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Abstract: We derive the general conditions for fully-nonlinear symmetry-integrable second-
order evolution equations and their first-order recursion operators. We then make us of the
established Propositions to find a link between a class of fully-nonlinear third-order sym-
metry integrable evolution equations and fully-nonlinear second-order symmetry-integrable
evolution equations.

1 Introduction

We recently reported a class of third-order fully-nonlinear symmetry-integrable evolution
equations in 1+1 dimensions with rational nonlinearities in their highest derivative [2]. For
this class of equations we have furthermore reported all the potentialisations and some multi-
potentialisations in [3]. It is interesting to note that some of these potential equations are in
fact members of hierarchies of fully-nonlinear second-order evolution equations. In the current
article we identify all those potential equations and give the explicit recursion operators that
generate those hierarchies. In particular, the fully-nonlinear third-order symmetry-integrable
evolution equations that are relevant here are

ut =
u3xx
u2xxx

(λ1 + λ2uxx)
3
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and

ut =
1

u2xxx
,

where λ1 and λ2 are arbitrary constants. For more details on symmetry-integrable hierarchies
and recursion operators, we refer to [4] and [2], and the references therein.

This article is organised as follows: In Section 2 we provide two Propositions by which
one are able to identify second-order fully nonlinear equations that admit third-order Lie-
Bäcklund symmetries (see Proposition 1) and by which we can obtain a recursion operator for
those second-order fully-nonlinear equations (see Proposition 2). In Section 3 we apply the
mentioned Propositions to establish links to the two fully-nonlinear equations given above.
Finally in Section 4 we make our conclusions and propose some further studies that could be
of interest.

2 On fully-nonlinear second-order equations

We consider a second-order equation of the form

ut = F (u, ux, uxx) (2.1)

where the non-constant function F is to be determined such that (2.1) is fully nonlinear in uxx

and admits a third-order Lie-Bäcklund symmetry generated by Z = η[u]
∂

∂u
; hence a recursion

operator R that generates this third-order symmetry and consequently an infinite number
of higher-order Lie-Bäcklund symmetries. The hierarchy of symmetry-integrable evolution
equations is then

utm = Rm[u]ut, m = 0, 1, 2, . . . . (2.2)

Our first step is to find the general form of F and η to satisfy this requirement as a necessary
condition. This is given by

Proposition 1. Consider the class of second-order evolution equations of the form (2.1) viz

ut = F (u, ux, uxx).

Under the assumption that (2.1) is symmetry-integrable, the following statements must be
true:

1. The function F in (2.1) satisfies the condition

∂3F

∂u3xx

(

∂F

∂uxx

)

−1

− 3

2

(

∂2F

∂u2xx

)2(

∂F

∂uxx

)

−2

= 0 (2.3)

with general solution

F (u, ux, uxx) = − A(u, ux)

uxx +B(u, ux)
+ C(u, ux), (2.4)

where A, B and C are arbitrary functions of their arguments. The quasi-linear and
semi-linear form of (2.1) follow from the singular solution of (2.3), namely the solution
for which ∂2F/∂u2xx = 0. [Note that (2.3) is the Schwarzian derivative in F .]
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2. Any third-order Lie-Bäcklund symmetry generator

Z := η(x, u, ux, uxx, uxxx)
∂

∂u
(2.5)

for (2.4) is of the general form

η(x, u, ux, uxx, uxxx) =
c0A

3/2uxxx
(uxx +B)3

− c0A
3/2

(uxx +B)3

(

B
∂B

∂ux
− ux

∂B

∂u

)

+
3c0A

1/2

2(uxx +B)2

(

B
∂A

∂ux
− ux

∂A

∂u

)

− f1
uxx +B

+ f2, (2.6)

whereby c0 denotes an arbitrary but non-zero constant, and the functions A = A(u, ux),
B = B(u, ux), C = C(u, ux), f1 = f1(x, u, ux) and f2 = f2(x, u, ux) need to be deter-
mined such that the invariance condition

LEη(x, u, ux, uxx, uxxx)

∣

∣

∣

∣

E=0

= 0 (2.7)

is satisfied. Here E := ut − F (u, ux, uxx) and LE denotes the linear operator

LE[u] :=
∂E

∂u
+

∂E

∂ut
Dt +

∂E

∂ux
Dx +

∂E

∂uxx
D2

x +
∂E

∂uxxx
D3

x. (2.8)

We now seek 1st-order recursion operators R for every equation that admits a third-order
Lie-Bäcklund symmetry, which, according to Proposition 1, are equations of the general form
(2.4) We consider both differential recursion operators

R[u] = G1(u, ux, uxx)Dx +G0(u, ux) (2.9)

as well as integro-differential recursion operators

R[u] = G1(u, ux, uxx)Dx +G0(u, ux) + I(u, ux, uxx)D
−1

x ◦ Λ(u, ux, uxx). (2.10)

Applying the standard condition for R (see for example [1]), namely

[LE, R[u]] = DtR

∣

∣

∣

∣

E=0

(2.11)

we obtain the following

Proposition 2. For finding recursion operators of (2.4) viz.

ut = − A(u, ux)

uxx +B(u, ux)
+ C(u, ux).

we distinguish between the following four cases:
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1. With the assumption A = F1(ux) and B(u, ux) = 0 in (2.4), it follows that

ut = −F1(ux)

uxx
+ u

(

a1
√

F1(ux)

u2xP (ux)
− F1(ux)

uxP (ux)

dP

dux
+

F1(ux)

u2x
− 1

2ux

dF1

dux

)

+
a0
√

F1(ux)

P (ux)
+H(ux) (2.12)

admits a recursion operator of the form (2.10) with

G1(ux, uxx) =
k1
√

F1(ux)

uxx
(2.13a)

G0(ux) =
k1
√

F1(ux)

2P (ux)

dP

dux
− k1

√

F1(ux)

2ux
− a1k1

2uxP (ux)
+ k0 (2.13b)

I(ux) = αux (2.13c)

Λ(ux, uxx) =
P (ux)uxx
√

F1(ux)
, (2.13d)

where a0, a1 and k0 are arbitrary constants, k1 and α are an arbitrary non-zero con-
stants, H is an arbitrary function of ux and, furthermore, F1 and P must satisfy the
following condition:

0 = k1u
2

xP
2

(

ux
dP

dux
+ P

)

d2F1

du2x
− k1uxP

[

−3u2xP
d2P

du2x
+ 2u2x

(

dP

dux

)2

− 2uxP
dP

dux

+ 2P 2

]

dF1

dux
+ 2k1

[

u3xP
2
d3P

du3x
− 2u3xP

dP

dux

d2P

du2x
+ u2xP

2
d2P

du2x
+ u3x

(

dP

dux

)3

−u2xP

(

dP

dux

)2

− uxP
2
dP

dux
+ P 3

]

F1 + 2
(

4αu3xP
3 − k1a

2

1

)

(

ux
dP

dux
+ P

)

.

(2.14)

2. With the assumption A = F1(ux) and B = B(ux) in (2.4), it follows that

ut = − F1(ux)

uxx + (b1 + b2ux)
√

F1(ux)
+

√

F1(ux)

b1 + b2ux
(2.15)

admits a recursion operator of the form (2.10) with

G1(ux, uxx) =
k1
√

F1(ux)

uxx + (b1 + b2ux)
√

F1(ux)
(2.16a)

G0(ux) =
k1b2F1(ux)

uxx + (b1 + b2ux)
√

F1(ux)
− k1b2

√

F1(ux)

b1 + b2ux
+ k0 (2.16b)
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I(ux) = ux +
b1
b2

(2.16c)

Λ(ux, uxx) = αb2

(

uxx + (b1 + b2ux)
√

F1(ux)

(b1 + b2ux)
√

F1(ux)

)

, (2.16d)

where b1 and α are arbitrary constants, whereas b2 and k1 are arbitrary non-zero con-
stants.

3. With the assumption A = F1(ux), B = 0 and C = C(ux) in (2.4), it follows that

ut = −F1(ux)

uxx
+ C(ux). (2.17)

This leads to two subcases:

3.1. Equation (2.17) admits the recursion operator of the form (2.10) with

G1(ux, uxx) =
k1
√

F1(ux)

uxx
(2.18a)

G0(ux) = − k1

4
√

F1(ux)

dF1

dux
+ k0 (2.18b)

I(ux) = α (2.18c)

Λ(ux, uxx) =
uxx

F1(ux)
, (2.18d)

where k0 is an arbitrary constant, k1 and α are arbitrary non-zero constants, C is an
arbitrary function of ux, and F1 must satisfy the following condition:

k1

(

4F 4

1

d3F1

du3x
− 6F 3

1

dF1

dux

d2F1

du2x
+ 3F 2

1

(

dF1

dux

)3
)

+ 16αF
5/2
1

dF1

dux
= 0. (2.19)

3.2. Equation (2.17) admits the recursion operator of the form (2.10) with

G1(ux, uxx) =
k1
√

F1(ux)

uxx
(2.20a)

G0(ux) = − k1

4
√

F1(ux)

dF1

dux
+ k0 (2.20b)

I(ux) = αux (2.20c)

Λ(ux, uxx) =
uxuxx
F1(ux)

, (2.20d)

where k0 is an arbitrary constant, k1 and α are arbitrary non-zero constants, C is an
arbitrary function of ux, and F1 must satisfy the following condition:

k1

(

4F 4

1

d3F1

du3x
− 6F 3

1

dF1

dux

d2F1

du2x
+ 3F 2

1

(

dF1

dux

)3
)
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+16αF
5/2
1

ux

(

ux
dF1

dux
− 4F1

)

= 0. (2.21)

4. The equation

ut = − F1(ux)

uxx + (b1 + b2ux)
√

F1(ux)
+ F2(ux) (2.22)

admits a recursion operator of the form (2.9) with

G1(ux) =
k1
√
F1

uxx + (b1 + uxb2)
√
F1

(2.23a)

G0(ux) =
k1b2F1

uxx + (b1 + b2ux)
√
F1

− k1

4
√
F1

dF1

dux
+

k1
2
(b1 + b2ux)

dF2

dux

−k1b2
2

F2 + k0, (2.23b)

where b1 and b2 are arbitrary constants, k1 is an arbitrary non-zero constant, and F1

and F2 must satisfy the following condition:

4F 2

1

d3F1

du3x
− 6F1

dF1

dux

d2F1

du2x
+ 3

(

dF1

dux

)3

− 8F
5/2
1

(

(b1 + b2ux)
d3F2

du3x

+3b2
d2F2

du2x

)

= 0. (2.24)

3 Fully-nonlinear second-order equations related to fully-non-

linear third-order equations

We now apply Proposition 1 and Proposition 2 to identify fully-nonlinear second-order equa-
tions that are related to fully-nonlinear third-order equations. For this purpose we consider
two main cases:

Case 1: Consider the fully-nonlinear symmetry-integrable equation [2]

ut =
u3xx
u2xxx

(λ1 + λ2uxx)
3 , (3.1)

where λ1 and λ2 are arbitrary constants. For the potentialisations of this equation we need
to distinguish different subcases that depend on the constants λ1 and λ2.

Subcase 1.1: Consider equation (3.1), with λ1 6= 0 and λ2 6= 0. Then (3.1) admits the
zero-order potentialisation [3]

vt =
λ3
1

4

(

1 + λ2

1λ2v
2

x

)3/2(v3xvxxx
v3xx

− 3v2x
vxx

)

, (3.2)
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where

vx = − 2

λ2
1

[uxx(λ1 + λ2uxx)]
1/2 . (3.3)

Applying Proposition 1 we find that the fully-nonlinear second-order equation

vt = −
(

1 + λ2

1λ2v
2

x

)

v2x
vxx

− v (3.4)

admits the Lie-Bäcklund symmetry generator Z = η[v]
∂

∂v
for which (3.2) is the third-order

flow, i.e.

η(x, v, vx, vxx, vxxx) =
λ3
1

4

(

1 + λ2

1λ2v
2

x

)3/2(v3xvxxx
v3xx

− 3v2x
vxx

)

. (3.5)

Applying now Proposition 2 we find that equation (3.4) admits a recursion operator R11[v]
of the form (2.10), where

G1 =
λ3

1

4

(

1 + λ2

1λ2v
2

x

)1/2 vx
vxx

(3.6a)

G0 = −λ5
1
λ2

4

(

1 + λ2

1λ2v
2

x

)

−1/2

v2x (3.6b)

I = vx (3.6c)

Λ =
λ5
1
λ2

4

(

1 + λ2

1λ2v
2

x

)

−3/2

vxx (3.6d)

for which (3.2) is the second member vt1 in the hierarchy vtm = Rm
11[v]vt, m = 0, 1, 2, . . . and

vt is the equation (3.4) .

Subcase 1.2: Consider equation (3.1), with λ1 = 0 and λ2 = 1, i.e.

ut =
u6xx
u2xxx

(3.7)

Then (3.7) admits the potentialisation [3]

vt =
v6xvxxx
v3xx

− 3v5x
vxx

, (3.8)

where

vx = −21/3uxx. (3.9)

Applying Proposition 1 we find that the fully-nonlinear second-order equation

vt = − v4x
vxx

(3.10)
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admits the Lie-Bäcklund symmetry generator Z = η[v]
∂

∂v
for which (3.8) is the third-order

flow, i.e.

η(x, v, vx, vxx, vxxx) =
v6xvxxx
v3xx

− 3v5x
vxx

. (3.11)

Applying now Proposition 2 we find that equation (3.10) admits a recursion operator R12[v]
of the form (2.9), where

G1 =
v2x
vxx

(3.12a)

G0 = −vx (3.12b)

for which (3.8) is the second member vt1 in the hierarchy vtm = Rm
12[v]vt, m = 0, 1, 2, . . . and

vt is the equation (3.10) .

Subcase 1.3: Consider equation (3.1), with λ1 = −1 and λ2 = 0, i.e.

ut = − u3xx
u2xxx

(3.13)

For this equation we have established several potentialisations in [3]. We treat the relevant
cases below:

1.3a: Equation (3.13) admits the potentialisation [3]

vt =
2v3xvxxx
v3xx

− 3v2x
vxx

, (3.14)

where

vx = −uxx. (3.15)

Applying Proposition 1 we find that the fully-nonlinear second-order equation

vt = − v2x
vxx

(3.16)

admits the Lie-Bäcklund symmetry generator Z = η[v]
∂

∂v
for which (3.14) is the third-

order flow, i.e.

η(x, v, vx, vxx, vxxx) =
2v3xvxxx
v3xx

− 3v2x
vxx

. (3.17)

Applying now Proposition 2 we find that equation (3.16) admits a recursion operator
R13[v] of the form (2.9), where

G1 =
2vx
vxx

(3.18a)

G0 = −1 (3.18b)

for which (3.14) is the second member vt1 in the hierarchy vtm = Rm
13[v]vt, m = 0, 1, 2, . . .

and vt is the equation (3.16).
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1.3b: Furthermore we know from the results reported in [3] that a zero-order potentialisation
of equation (3.14) is

Vt =
Vxxx

V 3
xx

− 3 · 2−2/3 1

Vxx
− 2−1/3 x, (3.19)

where

Vx = 2−1/2 ln(vx) (3.20)

gives the relation to (3.14) and

Vx = 2−1/2 ln | − uxx| (3.21)

the relation to (3.13). Applying Proposition 1 for (3.19) we find that the fully-nonlinear
second-order equation

Vt = − 1

Vxx
(3.22)

admits the Lie-Bäcklund symmetry generator Z = η[V ]
∂

∂V
for which (3.19) is the third-

order flow, i.e.

η(x, V, Vx, Vxx, Vxxx) =
Vxxx

V 3
xx

− 3 · 2−2/3 1

Vxx
− 2−1/3 x. (3.23)

Applying now Proposition 2 we find that equation (3.22) admits a recursion operator
R131[V ] of the form (2.10), where

G1 =
1

Vxx
(3.24a)

G0 = 3 · 2−2/3 (3.24b)

I = 1 (3.24c)

Λ = 2−1/3Vxx (3.24d)

for which (3.19) is the second member Vt1 in the hierarchy Vtm = Rm
131[V ]Vt, m =

0, 1, 2, . . . and Vt is the equation (3.22).

1.3c: By a multi-potentialisations of (3.13) we are led to the equation [3]

wt =
wxxx

w3
xx

− 2−2/3 3

wxx
, (3.25)

where

wxx = 2−1/3 uxxx
uxx

(3.26)
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gives the relation to (3.13). Applying Proposition 1 for (3.25) we find that the fully-
nonlinear second-order equation

wt = − 1

wxx
(3.27)

admits the Lie-Bäcklund symmetry generator Z = η[w]
∂

∂w
for which (3.25) is the third-

order flow, i.e.

η(x,w,wx, wxx, wxxx) =
wxxx

w3
xx

− 2−2/3 3

wxx
. (3.28)

Applying now Proposition 2 we find that equation (3.27) admits a recursion operator
R132[w] of the form (2.9), where

G1 =
1

wxx
(3.29a)

G0 = 3 · 2−2/3 (3.29b)

for which (3.25) is the second member wt1 in the hierarchy wtm = Rm
132[w]wt, m =

0, 1, 2, . . . and wt is the equation (3.27).

Case 2: Consider the fully-nonlinear symmetry-integrable equation [2]

ut =
1

u2xxx
. (3.30)

A multi-potentialisation of (3.30) leads the quasi-linear equation [3]

vt =
vxxx
v3xx

, (3.31)

where

vx = −2−1/3uxx. (3.32)

Applying Proposition 1 we find that the fully-nonlinear second-order equation

vt = − 1

vxx
(3.33)

admits the Lie-Bäcklund symmetry generator Z = η[v]
∂

∂v
for which (3.31) is the third-order

flow, i.e.

η(x, v, vx, vxx, vxxx) =
vxxx
v3xx

. (3.34)
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Applying now Proposition 2 we find that equation (3.33) admits a recursion operator R14[v]
of the form (2.9), where

G1 = − 1

vxx
(3.35a)

G0 = 0 (3.35b)

for which (3.31) is the second member vt1 in the hierarchy vtm = Rm
14[v]vt, m = 0, 1, 2, . . . and

vt is the equation (3.33).

4 Concluding remarks

In this article we have provided examples of third-order fully-nonlinear symmetry-integrable
equations that are linked to second-order fully nonlinear symmetrey-integrable equations. In
particular, the examples of Case 1 and Case 2 show that certain potentialisations of consid-
ered third-order fully-nonlinear equations are in fact the third-order flows of the Lie-Bäcklund
symmetries of particular fully-nonlinear second-order equations. Hence these potential equa-
tions, which are quasi-linear third-order equations, are members of hierarchies of symmetry-
integrable equations for which the seed equation is a second-order fully-nonlinear equation.

We should point out that not every fully-nonlinear third-order symmetry-integrable equa-
tion can be linked in this way to a second-order equation. Moreover, not every potential
equation that results from third-order fully-nonlinear symmetry-integrable equation belongs
to a symmetry-integrable hierarchy of second-order equations, even if it does so for other
potentialisations. For example, the fully-nonlinear third-order symmetry integrable equation
(3.7), viz

ut =
u6xx
u2xxx

is related to the fully-nonlinear second-order equation

vt = − v4x
vxx

via the potential equation

vt =
v6xvxxx
v3xx

− 3v5x
vxx

as shown in Subcase 1.2. However, as reported in [3], equation (3.7) also admits the zero-order
potentialisation

vt =
vxxx
v3xx

+
3

vxvxx
, (4.1)

where

vx =
1

21/3uxx
.
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Using Proposition 1 it is easy to shown that there exists no second-order equation that admits
the Lie-Bäcklund symmetry generator

Z =

(

vxxx
v3xx

+
3

vxvxx

)

∂

∂v
.

We conclude that the potential equation (4.1) does not provide a link between a second-order
equation and the third-order fully-nonlinear equation (3.7). Furthermore, and example of a
fully-nonlinear third-order symmetry-integrable equation that does not admit a potentialisa-
tion that links this equation to a second-order symmetry-integrable equation is [3]

ut =
4u5x

(2bu2x − 2uxuxxx + 3u2xx)
2
,

for any constant b.
Finally, we give an example of a more general second-order fully-nonlinear symmetry-

integrable evolution than those that are known to use to be linked to a fully-nonlinear third-
order equation from the results reported in [3]: Applying Proposition 1 and Proposition 2 we
find that

vt = − v2x
vxx

+ c3v + c4vx ln(vx) + c4 + c5vx (4.2)

admits the recursion operator

R[v] =
27

4

(

vx
vxx

)

Dx −
27

4
+

27c3
4

+ αvxD
−1

x ◦ vxx
v2x

, (4.3)

where α, c3, c4 and c5 are arbitrary constants. The third-order equation in the hierarchy
vtm = Rm[v]vt is then

vt1 =
27

4

v3xvxxx
v3xx

− 27

4

v2x
vxx

+ α(c3 − 1)xvx + c3

(

27c3
4

− 27

4
− α

)

v +
27

4
(c4 + c3c5)vx

+

(

27c3c4
4

+ αc5

)

vx ln(vx) +
αc4
2

vx ln
2(vx) + c4

(

27

4
(c3 − 1)− α

)

. (4.4)

By letting c3 = c4 = c5 = α = 0 we obtain

vt1 =
27

4

v3xvxxx
v3xx

− 27

4

v2x
vxx

(4.5)

which is an equation that was obtained in [3] by a multi-potentialisation of (3.13), viz

ut = − u3xx
u2xxx

.

The relation between (3.13) and (4.5) is given my

vxx
vx

=
3

2

uxxx
uxx

. (4.6)

In view of this example one may ask whether this method could be used to construct further
fully-nonlinear third-order symmetry-integrable evolution equations different from those that
have been reported in [2]. Furthermore, the method proposed here could be exploited for the
construction of higher-order fully-nonlinear symmetry-integrable equations.
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