = Dα

t ux + ǫηα,1 + o(ǫ), Dx∗u∗ = Dxu+ ǫηx + o(ǫ),

Dy∗u
∗ = Dyu+ ǫηy + o(ǫ), D2

x∗u∗ = D2
xu+ ǫηxx + o(ǫ),

D2
y∗u

∗ = D2
yu+ ǫηyy + o(ǫ), D4

x∗u∗ = D4
xu+ ǫηxxxx + o(ǫ),

(2.1)

where τ , ξ, θ, η are infinitesimals, and ηα,1, ηx, ηy, ηxx, ηyy, ηxxxx are the corresponding
prolongations of η. The group generator is defined by

X = τ
∂

∂t
+ ξ

∂

∂x
+ θ

∂

∂y
+ η

∂

∂u
, (2.2)

and its prolongation has the form

prX = X + ηα,1
∂

∂(Dα
t ux)

+ ηx
∂

∂ux
+ ηy

∂

∂uy
+ ηxx

∂

∂uxx
+ ηyy

∂

∂uyy
+ ηxxxx

∂

∂uxxxx
, (2.3)

where
ηx = Dx(η − τut − ξux − θuy) + τuxt + ξuxx + θuxy, (2.4)

ηy = Dy(η − τut − ξux − θuy) + τuyt + ξuyx + θuyy, (2.5)
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ηxx = D2
x(η − τut − ξux − θuy) + τuxxt + ξuxxx + θuxxy, (2.6)

ηyy = D2
y(η − τut − ξux − θuy) + τuyyt + ξuyyx + θuyyy, (2.7)

ηxxxx = D4
x(η − τut − ξux − θuy) + τuxxxxt + ξuxxxxx + θuxxxxy, (2.8)

and [52, 53, 54]

ηα,1 =Dα
t [Dx(η − τut − ξux − θuy)] + τDα+1

t (ux) + ξDα
t (uxx) + θDα

t (uxy)

=Dα
t (R)−

∞
∑

n=1

(

α

n+ 1

)

Dn+1
t (τ)Dα−n

t (ux)

−
∞
∑

n=1

(

α

n

)

Dn
t (ξ)D

α−n
t (uxx)−

∞
∑

n=1

(

α

n

)

Dn
t (θ)D

α−n
t (uxy),

(2.9)

with
R = ηx + uxηu − ut(τx + uxτu)− ux(ξx + uxξu)− uy(θx + uxθu), (2.10)

where Dt, Dx and Dy are the total derivative with respect to t, x and y, respectively.
The one-parameter Lie symmetry transformations (2.1) are admitted by Eq. (1.2), if

the following invariance criterion holds:

prX
(

Dα
t ux − uuxx − u2x − uxxxx − uyy

)

|(1.2) = 0, (2.11)

which can be rewritten as

(

ηα,1 − ηxxxx − uηxx − ηyy − 2uxη
x − uxxη

)

|(1.2) = 0. (2.12)

Putting ηα,1, ηx, ηy, ηxx, ηyy and ηxxxx into (2.12) and letting coefficients of various
derivatives of u to be zero, we can obtain the infinitesimals as follows:

τ = c1t, ξ =
α

3
c1x+ c2, θ =

2α

3
c1y + c3, η = −

2α

3
c1u, (2.13)

where c1, c2 and c3 are arbitrary constants. So Eq. (1.2) admits the three-dimension Lie
algebra spanned by

X1 = t
∂

∂t
+
α

3
x
∂

∂x
+

2α

3
y
∂

∂y
−

2α

3
u
∂

∂u
, X2 =

∂

∂x
, X3 =

∂

∂y
. (2.14)

3 Similarity reductions and invariant solutions of Eq. (1.2)

In this section, the aimed equation (1.2) can be reduced to some (1+1)-dimensional frac-
tional partial differential equations with the left-hand Erdélyi-Kober fractional derivative
and some other solvable fractional differential equations with Riemann-Liouville fractional
derivative.

Case 1: X1 = t ∂
∂t

+ α
3 x

∂
∂x

+ 2α
3 y

∂
∂y

− 2α
3 u

∂
∂u
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The characteristic equation corresponding to the group generator X1 is

dt

t
=

dx
α
3x

=
dy
2α
3 y

=
du

−2α
3 u

, (3.1)

from which, we obtain the similarity variables xt−
α
3 , yt−

2α
3 and ut

2α
3 . So we get the

invariant solution of Eq. (1.2) as follows:

u(t, x, y) = t−
2α
3 f(ω1, ω2), ω1 = xt−

α
3 , ω2 = yt−

2α
3 . (3.2)

Theorem 3.1. The similarity transformation u(t, x, y) = t−
2α
3 f(ω1, ω2) with the simi-

larity variables ω1 = xt−
α
3 , ω2 = yt−

2α
3 reduce Eq. (1.2) to (1+1)-dimensional fractional

partial differential equations given by

(P1−2α,α
3
α
, 3
2α

fω1)(ω1, ω2)− ffω1ω1 − f2ω1
− fω1ω1ω1ω1 − fω2ω2 = 0, (3.3)

where (Pι,κ
δ1,δ2

) is the left-hand Erdélyi-Kober fractional differential operator defined by

(Pι,κ
δ1,δ2

ψ)(ω1, ω2) :=

m−1
∏

j=0

(ι+ j −
1

δ1
ω1

d

dω1
−

1

δ2
ω2

d

dω2
)(Kι+κ,m−κ

δ1,δ2
ψ)(ω1, ω2), κ > 0,

m =

{

[κ] + 1, if κ /∈ N,
κ, if κ ∈ N,

(3.4)

where

(Kι,κ
δ1,δ2

ψ)(ω1, ω2) :=

{

1
Γ(κ)

∫∞
1 (s− 1)κ−1s−(ι+κ)ψ(ω1s

1
δ1 , ω2s

1
δ2 )ds, κ > 0,

ψ(ω1, ω2), κ = 0,
(3.5)

is the left-hand Erdélyi-Kober fractional integral operator.
Proof: For 0 < α < 1, the Riemann-Liouville time fractional derivative of u(t, x, y) can
be obtained as follows:

Dα
t ux =

∂α

∂tα
(t−αfω1(ω1, ω2)) =

∂

∂t

[ 1

Γ(1− α)

∫ t

0
(t− s)−αs−αfω1(xs

−α
3 , ys−

2α
3 )ds

]

.

Assuming r = t
s
, we have

∂

∂t

[ t1−2α

Γ(1− α)

∫ ∞

1
(r − 1)−αr2α−2fω1(ω1r

α
3 , ω2r

2α
3 )dr

]

=
∂

∂t

[

t1−2α(K1−α,1−α
3
α
, 3
2α

fω1)(ω1, ω2)
]

.

Because of ω1 = xt−
α
3 and ω2 = yt−

2α
3 , the following relation holds:

t
∂

∂t
fω1(ω1, ω2) = −

α

3
ω1

∂

∂ω1
fω1(ω1, ω2)−

2α

3
ω2

∂

∂ω2
fω1(ω1, ω2).

Hence, we arrive at

Dα
t ux = t−2α

[

(1− 2α−
α

3
ω1

∂

∂ω1
−

2α

3
ω2

∂

∂ω2
)(K1−α,1−α

3
α
, 3
2α

fω1)(ω1, ω2)
]

= t−2α(P1−2α,α
3
α
, 3
2α

fω1)(ω1, ω2).
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Meanwhile,

−uuxx − u2x − uxxxx − uyy = t−2α(−ffω1ω1 − f2ω1
− fω1ω1ω1ω1 − fω2ω2).

This completes the proof. �

Next we use the power series method to derive the power series solution of the reduced
equations (3.3). Let us assume

f(ω1, ω2) =
∞
∑

n,m=0

an,mω
n
1ω

m
2 , (3.6)

then

∂f

∂ω1
=

∞
∑

n,m=0

(n+ 1)an+1,mω
n
1ω

m
2 ,

∂2f

∂ω2
1

=

∞
∑

n,m=0

(n+ 2)(n + 1)an+2,mω
n
1ω

m
2 ,

∂2f

∂ω2
2

=

∞
∑

n,m=0

(m+ 2)(m+ 1)an,m+2ω
n
1ω

m
2 ,

∂4f

∂ω4
1

=

∞
∑

n,m=0

(n+ 4)(n + 3)(n + 2)(n + 1)an+4,mω
n
1ω

m
2 ,

(3.7)

and

(P1−2α,α
3
α
, 3
2α

fω1)(ω1, ω2) =(1− 2α−
α

3
ω1

∂

∂ω1
−

2α

3
ω2

∂

∂ω2
)

× (
1

Γ(1− α)

∫ ∞

1
(s− 1)−αs2α−2fω1(ω1s

α
3 , ω2s

2α
3 )ds)

=(1− 2α−
α

3
ω1

∂

∂ω1
−

2α

3
ω2

∂

∂ω2
)

× (
∞
∑

n,m=0

an+1,mω
n
1ω

m
2

Γ(1− α)

∫ ∞

1
(s− 1)−αs

(n+2m+6)α
3

−2ds)

=(1− 2α−
α

3
ω1

∂

∂ω1
−

2α

3
ω2

∂

∂ω2
)

× (

∞
∑

n,m=0

an+1,mω
n
1ω

m
2

Γ(1− α)
B(1− α−

nα

3
−

2mα

3
, 1− α))

=(1− 2α−
α

3
ω1

∂

∂ω1
−

2α

3
ω2

∂

∂ω2
)

× (

∞
∑

n,m=0

Γ(1− α− nα
3 − 2mα

3 )

Γ(2− 2α− nα
3 − 2mα

3 )
an+1,mω

n
1ω

m
2 )

=

∞
∑

n,m=0

Γ(1− (n+2m+3)α
3 )

Γ(1− (n+2m+6)α
3 )

an+1,mω
n
1ω

m
2 ,

(3.8)
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where B(p, q) =
∫ 1
0 x

p−1(1− x)q−1dx is a beta function, and α must satisfy 1− α− nα
3 −

2mα
3 > 0 and 1 − α > 0. For the given 0 < α < 1, there exists two positive integers

n,m satisfy the condition r : n + 2m < 3(1 − α)/α. If r̄ : n + 2m > 3(1 − α)/α holds,
then the integral in (3.8) vanishes in the sense of the Hadamard’s finite-part integral [55].
Hadamard ignored the singular term and defined the integral as [55]

∫ b

a

f(t)

(b− t)α+1
dt =

∫ b

a

f(t)− f(b)

(b− t)α+1
dt−

f(b)

α(b− t)α+1
,

where 0 < α < 1 and f(t) is Lipschitz continuous on [a, b]. Coincidentally, the integrals
in the sense of the Hadamard’s finite-part integral has the same results as the case of
convergence [52, 53, 54].

Substituting (3.6)–(3.8) into the reduced equation (3.3) and equating the coefficients
of different powers of ω, we can obtain the explicit expressions of an,m and bn,m.

r
∑

n,m=0

Γ(1− (n+2m+3)α
3 )

Γ(1− (n+2m+6)α
3 )

an+1,mω
n
1ω

m
2 −

∞
∑

n,m=0

n
∑

k=0

m
∑

j=0

(n− k + 1)(k + 1)ak+1,jan−k+1,m−jω
n
1ω

m
2

−
∞
∑

n,m=0

(n+ 4)(n + 3)(n + 2)(n + 1)an+4,mω
n
1ω

m
2 −

∞
∑

n,m=0

(m+ 2)(m + 1)an,m+2ω
n
1ω

m
2 = 0.

(3.9)

For n+ 2m < 3(1 − α)/α, we have

an+4,m =
1

(n+ 4)(n + 3)(n + 2)(n + 1)

[Γ(1− (n+2m+3)α
3 )

Γ(1− (n+2m+6)α
3 )

an+1,m

− (m+ 2)(m+ 1)an,m+2 −
n
∑

k=0

m
∑

j=0

(n− k + 1)(k + 1)ak+1,jan−k+1,m−j

]

,

(3.10a)

for n+ 2m > 3(1 − α)/α, we have

an+4,m =
1

(n+ 4)(n + 3)(n + 2)(n + 1)

[

− (m+ 2)(m+ 1)an,m+2

−
n
∑

k=0

m
∑

j=0

(n− k + 1)(k + 1)ak+1,jan−k+1,m−j

]

,
(3.10b)

where an,m = ∂n

∂ωn
1

∂m

∂ωm
2
f(0, 0) (n = 0, 1, 2, 3;m = 0, 1, 2, . . . ) are arbitrary constants. It

means that the power series solution of (3.3) is

f(ω1, ω2) =
3

∑

n=0

∞
∑

m=0

an,mω
n
1ω

m
2 +

r
∑

n,m=0

ωn+4
1 ωm

2

(n+ 4)(n + 3)(n + 2)(n + 1)

×
Γ(1− (n+2m+3)α

3 )

Γ(1− (n+2m+6)α
3 )

an+1,m −
∞
∑

n,m=0

ωn+4
1 ωm

2

(n+ 4)(n + 3)(n + 2)(n + 1)

×
[

n
∑

k=0

m
∑

j=0

(n− k + 1)(k + 1)ak+1,jan−k+1,m−j + (m+ 2)(m+ 1)an,m+2

]

.
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(3.11)

Therefore, the power series solution of Eq. (1.2) is

u(t, x, y) =

3
∑

n=0

∞
∑

m=0

an,mx
nymt

−(n+2m+2)α
3 +

r
∑

n,m=0

xn+4ymt
−(n+2m+6)α

3

(n+ 4)(n + 3)(n + 2)(n + 1)

×
Γ(1− (n+2m+3)α

3 )

Γ(1− (n+2m+6)α
3 )

an+1,m −
∞
∑

n,m=0

xn+4ymt
−(n+2m+6)α

3

(n+ 4)(n + 3)(n + 2)(n + 1)

×
[

n
∑

k=0

m
∑

j=0

(n− k + 1)(k + 1)ak+1,jan−k+1,m−j + (m+ 2)(m+ 1)an,m+2

]

.

(3.12)

Theorem 3.2. The power series solutions (3.12) are convergent in a neighborhood of the
point (0, 0, |a0,0|).

Proof: From (3.10), we can obtain

|an+4,m| 6
1

(n+ 4)(n + 3)(n + 2)(n + 1)

[

∆|an+1,m|+ (m+ 2)(m+ 1)|an,m+2|

+

n
∑

k=0

m
∑

j=0

(n− k + 1)(k + 1)|ak+1,j ||an−k+1,m−j |
]

,
(3.13)

where ∆ =
|Γ(1−

(n+2m+3)α
3

)|

|Γ(1−
(n+2m+6)α

3
)|

for n + 2m < 3(1 − α)/α, ∆ = 0 for n + 2m > 3(1 − α)/α.

Thus, for arbitrary natural numbers n and m, (3.13) can be written as

|an+4,m| 6M
(

|an+1,m|+
n
∑

k=0

m
∑

j=0

|ak+1,j||an−k+1,m−j |+ |an,m+2|
)

, (3.14)

where M = max{
|Γ(1−

(n+2m+3)α
3

)|

(n+4)(n+3)(n+2)(n+1)|Γ(1− (n+2m+6)α
3

)|
, 1
(n+4)(n+3)}.

Consider another power series

P (ω1, ω2) =

∞
∑

n,m=0

pn,mω
n
1ω

m
2 , (3.15)

where pn,m = |an,m| (n = 0, 1, 2, 3;m = 0, 1, 2, . . . ) and

pn+4,m =M
(

pn+1,m +
n
∑

k=0

m
∑

j=0

pk+1,jpn−k+1,m−j + pn,m+2

)

. (3.16)

Therefore, it is easily seen that |an,m| ≤ pn,m and |bn,m| ≤ qn,m for n,m = 0, 1, 2, . . ., that
is, the power series (3.15) is the majorant series of (3.6). We next show that the power
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series (3.15) is convergent. By simple calculation, we can get

P (ω1, ω2) =
3

∑

n=0

∞
∑

m=0

pn,mω
n
1ω

m
2 +M

(

(P (ω1, ω2)−
∞
∑

m=0

p0,mω
m
2 )ω3

1

+ (P (ω1, ω2)−
∞
∑

m=0

p0,mω
m
2 )(P (ω1, ω2)−

∞
∑

m=0

p0,mω
m
2 )ω2

1

+ (P (ω1, ω2)−
∞
∑

n=0

1
∑

m=0

pn,mω
n
1ω

m
2 )ω4

1ω
−2
2

)

.

(3.17)

Consider the following implicit function with respect to the independent variable ω1, ω2:

F (ω1, ω2, P ) =P −
3

∑

n=0

∞
∑

m=0

pn,mω
n
1ω

m
2 −M

(

(P −
∞
∑

m=0

p0,mω
m
2 )ω3

1

+ (P −
∞
∑

m=0

p0,mω
m
2 )(P −

∞
∑

m=0

p0,mω
m
2 )ω2

1

+ (P −
∞
∑

n=0

1
∑

m=0

pn,mω
n
1ω

m
2 )ω4

1ω
−2
2

)

,

(3.18)

which is analytic in a neighborhood of (0, 0, p0,0), and F (0, 0, p0,0) = 0, ∂F
∂P

|(0,0,p0,0) = 1 6= 0.
Therefore, by implicit function theorem, the power series (3.15) is analytic in neighborhood
of the point (0, 0, p0,0). It implies that the power series solution (3.6) is convergent in a
neighborhood of the point (0, 0, |a0,0|). This completes the proof. �

Case 2: X2 =
∂
∂x

The characteristic equation corresponding to the group generator X2 is

dt

0
=

dx

1
=

dy

0
=

du

0
, (3.19)

from which, we obtain the similarity variables t, y and u. So we get the invariant solution
of Eq. (1.2) as follows:

u = f(t, y). (3.20)

Substituting (3.20) into Eq. (1.2), we have the following reduced equation:

fyy = 0, (3.21)

from which, we can obtain the following trivial solution:

u = g(t)y + h(t), (3.22)

where g(t) and h(t) are arbitrary functions.

Case 3: X3 =
∂
∂y
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The characteristic equation corresponding to the group generator X3 is

dt

0
=

dx

0
=

dy

1
=

du

0
, (3.23)

from which, we obtain the similarity variables t, x and u. So we get the invariant solution
of Eq. (1.2)

u = u(t, x), (3.24)

and the reduced equation

Dα
t ux − uuxx − u2x − uxxxx = 0, (3.25)

which is (1+1)-dimensional time fractional partial differential equation. For (3.25), we
can once again use the Lie symmetry analysis method to obtain the following generators:

Λ1 = t
∂

∂t
+
α

3
x
∂

∂x
−

2α

3
u
∂

∂u
, Λ2 =

∂

∂x
. (3.26)

(1) For Λ1, the characteristic equation is

dt

t
=

dx
α
3 x

=
du

−2α
3 u

, (3.27)

from which, we obtain the similarity variables xt−
α
3 and ut

2α
3 . So we have the following

invarant solutions:
u = t−

2α
3 f(ω), ω = xt−

α
3 . (3.28)

Substituting (3.28) into Eq. (3.25), we can get the following equation:

(P1−2α,α
3
α

f ′)(ω)− ff ′′ − (f ′)2 − f (4) = 0. (3.29)

Next we use the power series method to derive the power series solutions of the reduced
equations (3.21). Let us assume

f(ω) =

∞
∑

k=0

akω
k, (3.30)

then

f ′(ω) =

∞
∑

k=0

(k + 1)ak+1ω
k,

f ′′(ω) =
∞
∑

k=0

(k + 2)(k + 1)ak+2ω
k,

f (4)(ω) =
∞
∑

k=0

(k + 4)(k + 3)(k + 2)(k + 1)ak+4ω
k,

(3.31)

and

(P1−2α,α
3
α

f ′)(ω) =

∞
∑

k=0

Γ(1− (k+3)α
3 )

Γ(1− (k+6)α
3 )

(k + 1)ak+1ω
k, (3.32)
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with the conditions 1− (k+3)α
3 > 0 and 1− α > 0. For the given 0 < α < 1, there exists a

positive integer s such that for all integers k 6 s, (k + 3)α < 3 and the integral in (3.32)
exists. If k > s, then (k + 3)α > 3 and the integral in (3.32) vanishes in the sense of the
Hadamard’s finite-part integral.

Substituting (3.30)–(3.32) into the reduced equation (3.25) and equating the coefficients
of different powers of ω, we can obtain the explicit expressions of ak. For k 6 s, we have

ak+4 =
1

(k + 4)(k + 3)(k + 2)(k + 1)

[Γ(1− (k+3)α
3 )

Γ(1− (k+6)α
3 )

(k + 1)ak+1

−
∑

i+j=k

(i+ 2)(i+ 1)ai+2aj −
∑

i+j=k

(i+ 1)(j + 1)ai+1aj+1

]

,

(3.33a)

for k > s, we have

ak+4 =
1

(k + 4)(k + 3)(k + 2)(k + 1)

[

−
∑

i+j=k

(i+ 2)(i + 1)ai+2aj

−
∑

i+j=k

(i+ 1)(j + 1)ai+1aj+1

]

,

(3.33b)

where ai = f (i)(0), (i = 0, 1, 2, 3) are arbitrary constants. It means that the power series
solution of (3.25) is

f(ω) =a0 + a1ω + a2ω
2 + a3ω

3 +

s
∑

k=0

ωk+4

(k + 4)(k + 3)(k + 2)(k + 1)

×
Γ(1− (k+3)α

3 )

Γ(1− (k+6)α
3 )

(k + 1)ak+1 −
∞
∑

k=0

ωk+4

(k + 4)(k + 3)(k + 2)(k + 1)

×
[

∑

i+j=k

(i+ 2)(i+ 1)ai+2aj +
∑

i+j=k

(i+ 1)(j + 1)ai+1aj+1

]

.

(3.34)

Therefore, the power series solution of Eq. (1.2) is

u(t, x, y) =a0t
− 2α

3 + a1xt
−α + a2x

2t−
4α
3 + a3x

3t−
5α
3 +

s
∑

k=0

xk+4t−
(k+6)α

3

(k + 4)(k + 3)(k + 2)(k + 1)

×
Γ(1− (k+3)α

3 )

Γ(1− (k+6)α
3 )

(k + 1)ak+1 −
∞
∑

k=0

xk+4t−
(k+6)α

3

(k + 4)(k + 3)(k + 2)(k + 1)

×
[

∑

i+j=k

(i+ 2)(i + 1)ai+2aj +
∑

i+j=k

(i+ 1)(j + 1)ai+1aj+1

]

.

(3.35)

Theorem 3.3. The power series solutions (3.35) are convergent in a neighborhood of the
point (0, |a0|).
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Proof: From (3.33), we can obtain

|ak+4| ≤
1

(k + 4)(k + 3)(k + 2)(k + 1)

[

∆(k + 1)|ak+1|

+
∑

i+j=k

(i+ 2)(i + 1)|ai+2||aj |+
∑

i+j=k

(i+ 1)(j + 1)|ai+1||aj+1|
]

,
(3.36)

where ∆ =
|Γ(1− (k+3)α

3
)|

|Γ(1− (k+6)α
3

)|
for k 6 s, ∆ = 0 for k > s. Thus, for arbitrary natural numbers

k, (3.36) can be written as

|ak+4| ≤M
[

|ak+1|+
∑

i+j=k

|ai+2||aj |+
∑

i+j=k

|ai+1||aj+1|
]

, (3.37)

where M = max{
|Γ(1− (k+3)α

3
)|

(k+4)(k+3)(k+2)|Γ(1− (k+6)α
3

)|
, 1
(k+4)(k+3)}.

Consider another power series

B(ω) =
∞
∑

k=0

bkω
k, (3.38)

where bi = |ai| (i = 0, 1, 2, 3) and

bk+4 =M(bk +
∑

i+j=k

bi+2bj +
∑

i+j=k

bi+1bj+1), k ≥ 0. (3.39)

Therefore, it is easily seen that |ak| ≤ bk for k = 0, 1, 2, . . ., that is, the power series (3.38)
is the majorant series of (3.30). We next show that the power series (3.38) is convergent.
By simple calculation, we can get

B(ω) = b0+b1ω+b2ω
2+b3ω

3+Mω2
(

B(ω)ω2+B(ω)(B(ω)−b0−b1ω)+(B(ω)−b0)
2
)

. (3.40)

Consider the following implicit function with respect to the independent variable ω:

Ψ(ω,B) = B−b0−b1ω−b2ω
2−b3ω

3−Mω2
(

Bω2+B(B−b0−b1ω)+(B−b0)
2
)

. (3.41)

which is analytic in a neighborhood of (0, b0), and Ψ(0, b0) = 0, ∂
∂B

Ψ(0, b0) = 1. There-
fore, by implicit function theorem, the power series (3.38) is analytic in neighborhood
of the point (0, b0). It implies that the power series solution (3.35) is convergent in a
neighborhood of the point (0, |a0|). This completes the proof. �

(2) For Λ2, the characteristic equation is

dt

0
=

dx

x
=

du

0
, (3.42)

from which, we obtain the similarity variables t and u. So we have the following invarant
solution:

u = f(t), (3.43)

which satisfies Eq. (1.2), and is one of its trivial solutions.
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Case 4: X2 +X3 =
∂
∂x

+ ∂
∂y

The characteristic equation corresponding to the group generator X2 +X3 is

dt

0
=

dx

1
=

dy

1
=

du

0
, (3.44)

from which, we obtain the similarity variables t, x − y and u. So we get the invariant
solution of Eq. (1.2)

u = u(t, ω), ω = x− y, (3.45)

and the reduced equation

Dα
t uω − uuωω − u2ω − uωωωω + uωω = 0, (3.46)

which is (1+1)-dimensional time fractional partial differential equation. For (3.46), we
use Lie symmetry analysis method once again to obtain the following generator:

Λ1 =
∂

∂ω
. (3.47)

However, in this case, we only obtain one trivial solution as (3.43).

4 Conservation laws of Eq. (1.2)

In this section, we will construct conservation laws of Eq. (1.2) by using the generalization
of the Noether operators and the new conservation theorem.

The Eq. (1.2) is denoted as

F = Dα
t ux − uuxx − u2x − uxxxx − uyy = 0, (4.1)

of which the formal Lagrangian [56] is given by

L = p(t, x, y)F = p(t, x, y)
(

Dα
t ux − uuxx − u2x − uxxxx − uyy

)

, (4.2)

where p(t, x, y) is a new dependent variable. The Euler-Lagrange operator is

δ

δu
=

∂

∂u
− (Dα

t )
∗Dx

∂

∂(Dα
t ux)

−Dx
∂

∂ux
+D2

x

∂

∂uxx
+D2

y

∂

∂uyy
+D4

x

∂

∂uxxxx
, (4.3)

where (Dα
t )

∗ is the adjoint operator of Dα
t . It is defined by the right-sided of Caputo

fractional derivative, i.e., [57]

(Dα
t )

∗f(t, x) ≡ c
tD

α
T f(t, x) =

{

1
Γ(n−α)

∫ T

t
1

(t−s)α−n+1
∂n

∂sn
f(s, x)ds, n− 1 < α < n, n ∈ N

Dn
t f(t, x), α = n ∈ N.

(4.4)
The adjoint equation to (4.1) is given by

F ∗ =
δL

δu
= −(Dα

t )
∗px − pxxxx − pyy − upxx − 3pxux = 0, (4.5)
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from which, we can obtain the non-zero solution p = ϕ(t)y with an arbitrary differentiable
function ϕ(t), confirming the nonlinear self-adjointness of Eq. (1.2).

Next we will use the above adjoint equation and the new conservation theorem to
construct conservation laws of Eq. (1.2). From the classical definition of the conservation
laws, a vector C = (Ct, Cx, Cy) is called the conserved vector for the governing equation
if it satisfies the conservation equation [DtC

t+DxC
x+DyC

y]F=0 = 0. We can obtain the
components of the conserved vector by using the generalization of the Noether operators.

Firstly, from the fundamental operator identity, i.e., (see [57, 58])

prX +Dtτ · I +Dxξ · I +Dyθ · I =W u ·
δ

δu
+DtN

t +DxN
x +DyN

y, (4.6)

where prX is mentioned in (2.3), I is the identity operator and W = η− τut− ξux − θuy
is the characteristic for group generator X, we can get fractional Noether operators [59]
as follows:

N t = τI −
n−1
∑

k=0

(−1)kDα−1−k
t (W )Dk

tDx
∂

∂(Dα
t ux)

+ (−1)nJ(W,Dn
t Dx

∂

∂(Dα
t ux)

), (4.7)

N x =ξI +Dα
t (W )

∂

∂(Dα
t ux)

+W
( ∂

∂ux
−Dx

∂

∂uxx
−D3

x

∂

∂uxxxx

)

+Dx(W )
( ∂

∂uxx
+D2

x

∂

∂uxxxx

)

−D2
x(W )Dx

∂

∂uxxxx
+D3

x(W )
∂

∂uxxxx
,

(4.8)

N y = θI −WDy
∂

∂uyy
+Dy(W )

∂

∂uyy
, (4.9)

where n = [α] + 1 and J is given by

J(f, g) =
1

Γ(n− α)

∫ t

0

∫ T

t

f(τ, x, y)g(θ, x, y)

(θ − τ)α+1−n
dθdτ. (4.10)

The components of conserved vector are defined by [59]

Ct = N tL, Cx = N xL, Cy = N yL. (4.11)

Case 1: X1 = t ∂
∂t

+ α
3 x

∂
∂x

+ 2α
3 y

∂
∂y

− 2α
3 u

∂
∂u

The characteristics of X1 are

W = −
2α

3
u− tut −

α

3
xux −

2α

3
yuy. (4.12)

Therefore, for 0 < α < 1,

Ct =0,

Cx =− ϕ(t)yDα
t (

2α

3
u+ tut +

α

3
xux +

2α

3
yuy) + ϕ(t)yux(

2α

3
u+ tut

+
α

3
xux +

2α

3
yuy) + ϕ(t)yu(αux + tuxt +

α

3
xuxx +

2α

3
yuxy)

+ ϕ(t)y(
5α

3
uxx + tuxxxt +

α

3
xuxxxx +

2α

3
yuxxxy),

Cy =− ϕ(t)(
2α

3
u+ tut +

α

3
xux +

2α

3
yuy)

+ ϕ(t)y(
4α

3
uy + tuty +

α

3
xuxy +

2α

3
yuyy).

(4.13)
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Case 2: X2 =
∂
∂x

The characteristics of X2 are
W = −ux. (4.14)

Therefore, for 0 < α < 1,

Ct =0,

Cx =ϕ(t)y(−Dα
t ux + u2x + uuxx + uxxxx),

Cy =− ϕ(t)ux + ϕ(t)yuxy.

(4.15)

Case 3: X3 =
∂
∂y

The characteristics of X3 are
W = −uy. (4.16)

Therefore, for 0 < α < 1,

Ct =0,

Cx =ϕ(t)y(−Dα
t uy + uxuy + uuxy + uxxxy),

Cy =− ϕ(t)uy + ϕ(t)yuyy .

(4.17)

5 Conclusion

This paper demonstrates that Lie symmetry analysis method is effective for studying non-
linear partial differential equations with the mixed derivative of Riemann-Liouville time-
fractional derivative and integer-order x-derivative. As an example, this article studies the
(2+1)-dimensional time fractional Kadomtsev-Petviashvili equation, obtains its Lie sym-
metries, and repeatedly uses the Lie symmetry analysis method to reduce the KP equation
and obtain some exact solutions. From the convergent power series solutions (3.12) and
(3.35), we can see that the fractional order plays a crucial role in the obtained results.
To our knowledge, the order α of the fractional derivative in fractional diffusion-type
equations determines the types of diffusion, including subdiffusion (α ∈ (0, 1)), normal
diffusion (α = 1) and wave diffusion (α ∈ (1, 2)) [41]. Therefore, fractional derivative can
more accurately describe anomalous diffusion and wave propagation in different media.
It means that the results obtained in this paper can more accurately reflect the dynamic
behavior of the waves described by the studied equation based on the choice of order α. As
the Lie symmetry analysis method is widely applied to time-fractional or space-fractional
differential equations, it is also gradually applied to FDEs with the mixed derivative of
time-fractional derivative and integer-order x-derivative. Inspired by these research ad-
vances, our next research goal is to use the Lie symmetry analysis method to investigate
FDEs with the mixed derivative of time-fractional derivative and space-fractional deriva-
tive ( ∂α

∂tα
∂βu
∂xβ ).
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