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Abstract: We derive the general conditions for fully-nonlinear symmetry-integrable second-
order evolution equations and their first-order recursion operators. We then make us of the
established Propositions to find a link between a class of fully-nonlinear third-order sym-
metry integrable evolution equations and fully-nonlinear second-order symmetry-integrable
evolution equations.

1 Introduction

We recently reported a class of third-order fully-nonlinear symmetry-integrable evolution
equations in 141 dimensions with rational nonlinearities in their highest derivative [2]. For
this class of equations we have furthermore reported all the potentialisations and some multi-
potentialisations in [3]. It is interesting to note that some of these potential equations are in
fact members of hierarchies of fully-nonlinear second-order evolution equations. In the current
article we identify all those potential equations and give the explicit recursion operators that
generate those hierarchies. In particular, the fully-nonlinear third-order symmetry-integrable
evolution equations that are relevant here are
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where A1 and Ay are arbitrary constants. For more details on symmetry-integrable hierarchies
and recursion operators, we refer to [4] and [2], and the references therein.

This article is organised as follows: In Section 2 we provide two Propositions by which
one are able to identify second-order fully nonlinear equations that admit third-order Lie-
Bécklund symmetries (see Proposition 1) and by which we can obtain a recursion operator for
those second-order fully-nonlinear equations (see Proposition 2). In Section 3 we apply the
mentioned Propositions to establish links to the two fully-nonlinear equations given above.
Finally in Section 4 we make our conclusions and propose some further studies that could be
of interest.

2 On fully-nonlinear second-order equations

We consider a second-order equation of the form
up = F(u, ug, Ugy) (2.1)
where the non-constant function F' is to be determined such that (2] is fully nonlinear in u,,,

and admits a third-order Lie-Backlund symmetry generated by Z = nf[u]—=—; hence a recursion

operator R that generates this third-order symmetry and consequently an infinite number
of higher-order Lie-Backlund symmetries. The hierarchy of symmetry-integrable evolution
equations is then

ug,, = R™[u] uy, m=20,1,2,... . (2.2)

Our first step is to find the general form of F' and 7 to satisfy this requirement as a necessary
condition. This is given by

Proposition 1. Consider the class of second-order evolution equations of the form (21)) viz
up = F(u, ug, Upy).

Under the assumption that (21) is symmetry-integrable, the following statements must be
true:

1. The function F in (21]) satisfies the condition

3 -1 2 2 -2
o°F ( OF _ § 0°F oF —0 (2.3)
ou3,. \ Ougy 2 \ Ou2, Oy

with general solution

A(u, uy)

F SR e S 7
(U7 nyuxx) Uxx +B(u,ux)

+ C(u, uy), (2.4)
where A, B and C are arbitrary functions of their arguments. The quasi-linear and
semi-linear form of (21]) follow from the singular solution of (2.3), namely the solution
for which 0*F/0u?, = 0. [Note that (2.3) is the Schwarzian derivative in F.]
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2. Any third-order Lie-Bdcklund symmetry generator

Z = n(xyuyuxauxxauxxx)% (25)

for (2) is of the general form

oA Uy coA3/? 0B 0B
(ugze + B)?  (uge + B)3 Oty Y

77($7 Uy Ugy Uy uwxw) =

3o AL/? OA HA
€0 (B > h | fo, (2.6)

2(ugz + B)? ouy Y ou ) T Ugy + B

whereby ¢y denotes an arbitrary but non-zero constant, and the functions A = A(u,uy),
B = B(u,uy), C = C(u,uy), f1 = fi(z,u,u;) and fo = fo(z,u,u,) need to be deter-
mined such that the invariance condition

LEU(%U,Ux,Um,Uxm) =0 (27)

E=0
is satisfied. Here E := uy — F(u,uz, uy,) and Ly denotes the linear operator

OE OFE OF OF OFE
L[] := Di+—D, + D2+

oL oL 3
" Ou + Ouy Ouy OUugy © OUgps Dy (2:8)

We now seek 1st-order recursion operators R for every equation that admits a third-order
Lie-Bécklund symmetry, which, according to Proposition [ are equations of the general form
([2:4]) We consider both differential recursion operators

R[’LL] =G (u7 Ug, uwx)Dx + GO(“) uw) (29)
as well as integro-differential recursion operators
R[u] =G (u7 Ug uxx)Dx + GO(Uy Ux) + I(Ua Ug Uxx)D;1 o A(U, Ug s Uxx) (2.10)

Applying the standard condition for R (see for example [1]), namely
[Le, R[ul] =D:R (2.11)
E=0

we obtain the following

Proposition 2. For finding recursion operators of (2-4)) viz.

A(u, uy)

T Bl Blu,o) + C(u, uy).

U =

we distinguish between the following four cases:
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1. With the assumption A = Fy(uyz) and B(u,uy) = 0 in (27)), it follows that

_F1<ux>+u<an/F1<um>_ Fi(us) d_P+F1<ux>_L@>

= u2P(ug) uz Pug) dug u2 2u, duy

Ugy

O (2.12)

admits a recursion operator of the form (2.10) with

Gl(um,umv) = k’l%l(um) (213&)

Goluz) = %;dei - 21:1(%) - 2u:113k(1um) ko (2.13b)

I(ug) = cuy (2.13c)
 P(ug)uze

A(uacy umc) = Fl (ux) s (2.13d)

where ag, ay and ko are arbitrary constants, k1 and o are an arbitrary non-zero con-
stants, H is an arbitrary function of u, and, furthermore, F1 and P must satisfy the
following condition:

dp d2F d2P dp\? dpP
0= kiu2P?( u, P) —— — kju,P | -3u2P— + 2u? — 2u P—
1Ug <u i, + > a2 1U Uy, a2 + 2u;, i, U du,
op2| B oy | ppr R g apdP Py PP g (AP ’
duy L ] T duy du? T du2 T\ duyg

dP\? dP dP
2 2 3 3 p3 2
—us P —u, P P°| F1 +2 (4dau, P° — = +P|.
Uy <dux> u du. + 1+ 2 (4o kia?) (u . + >
(2.14)
2. With the assumption A = F1(uz) and B = B(uy) in (2-4), it follows that
Fy(uy Fi(uy
up = — 1(Uz) 1) (2.15)

Ugz + (b1 + boug)/Fi(ugz) b1+ bauy

admits a recursion operator of the form (2.10) with

FV/ i us) (2.16a)

Ugpy + (bl + bgux) Fl(ux)

G (Um, umc) =

k1bo Fy (ug k1bar/ Fi1(uy
Golug) = 102 (ue) b Bl) (2.16b)
Ugpy + (b1 + bgugc) Fy (um) b1 + bauy,
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I(uz) = ugp + b (2.16¢)
by
T X F X
Aty ttag) = by [ Lozt 01 T bote) V() ) (2.16d)
(b1 + bQ'LL;E) Fy (ux)

where by and « are arbitrary constants, whereas bs and ky are arbitrary non-zero con-
stants.

3. With the assumption A = Fi(uy,), B =0 and C = C(uy) in (2.4), it follows that

up = _Filua) + Cuy). (2.17)

Ugy

This leads to two subcases:

3.1. Equation (2:17) admits the recursion operator of the form (2.10) with

RN (2.18a)

G(1 (u:cy uxx) - Uy
k1 dFy
Go(uy) = ——————+k 2.18b
0(uz) T/ Fr () dus 0 ( )
I(ugy) =« (2.18c)
Uz

where kg is an arbitrary constant, k1 and « are arbitrary non-zero constants, C is an
arbitrary function of u,, and Fy must satisfy the following condition:

B dry d*°Fy A \*® =0 dF
by | aprl 2l _gp3ftlE L L a2 160”22 — . 2.1
1( U du3 0 Udu, du? 3k (dux - 16aky dug 0 (2.19)

3.2. Equation (2.17) admits the recursion operator of the form (2.10) with
k1+/ F:
Gl(um,umv) = 171(“11) (220&)

Ugy

k dFy

Golug) = S it + k 2.20b

I(ug) = cuy (2.20¢)
UgUgy

A(ux,um) = Fl(u ), (220d)

where kg is an arbitrary constant, k1 and « are arbitrary non-zero constants, C is an
arbitrary function of u., and Fy must satisfy the following condition:

3 2 3
k1 <4F14d B _gppdfid B g (dF1> )

alialt S 7 Bl it
du? Udu, du? duy
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dF
+16aF 2y, <ux L_ 4F1> = 0. (2.21)
duyg
4. The equation
Fy(ug
g = — 1 (1) + Fy(ug) (2.22)

Ugpy + (bl + bgux) Fl(ux)

admits a recursion operator of the form (2.4) with

kiv I

Gi(ug) = 2.23a
1( ) Uga + (bl + uxb2)\/ﬁl ( )

k1boFy k1 dF; k1 dFy

Go(ug) = — —(by + boug)—=

o(uiz) woe + (01 + baun )V, AV dug | 2 (br b ) 7

k1b

—%FQ + ko, (2.23b)

where by and by are arbitrary constants, ki is an arbitrary non-zero constant, and Fy
and Fo must satisfy the following condition:

PR dFy d®Fy dF\? 5/2 PP Fy

AF—— — 6F — — — 8F by + bauy) ——o

U du? Vdu, du? (dux v (b o) du3
d*Fy

3 Fully-nonlinear second-order equations related to fully-non-
linear third-order equations
We now apply Proposition 1 and Proposition 2 to identify fully-nonlinear second-order equa-

tions that are related to fully-nonlinear third-order equations. For this purpose we consider
two main cases:

Case 1: Consider the fully-nonlinear symmetry-integrable equation [2]

uim 3
up = —= (A1 + Agaz)” (3.1)

rxrxr

where A\ and A5 are arbitrary constants. For the potentialisations of this equation we need
to distinguish different subcases that depend on the constants A\; and Ao.

Subcase 1.1: Consider equation ([B.0]), with A\; # 0 and A2 # 0. Then (B admits the
zero-order potentialisation [3]

23 3/2 s.3 w302
v = Zl <1 + )\%)\2’03) <U$U — ﬂ) ; (3:2)
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where
2
=3 [tz (M1 + Aoti)] 2. (3.3)
Applying Proposition 1 we find that the fully-nonlinear second-order equation
v2
vy = <1 + M2 > v— —v (3.4)

0
admits the Lie-Backlund symmetry generator Z = n[v]a— for which (B.2) is the third-order
v

flow, i.e.

3 3/2 2
n(ﬂf,v,vmvmﬂixm) = z <1 + )\2)\2U > <U zVzae - 3&> . (35)

U%m Vzx

Applying now Proposition 2 we find that equation (8.4]) admits a recursion operator Rj;[v]
of the form (2.I0]), where

A3 1/2 v
G = 41 <1 + A2 \g0? > U—; (3.6a)
Go = 4 2172 (1 + Mg0? > v2 (3.6b)
=, (3.6¢)
_3/2
A= 22 (1 + A2 Ag02 ) gz (3.6d)
for which (3.2)) is the second member vy, in the hierarchy vy, = RYj[v]vs, m =0,1,2,... and

vy is the equation (B.4)) .

Subcase 1.2: Consider equation ([B.1]), with A\; =0 and Ay = 1, i.e.

6

a2 (3.7)

2
Uz

U

Ut =

Then (B.7) admits the potentialisation [3]

vgvmm 305

_ _ 2 3.8
o ’U%m Vzx ’ ( )

where
— o3y (3.9)

Applying Proposition 1 we find that the fully-nonlinear second-order equation

4
o= — 2 (3.10)

Vg
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0
admits the Lie-Backlund symmetry generator Z = n[v]a— for which (B.8) is the third-order
v

flow, i.e.

n(fnavyvmvxmvxxx) == 3 - —=. (3.11)
Uxx Vzx

Applying now Proposition 2 we find that equation (B8.10) admits a recursion operator Rj2[v]
of the form ([29), where

02
Gy = o~ (3.12a)
Go = —v, (3.12b)

for which (B.8) is the second member vy, in the hierarchy v, = R5[v]v;, m =0,1,2,... and
vy is the equation (B0 .

Subcase 1.3: Consider equation ([B.1]), with A\; = —1 and Ay =0, i.e.

3
Uza

For this equation we have established several potentialisations in [3]. We treat the relevant
cases below:

1.3a: Equation (8.13) admits the potentialisation [3]

3 2
203Uz _ 3v;

vy = , 3.14
' U3, Vg ( )
where
Vg = —Ugy- (3.15)
Applying Proposition 1 we find that the fully-nonlinear second-order equation
2
UfE
v = ——— 3.16

admits the Lie-Backlund symmetry generator Z = n[v]g— for which (BI4)) is the third-
v

order flow, i.e.

2030 302
+Vrxx p

77(11371),%,1)“,%“) = 3 - . (3.17)
Uxx Vzz

Applying now Proposition 2 we find that equation (3.16]) admits a recursion operator
Ry3[v] of the form (29, where

20,

G = (3.182)
(%

Go=—1 (3.18b)

for which (3:14)) is the second member vy, in the hierarchy vy, = R{5[v]voy, m =0,1,2,. ..
and vy is the equation (B.16]).
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1.3b: Furthermore we know from the results reported in [3] that a zero-order potentialisation
of equation (314) is
Ve Y -1/3
W:Vgg —3.2 /E—Z g, (3.19)
where
Ve =2721n(v,) (3.20)
gives the relation to (3.I4)) and
Ve = 27210 — ugy| (3.21)
the relation to (3:13]). Applying Proposition 1 for (8:19]) we find that the fully-nonlinear
second-order equation
V= (3.22)
P Vi ‘
admits the Lie-Backlund symmetry generator Z = n[V] Fia for which (B:19]) is the third-
order flow, i.e.
Viae Y -1/3
(2, V, Ve, Vo, Vaga) = 75 32 / Vo2 . (3.23)
Applying now Proposition 2 we find that equation (3.:22]) admits a recursion operator
R131[V] of the form (2.I0]), where
1
Gy = 7 (3.24a)
Go=3-27%3 (3.24b)
I=1 (3.24c¢)
A=2"13y, (3.24d)
for which (BI9) is the second member V;, in the hierarchy V; 6 = R13,[V]V;, m =
0,1,2,... and V; is the equation (3.22]).
1.3c: By a multi-potentialisations of (B.I3]) we are led to the equation [3]

wy = ST _ 9233 (3.25)
wxx Wrz
where
Wy = 27 1/3 122 (3.26)

Ugy



]ocn m p[ A link between 2nd-order and 3rd-order fully-nonlinear PDEs 167

gives the relation to (BI3]). Applying Proposition 1 for (3.:25]) we find that the fully-
nonlinear second-order equation

1

Wy

(3.27)

Wy = —

admits the Lie-Béacklund symmetry generator Z = n[w] Ef_w for which ([3.25)) is the third-

order flow, i.e.

3
n(ﬂf,w,wx,wm,wxm) = wx—;x - 2_2/3—' (328)
Wiy Wy

Applying now Proposition 2 we find that equation (3.27]) admits a recursion operator
Ri32[w] of the form (2.9]), where

1

wZCSC

Gy = (3.29)

Go=3-2723 (3.29D)

for which [B.2%]) is the second member wy, in the hierarchy wy, = Ri3y[w]wy, m =
0,1,2,... and w; is the equation (3.27).

Case 2: Consider the fully-nonlinear symmetry-integrable equation [2]

1
w = — (3.30)
u:(::(::c
A multi-potentialisation of ([3:30]) leads the quasi-linear equation [3]
. (3.31)
U"E"L’
where
vy = =27 YU, (3.32)
Applying Proposition 1 we find that the fully-nonlinear second-order equation
1
v = —— (3.33)
Uz

3}
admits the Lie-Bécklund symmetry generator Z = n[v]% for which (3.31)) is the third-order

flow, i.e.

V.
n(ﬂf,v,vmvmﬂixm) = % (334)
Vg
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Applying now Proposition 2 we find that equation (3.33]) admits a recursion operator Ri4[v]
of the form ([29), where

Gl =—— (3.35a)

Go=0 (3.35h)

for which (3:31)) is the second member vy, in the hierarchy vy, = R{}j[v]vs, m =0,1,2,... and
vt is the equation (B33)).

4 Concluding remarks

In this article we have provided examples of third-order fully-nonlinear symmetry-integrable
equations that are linked to second-order fully nonlinear symmetrey-integrable equations. In
particular, the examples of Case 1 and Case 2 show that certain potentialisations of consid-
ered third-order fully-nonlinear equations are in fact the third-order flows of the Lie-Backlund
symmetries of particular fully-nonlinear second-order equations. Hence these potential equa-
tions, which are quasi-linear third-order equations, are members of hierarchies of symmetry-
integrable equations for which the seed equation is a second-order fully-nonlinear equation.
We should point out that not every fully-nonlinear third-order symmetry-integrable equa-
tion can be linked in this way to a second-order equation. Moreover, not every potential
equation that results from third-order fully-nonlinear symmetry-integrable equation belongs
to a symmetry-integrable hierarchy of second-order equations, even if it does so for other
potentialisations. For example, the fully-nonlinear third-order symmetry integrable equation

B, viz

6

uSCSC

ut g
2
uSCSCSC

is related to the fully-nonlinear second-order equation

via the potential equation

6 5
VaUpan Vs
'Ut = - —

U%m Uz

as shown in Subcase 1.2. However, as reported in [3], equation (B.7)) also admits the zero-order
potentialisation

UCCSCCC 3

3 Y
U;c;c U:L‘U:L‘:L‘

VU =

(4.1)

where

1

Vyp = ——.
21/3Umm
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Using Proposition 1 it is easy to shown that there exists no second-order equation that admits
the Lie-Backlund symmetry generator

V3, UgUge ) OU
We conclude that the potential equation (4.1]) does not provide a link between a second-order
equation and the third-order fully-nonlinear equation (3.7). Furthermore, and example of a

fully-nonlinear third-order symmetry-integrable equation that does not admit a potentialisa-
tion that links this equation to a second-order symmetry-integrable equation is [3]

5
4du;,

(2bu2 — 2uztgyy + 3u2,)?’

Uy =

for any constant b.

Finally, we give an example of a more general second-order fully-nonlinear symmetry-
integrable evolution than those that are known to use to be linked to a fully-nonlinear third-
order equation from the results reported in [3]: Applying Proposition 1 and Proposition 2 we
find that

02
v = ——% 4 c3v + Uz In(vy) + ¢4 + 50, (4.2)

Trr

admits the recursion operator

27 [ v, 27  27c3 1 Vg
= —|—~=|D,— —+—2 D — 4.
Rlv] =7 (m) e T Tl oty (43)

xT

where «, c3, ¢4 and c5 are arbitrary constants. The third-order equation in the hierarchy
vy, = R™[v]v is then

27 v3u 27 v? 27c3 27 27
Uy = X mvg;xx — Zv—:x =+ a(03 — 1).’1'7193 + C3 <T3 — X — 04) v+ Z(Czl + 6365)UI
27c3c ac 27
n < 43 4 I 0405> vy In(vg) + 74% lnz(fux) +ca <Z(Cg —-1)— a> . (4.4)

By letting c3 = ¢4 = ¢5 = a = 0 we obtain

B 2_71)2%“ 27 vg

vy, = - 4.5
" 4 Uascx 4 Vg ( )
which is an equation that was obtained in [3] by a multi-potentialisation of (B.13)), viz
U,
Uy = — B
uZEZEZE
The relation between ([B.13) and (.5 is given my
Vaz _ 3Usar (4.6)

Vp 2 Ugs
In view of this example one may ask whether this method could be used to construct further
fully-nonlinear third-order symmetry-integrable evolution equations different from those that
have been reported in [2]. Furthermore, the method proposed here could be exploited for the
construction of higher-order fully-nonlinear symmetry-integrable equations.
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