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Abstract

This work is a review of our recent analytical advances of the evolution of surface
water solitary waves in Miles and Jeffreys’ theories of wind wave interaction in water
of finite depth. Although many works have been conducted based on Miles and Jef-
freys’ approach, only a few studies have been carried out on finite depth. The present
review is divided into two major parts. The first corresponds to the surface water
waves in a linear regime and its nonlinear extensions. In this part, Miles’ theory of
wave amplification by wind is extended to the case of finite depth. The dispersion
relation provides a wave growth rate depending on depth. A dimensionless water
depth parameter, depending on the depth and a characteristic wind speed, induces a
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family of curves representing the wave growth as a function of the wave phase velocity
and the wind speed. Our theoretical results are in good agreement with the data
from the Australian Shallow Water Experiment and the data from the Lake George
experiment. In the second part of this study, Jeffreys’ theory of wave amplification
by wind is extended to the case of finite depth, where the fully nonlinear focusing
Serre-Green-Naghdi (SGN) equation is derived. ”Anti-dissipation” occurs due to the
continuous transfer of wind energy to water surface waves. We find the solitary wave
solution of the system, with an increasing amplitude under the action of the wind.
This continuous increase in amplitude leads to the ”soliton” breaking and blow-up of
the surface wave in finite time for infinitely large asymptotic space. This dispersive,
focusing and fully nonlinear phenomenon is equivalent to the linear instability at in-
finite time. The theoretical blow-up time is calculated based on actual experimental
data. By applying an appropriate perturbation method, the SGN equation yields a
focusing weakly nonlinear dispersive Korteweg–de Vries–Burger-type (KdV-B) equa-
tion. We show that the continuous transfer of energy from wind to water results in
the growth of the KdV-B soliton-like’s amplitude, velocity, acceleration, and energy
over time while its effective wavelength decreases. This phenomenon differs from the
classical results of Jeffreys’ approach due to finite depth. Again, blow-up and break-
ing occur in finite time. These times are calculated and expressed for solitary wave
solution- and wind-appropriate parameters and values. These values are measurable
in usual experimental facilities. The kinematics of the breaking is studied, and a de-
tailed analysis of the breaking kinetics and breaking time is conducted using various
criteria. Finally, some integrability perspectives are presented.

1 Introduction

The Navier-Stokes equation for air and water is the starting point of wind-generated water
waves. Since the Navier-Stokes equation is analytically unsolved, various approximations
and assumptions are required to obtain particular solutions.

The wind wave growth is due to the continuous energy and momentum flow from the
air to the water. Winds generate surface waves; in turn, surface water waves modify the
airflow. In this way, the atmosphere depends on the wave state near the water surface. The
physical mechanism behind is ”focusing” with a continuous energy and momentum flow
from the air to the surface wave generating an exponential growth of the wave amplitude
in time, more or less quickly, depending on the wind speed and the water depth.

However, waves may lose energy because of dissipation. The action balance equation, a
fundamental equation in fluid dynamics, commonly represents this temporal and spatial
dynamics. In deep water, it reads [1]:

∂

∂t
N +

−→
∇ .(−→cgN ) = S, (1)

where −→cg is the group velocity observed in a frame moving with the wave, N is the action
density defined as follows:

N =
E
ω
, (2)

where ω is the wave frequency, E is the energy density
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E = 2ρwgη
2
0, (3)

where η0 the small wave amplitude, and S is the source term

S = Sin + Snl + Sds + . . . , (4)

where Sin, Snl, Sds are the effects of the wind input, non-linear interactions and dissipation
due to white capping, respectively.

The pioneer theoretical works on surface wind-wave growth were essentially done by
Jeffreys and Miles [2–5], till some more recent studies [6, 7]. These works essentially aim
to compute the term Sin in Eq. (4). Later, numerical approaches attempted to campute
Sin, Snl, Sds [1].

However, all theories mentioned above are focused on deep water domain and are not
well adapted to correctly describe wind-waves generation near-shore oceans or shallow
lakes. This limitation challenges both the physics and engineering communities. Indeed,
in the finite depth water domain the source term is

S = Sin + Snl + Sds + Sbf + Stri + . . . . (5)

where Sbf is the bottom friction, and Stri is triad nonlinear wave interactions. Moreover,
Sin being strongly influenced by the finite depth h, must be recalculated. To our knowl-
edge, although many works have been conducted based on Miles and Jeffreys’ approach,
only a few studies are carried out on finite depth [8–11].

This review is the result of our analytical extension of the evolution of surface water
solitary waves in Miles and Jeffreys’ theories of wind wave interaction in water of finite
depth with the Euler equations as outset. The analytic approach is essential for further
numerical investigations due to the scale of energy dissipation near coasts. Indeed, the
scale of energy dissipation is of the order of a micrometre, which requires 1025 mesh nodes
to produce correct predictions on scales of 100 km. Hence, no pure numerical modelling
of this problem without recourse to theoretical developments has a chance of succeeding.

Based on the our latest progress [8–11], this work aims to give l’etat de l’art in the field
of wind-wave interactions in finite depth, and thereby supply a theoretical basis allowing
to go beyond the empirical laws. A permanent concern in this work is to compare our
theoretical results to experimental data or check the feasibility of experimentation and
field observations.

This paper is divided into two parts: The first part is dedicated to the extension of Miles’
approach [5] to finite depth, where the linearized Euler equations in the water domain are
coupled with weak nonlinearity to linearized Euler equations in the air domain. The
problem is solved at the interface, and the linear dispersion relation of wave amplification
at finite depth is calculated. By introducing dimensionless variables and scaling, the wind
wave’s growth rate is obtained. Our theoretical laws are compared with both the Young-
Verhagen data and plots of empirical relationships from the Lake George experiment and
with Donelan’s data from the AUSWEX program [12–14].

Introducing a simple modus operandi for the Miles’ mechanism allows us to derive an
anti-diffusive nonlinear Schrödinger equation for the wind-wave in finite depth and we
derive the Akhmediev, Peregrine, and Ma solutions for weak wind inputs.
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The second part of this paper is devoted to the extension of Jeffrey’s mechanism [2, 3]
where in different scales, the focusing KdV-B equation and the fully nonlinear SGN are
derived. The focusing KdV-B equation is obtained by the coupling of the weakly nonlinear
Euler equations in the water domain to the linearized Euler equations in the air domain.
In contrast, the fully nonlinear SGN is derived by coupling the nonlinear Euler equations
in the water domain to the linearized Euler equations in the air domain.

For both SGN and KdV-B equations, solitary waves solutions exhibiting blow-up in
finite time are found. By considering its kinematics description, the solition breaking
phenomenon is analyzed in detail in the case of KdV-B equation.

This review is organized as follows: Section 2 studies the mutual action of linearised
water and air dynamics through Mile’s mechanism in finite depth. The wave growth
rate is analytically calculated and compared to field experiment results and empiric laws.
A good agreement between theoretical and experimental results is observed. Section 3
compares our theoretical results to experimental and empirical laws. In Section 3, we
apply the Miles approach from a quasi-linear perspective. Here, the air dynamics remain
linear, while the water domain is viewed as irrotational and nonlinear. This modification
gives rise to the Nonlinear Schrödinger equation, from which we derive the Akhmedeiev,
Peregrine, and Ma solutions solutions for weak wind input. Sections 4 and 5 are devoted
to the nonlinear Jeffrey’s approach. Namely, in section 3, the water domain is considered
irrotational and nonlinear, and the air domain is linearized. Jeffrey’s sheltering mechanism
allows us to derive the SGN equation in finite depth, which we solve analytically. The
solution is a solitary wave with the remarkable feature of blowing up in finite time. The
blow-up time is calculated based on experimental measurement. In section 5, applying
an appropriate approximation, we derive the KdV-B equation from the SGN equation we
solve analytically. Again, the solution is a solitary wave with a blow-up in finite time.
In this section, we conduct a detailed analysis of the wave breaking before the blow-up,
which we compare to existing breaking criteria. In Section 6, we present some integrability
perspectives. Section 7 summarises our results, draws conclusions, and gives perspectives
on further developments. In the Appendix, the direct derivation of the KdV-B equation
Euler equation is shown.

2 Mile’s Mechanism

The Miles mechanism in infinite or finite depth is based on a particular interaction between
air flows and surface waves. It’s about a linear mechanism of resonance between the wind
speed and the water phase speed, which will induce a change in pressure and modify the
propagation properties of linear water surface waves. We therefore model this instability
as follows: either a coordinate system Cartesian dimensions with x the horizontal, z the
height and y the transverse dimension, which we will not consider here. We consider two
fluids, air and water, separated by a free surface (x, t). The constant densities of air and
water are ρa and ρw. Pressure fields in water and air are denoted respectively Pw and
Pa. The bottom is located at a depth z = −h and the interface z = η(x, t). We prescribe
a wind U(z) having a specific profile, typically logarithmic, as in Figure (1). Therefore,
we will write Euler’s equations for air and water, with an additional condition of pressure
continuity connecting them. We assume the dynamic to be linear and disregard the air
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Figure 1. The Miles mechanism is based on a particular interaction between air flows and surface

waves. It’s about a linear mechanism of resonance between the wind speed and the water phase

speed, which will induce a change in pressure, which in turn will modify the propagation properties

of linear water surface waves. We consider two fluids, air and water, separated by a free surface

(x, t). The bottom is located at a depth −h, and we prescribe a wind U(z) having a specific profile,

typically logarithmic. The interface at rest. The perturbed air-water interface will be described

by z = η(x, t).

turbulence, building a quasi-laminar theory.

2.1 The linearized water dynamics

In the water domain, we consider the Euler equations for finite depth. The horizontal and
vertical velocities of the fluid are u(x, z, t) and w(x, z, t). The continuity equation and the
linearized equation of motion in the water domain read [15]:

ux + wz = 0, ρwut = −Px, ρwwt = −Pz − gρw, (6)

where P (x, z, t) is the pressure, g the gravitational acceleration, ρw is the water density
and subscripts in u, w, Px and Pz denote partial derivatives of P with respect to x and z,
receptively. The boundary conditions at z = −h and at z = η(x, t) are

w(−h) = 0, ηt = w(0), (7)

P (x, η, t) = Pa(x, η, t), (8)

where Pa is the air pressure evaluated at z = η. Thus equation (8) is the continuity of
the pressure across the air/water interface. As this is a vital assumption for the growth
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mechanism, we give it a more pleasant expression. So, let us introduce a reduced pressure
defined by

P(x, z, t) = P (x, z, t) + ρwgz − P0, (9)

where P0 is the atmospheric pressure. In terms of (9) equations (6)-(8) read

ux + wz = 0, ρwut = −Px, ρwwt = −Pz, (10)

w(−h) = 0, ηt = w(0), (11)

P(x, η, t) = Pa(x, η, t) + ρwgη − P0. (12)

The linear equations system (10)-(12) can be solved, assuming normal mode solutions as

P = P(z) exp (iθ), u = U(z) exp (iθ),
w = W(z) exp (iθ), η = η0 exp (iθ), (13)

with θ = k(x − ct) where k is the wavenumber, c the phase speed and η0 is a constant.
Using equations (10), (11), (12) and (13) we obtain

w(x, z, t) =
−ikc sinh k(z + h)

sinh kh
η0 exp (iθ), (14)

u(x, z, t) =
kc cosh k(z + h)

sinh kh
η0 exp (iθ), (15)

P(x, z, t) =
kρwc

2 cosh k(z + h)

sinh kh
η0 exp (iθ). (16)

The phase speed c is unknown in equations (14)-(16). To determine c we have to
consider the boundary conditions (12), not yet used, and (11) which yields

ρwη0 exp (iθ){c2k coth kh− g}+ P0 = Pa(x, η, t). (17)

In the single-domain problem Pa(x, η, t) = P0 and (17) gives the usual expression for
c,

c2 = c20 =
g

k
tanh (kh). (18)

It is not the case in the problem under consideration in the present paper in which the
determination of c needs the use of the air pressure evaluated at z = η.

2.2 The linearized air dynamics

Let us consider the linearized governing equation of a steady airflow, with a prescribed
mean horizontal velocity U(z) depending on the vertical coordinate z. We are going to
study perturbations to the mean flow U(z): ua(x, z, t), wa(x, z, t) and Pa(x, z, t) where
subscript a stands for air. So with Pa(x, z, t) = Pa(x, z, t) + ρagz−P0, ρa the air density,
and U ′ = dU(z)/dz we have the following equations

ua,x + wa,z = 0, (19)

ρa[ua,t + U(z)ua,x + U ′(z)wa] = −Pa,x, (20)

ρa[wa,t + U(z)wa,x] = −Pa,z, (21)
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which must be completed with the appropriate boundary conditions. The first is the
kinematic boundary condition for air, evaluated at the aerodynamic sea surface roughness
z0 located just above the interface. Through this paper, z0 will be regarded as a constant
independent from the sea state. This is a widely used approximation, first proposed by [16].
For the datasets used later on, the wind speed ranges are such that the roughness may be
seen as a constant [17]. The kinematic boundary condition reads

ηt + U(z0)ηx = wa(z0). (22)

We choose U(z) as the logarithmic wind profile. This is commonly used to describe the
vertical distribution of the horizontal mean wind speed within the lowest portion of the
air side of the marine boundary layer [18]. It can also be justified with scaling arguments
and solution matching between the near-surface and geostrophic air layer [19].

U(z) = U1 ln(z/z0), U1 =
u∗
κ
, κ ≈ 0.41, (23)

where u∗ is the friction velocity and κ the Von Kármán constant. So, eq. (22) can be
reduced to

ηt = wa(z0). (24)

This equation describes the influence of the surface perturbation on the vertical perturbed
wind speed. Next we assumePa = Pa(z) exp (iθ), ua = Ua(z) exp (iθ), wa = Wa(z) exp (iθ)
and we add the following boundary conditions on Wa and Pa,

lim
z→+∞

(W ′
a + kWa) = 0, (25)

lim
z→z0

Wa = W0, (26)

lim
z→+∞

Pa = 0, (27)

that is, the disturbance plus its derivative vanish at infinity, and the vertical component
of the wind speed is enforced by the wave movement at the sea surface. Then, using
equations (19)-(21) and (27) we obtain

wa(x, z, t) = Wa exp (iθ), (28)

ua(x, z, t) =
i

k
Wa,z exp (iθ), (29)

Pa(x, z, t) = ikρa exp (iθ)

∫ ∞

z
[U − c]Wadz

′. (30)

Removing the pressure from the Euler equations, we find the well-known Rayleigh equation
[20] ∀z \ z0 < z < +∞ (inviscid Orr-Sommerfeld equation)

(U − c)(W ′′
a − k2Wa)− U ′′Wa = 0 (31)

which is singular at the critical, or matched height zc = z0e
cκ/u∗ > z0 > 0, where U(zc) = c.

We recall that this model disregards any kind of turbulence, and so the critical height is
set above any turbulent eddies or other non-linear phenomena. In equations (28)-(31)
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neither Wa(z) nor c are known. In order to find c, we have to calculate Pa(x, η, t). We
obtain

Pa(x, η, t) = P0 − ρagη + ikρa exp (iθ)

∫ ∞

z0

[U(z)− c]Wa(z)dz, (32)

where the lower integration bound is taken at the constant roughness height z0 instead of
z = η since we are studying the linear problem. Using equation (24) to eliminate the term
ikρa exp(iθ) the equation (32) in (17) yields

g(1− s) + c
sk2

W0
I1 − c2{sk

2

W0
I2 + k coth(kh)} = 0, (33)

where s = ρa/ρw and the integrals I1 and I2 are defined as follow

I1 =

∫ ∞

z0

UWadz, I2 =

∫ ∞

z0

Wadz. (34)

Equation (33) is the dispersion relation of the problem. The parameter s is small (ρa/ρw ∼
10−3) and (33) may be approximated as

c = c0 + sc1 +O(s2). (35)

The explicit form of c1 is calculated in the next section. Therefore, we can find Wa(z) by
solving (31) with c replaced by c0, that is to say, of order zero in s.

2.3 The wave growth rate

The function Wa(z) is complex and consequently c also. Its imaginary part gives the
growth rate of η(x, t) defined by

γ = kℑ(c), (36)

where ℑ(c) is the imaginary part of c. The theoretical and numerical results concerning
the growth rate γ are studied and computed with two dimensionless parameters δ (see [12]
and [13]) and θdw defined by

δ =
gh

U2
1

, θdw =
1

U1

√
g

k
. (37)

The dimensionless parameter δ, for constant U1, measures the influence of the finite fluid
depth on the rate of growth of η(x, t). The parameter θdw can be seen as a theoretical
analogous of the deep water wave age. It measures the relative value of the deep water
phase speed about the characteristic wind velocity U1. Now a theoretical analogous of the
finite depth wave age θfd can be introduced as

θfd =
1

U1

√
g

k

√
tanh(kh) = θdwT

1/2, (38)

where

T = tanh(
δ

θ2dw
). (39)



124 ]ocnmp[ A Latifi, M A Manna and R A Kraenkel

Figure 2. Evolution of the growth rate in semi-logarithmic scale. Every curve but the rightmost

one correspond to finite depth. From left to right, they match δ = 1, 4, 9, 25, 49, 81. We can observe

that for each depth, there is a θfd – limited wave growth. The deep water limit, also computed, is

corresponds to small θfd and matches Miles’ results.

The form (38) is a depth weighted parameter such that for a finite and constant θdw we
have θfd ∼ θdw if δ → ∞ and θfd ∼ δ1/2 =

√
gh/U1 if δ → 0. To obtain the growth

rate, we introduce the following non-dimensional variables and scalings, hats meaning
dimensionless quantities

U = U1Û , Wa = W0Ŵa, z =
ẑ

k
,

c = U1ĉ, t =
U1

g
t̂. (40)

Using (37) and (40) in equation (33) and retaining only the terms of order one in s we
obtain c,

ĉ = ĉ(δ, θdw) = θdwT
1/2 − s

2
θdwT

1/2 +
s

2
{T Î1 − θdwT

3/2Î2}, (41)

and with eγt = ekℑ(c)t = eℑ(ĉ)t̂/θ2dw , we have the dimensionless growth rate γ̂ = U1
g γ as,

γ̂ =
s

2
{Tℑ(I1)

θ2dw
− T 3/2ℑ(I2)

θdw
}, (42)

So, we can compute it for a given (δ, θdw) set. The δ parameter does not appear explicitly,
allowing us to compute γ for an infinite depth, where we have just T → 1. This gives back
to Miles’ theory.

The existence of a finite depth h transforms the unique curve of wave growth rate in
deep water in a family of curves indexed by δ = gh/U2

1 , i.e., a curve for each value of
δ. In Figure 2 shows a family of six values of δ against the θfd parameter. The limit
δ → ∞ is included as well. Small finite θfd corresponds to short surface waves. This
stage represents the initial growth of the wave field near the shoreline of a calm lake. As
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Figure 3. Evolution of Miles’ coefficient β for several values of the depth. Each curve is plotted

with the same Charnock constant αc ≈ 0.018. The finite-depth effect is critical, and high value of

δ correspond to deep water.

time proceeds, the surface waves reach moderate θfd, corresponding to mild or moderate
wavelengths, while long waves are found for large θfd. Of course, as the wavelengths
increase, the amplitudes keep on growing. Clearly, from a physical point of view, this
means that Figure 2 is a snapshot of the theoretical dynamical development of the wave,
which is growing in amplitude and wavelength in time.

Figure 2 shows that at small θfd the growth rate γ is equal for all values of δ, the limit
being the deep water case. The finite-depth effects appear as θfd increases. The growth
rate becomes lower than in the deep water limit for each value of δ. The growth rates are
scaled with δ: for a given θfd, the bigger the δ the larger the γ̂. Each δ-curve approaches
its own (idealized) theoretical θfd-limited growth as γ̂ goes to zero. At this stage, the wave
reaches a final linear progressive wave with zero growth. In other words, for a given δ the
surface wave does not grow old beyond a determined θfd.

In contrast to the usual analysis of wind-wave growth, our results concern the dimen-
sionless growth rate γ̂ instead of the β-Miles parameter. We have the following transfor-
mation rule between this parameter β and dimensionless γ̂

β =
2γ̂

s
θ3dwT

1/2, (43)

where we took β as it is usually defined, with the dimensions, ℑ(c) = c0
s
2β(

U1
c0
)2. This

definition of Miles’ β in finite depth is straightforward. Its evolution is shown clearly in
Figure 3, showing the correct deep water trends and the new finite depth limits. The
effects of depth are critical. As usual, β is almost constant for small θfd, but it goes
dramatically to zero when the depth limit is close.

2.4 Field experiments on growth of surface wind-waves

For finite depth wave growth the pioneer experiments and numerical studies were con-
ducted by [14,21,22] and particularly the experiments in Lake George, Australia, described
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by [12]. They provided one of the first systematic attempts to understand the physics of
wave-wind generation in finite-depth water.

The results of the field experiments in fetch limited growth have been presented in
references [12] and [13]. These papers described the basin geometry and bathymetry,
experimental design, used instrumentation, and the adopted scaling parameters. The
measurements have confirmed the water depth dependence of the asymptotic limits to
wave growth.

In reference [23] (see also [24]) derived an empirical relation in terms of appropriate
dimensionless parameters able to reproduce the experimental data of [12]. In particular,
the empirical relationship between the fractional energy increase as a function of the
inverse wave age, found by [25] For deep water, it was extended to the finite depth domain.
Experimental results and plots of the empirical laws have shown that contrary to the deep
water case, the wave age at which the growth rate becomes zero is wind-dependent and
depth-dependent. So, the point of full development is warped from the deep water case,
where established it [26]. As a result, a growth law against the inverse wave age exists
for each value of a parameter, which unites the dependences on wind intensity and water
depth.

The evolution of the growth rates is such that at small wave ages, growth rates are
comparable to the deep water limit at large wave ages, the growth rate is lower the growth
rate vanishes beyond a limit wave age in shallow water than in deep water.

2.5 Comparisons with field experiments

In this subsection, we are going to show that our analytical and numerical results can
reproduce qualitatively these experimental facts. At this point, it is essential to keep in
mind that we are studying the linear growth of a normal Fourier mode k and not the
growth of a wave train as the infinite superposition of wave Fourier modes.

Moreover, results in field or laboratory experiments are commonly given using the
parameter Cp, the observed phase speed at the peak frequency ωp. Consequently, quali-
tative comparison with field observations can only be made using the phase velocity c or
frequency ω of one mode instead of Cp or ωp.

We are going to show that the theoretical curves for γ̂ are, mutatis mutandi, in good
qualitative agreement with the empirical curves of the dimensionless fractional wave energy
increase per radian Γ̂ as a function of the inverse wave age U10/Cp in [23]. In this reference,
experimental field data for Γ̂ in the finite depth of the empirical relationship adequately
represents Lake George

Γ̂ =
Cg

ωp

1

E

∂E

∂x
(44)

= A

(
U10

Cp
− 0, 83

)
tanh0,45

(
U10

Cp
− 1, 25

δ0,45Y

)
,

with A constant, δY = gh/U2
10 the non-dimensional water depth, U10 the wind velocity at

10 m, and Cg and Cp the group and phase speeds of the components at the spectral peak
frequency ωp.

In order to make a qualitative comparison between Γ̂ curves in function of the in-
verse wave-age U10/Cp and theoretical γ̂ curves in function of 1/θfd we need to write the
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empirical Γ̂ in terms of theoretical quantities. So, the following changes are necessary:

measured Cg, Cp, ωp → theoretical cg, c, ω, (45)

and
U10C

1/2
10

κ = u∗/κ = U1 (46)

with C10 the 10 m drag coefficient [27]. Thus, from the fact that the energy growth rate
is two times the amplitude growth rate, that is

Γ = 2γ,

and using 2cg = c(1 + 2kh/ sinh(2kh)), (45), (46),(38) and (40) we obtain

Γ̂ =
θdw
T 1/2

γ̂[1 +
2δ

θ2dw sinh( 2δ
θ2dw

)
]. (47)

This expression gives the theoretical equivalent of the empirical Γ̂ in function of θdw, δ
and γ̂. The values of γ̂ for fixed δ’s as a function of 1/θfd are numerically obtained from
Eqs. (38) (39) and (42). Steps (45) and (46) transform δY and Cp/U10 into δ and θfd
according to

δY = δ
C10

κ2
, (48)

Cp

U10
= θfd

C2
10

κ
. (49)

In reference [23] the curves of Γ versus U10/Cp have been presented for the δY -intervals
δY ∈ [0.1− 0.2], [0.2− 0.3], [0.3− 0.4], [0.4− 0.5], rather than for a single value of δY . The
intervals were determined from the variations in U10, the depth h being nearly constant
around 2 m. Consequently we substitute the δY -intervals with δ-intervals using (48)
and we evaluate the mean value δ. For example δY ∈ [0, 1 − 0, 2] is transformed into
δ = [13, 17 − 26, 35] with δ = 19, 76 in Figure 4(a). Figures 4(a), 4(b), 4(c) and 4(d)
are displaying a fair concordance of the model with the experimental data and plots of
empirical laws for Lake George. The agreement improves as 1

θfd
increases.

In Figure 5 are plotted, against δ, the critical values of the parameter θcfd for which the
growth rate γ goes to zero. They obey the relation

θcfd = δ0,5. (50)

The above relation, found numerically, is coherent with the parameter formulation (38).
It is indeed a limiting value for θfd uniquely determined by the water depth. In [23] the

author has shown from an empirical relationship (formula (6) in reference above) that Γ̂
the growth rate goes to zero as a function of the inverse wave age U10/Cp for

Cp

U10
= 0.8(

gh

U2
10

)0.45. (51)

Using a C10 drag coefficient parametrization such as [27]

C10 = (0.065U10 + 0.8)10−3, (52)
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and taking an average U10 = 7 m/s in [23], one finds the U1 to U10 relationship

U10 ≈ 28, 3 u∗ ≈ 11, 6 U1, (53)

So, this limiting law reads

Cp

U1
= 1, 01 δ0,45. (54)

a result in excellent agreement with the theoretical value (50). With θcfd we can calculate
the corresponding critical wave length λc. Using (50) in (38) we obtain

δ

θ2dw
= tanh (

δ

θ2dw
). (55)

Relation (55) means the wave has entered the shallow water region. In such a limit the
range of δ/θ2dw is: 0 < δ/θ2dw < π

4 ( [28,29]). As a result we obtain λc = 8h. For values of λ
such that λ > λc the phase velocity is in the long wave limit i.e., c =

√
gh. Consequently,

if λ > λc the wave feels the bottom, the amplitude does not grow anymore, the resonance
wind/phase speed ceases, and the wave reaches its utmost state as a progressive plane
wave.

Finally in Figure 5 are also represented data from [25], from the Australian Shallow
Water Experiment. A fit is also plotted to show the trend. The raw data consists in
the water depth h in meters, the friction velocity u∗, the 10 meters wind velocity U10

and the ratio of the former with the measured phase speed cp, U10/cp. For example,
u∗ = 0.44 m.s−1 and h = 0.32 m gives δ = 2.7 and θfd = 1.55, which gives a small relative
error regarding (50). All the points give (δ, θfd) coordinates close to the theoretical limit.

3 A nonlinear Miles’ approach

In this section we consider the air/water system from quasi-linear point of view in the
sense that the water dynamics is considered nonlinear and irrotational but the airflow is
kept linear . We use the β-Miles parameter as given by Eq. 43. In Miles’s theory of wave
generation [5,30], the complex air pressure Pa can be separated into two components, one
in phase and one in quadrature with the free surface η. A phase shift between those two
quantities is necessary to transfer energy from the air flow to the wave field. The transfer
is only due to the part of Pa in quadrature with η. Hence, we will deal only with the
acting pressure component, that is

Pa(x, t) = ρaβU
2
1 ηx(x, t), (56)

3.1 The anti-diffusive nonlinear Schrödinger equation in finite depth

Let us consider the air/water system from a quasi-linear point of view i.e., the water
dynamics is considered nonlinear and irrotational and, as in Miles’ theory, the air flow
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Figure 4. Growth rate Γ̂ as a function of inverse wave age 1/θfd for several values of the parameter

δ. White squares correspond to Lake George experiment data, Black squares correspond to the

empirical relationship (eq. (6)) in [23]. Present results correspond to symbols +, × and ∗. a: the
dataset covers a range of wind speed corresponding to δY = 0.1−0.2, or using (48) δ = 13.17−26.35,

and an average value < δ >= (13.17 + 26.35)/2 is used. b: same as “a” with δY = 0.2 − 0.3. c:

same as “a” with δY = 0.3− 0.4. d : same as “a” with δY = 0.4− 0.5.

Figure 5. Parameter curves corresponding to zero growth rate. The theoretical limit is given by

(50). The AUSWEX data are experimental results from [25] (the sea state is fairly close to the

finite depth full development).
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is kept linear. So with this assumption the complete irrotational Euler equations and
boundary conditions in terms of the velocity potential ϕ(x, z, t) are

ϕxx + ϕzz = 0 for − h ≤ z ≤ η, (57)

ϕz = 0 for z = −h, (58)

ηt + ϕxηx − ϕz = 0 for z = η, (59)

ϕt +
1

2
ϕ2
x +

1

2
ϕ2
z + gη = − 1

ρw
Pa for z = η. (60)

Using (56) the modified Bernoulli equation reads

ϕt +
1

2
ϕ2
x +

1

2
ϕ2
z + gη = −sβU2

1 ηx for z = η. (61)

From equations (57), (58), (59) and (61) we find a wind-forced finite depth NLS equation
for η as a function of the standard slow space and time variables ξ = ε(x−cgt) and ν = ε2t,
(ε << 1) and cg the group velocity. The perturbed NLS equation reads

iην + aηξξ + b|η|2η = idη (62)

with cg, a, b and d given by

cg =
c

2
[1 + 2kh/ sinh(2kh)],

a = −
c2g − gh[1− khT (1− T 2)]

2ω
,

b =
k4c2

4ωT 2
[
9

T 2
− 12 + 13T 2 − 2T 4 − 2[2c+ cg(1− T 2)]2

gh− c2g
],

d = s
β

2

U2
1

c2
Tω.

For more information about the derivation of the coefficients a and b see [31]. To derive
a dimensionless wind-forced NLS equation we use (40) and we obtain in the original
laboratory variables x and t (after a Galilean transformation in order to eliminate the
linear term cgηx and dropping the hats)

iηt +Aηxx +B|η|2η = iDη (63)

with cg, A,B, and D now given by

cg =
1

2θfd
[1 +

δ

θ2dw

1− T 2

T
],

A = −
c2g − δ[1− δθ−2

dw(1− T 2)]

2θfdθ
2
dw

,

B =
1

4T 2θ3fdθ
2
dw

[
9

T 2
− 12 + 13T 2 − 2T 4 −

2[2θ−1
fd + cg(1− T 2)]2

δ − c2g
],

D = s
β

2

T 1/2

θ3dw
.

Eq. (63) is a wind-forced finite depth NLS equation in dimensionless variables.
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3.2 The Akhmediev, Peregrine and Ma solutions for weak wind inputs
in finite depth

The wind-forced nonlinear Schrödinger equation allows the study of the wind influence
on the freak waves dynamics [32–35]. Previous authors have carried out such studies in
deep water. The present work allows, similar studies in finite depth with the right Miles’
growth rates. In the following we are going only to consider the so called focusing NLS
equation i.e., positive A and B. Introducing η′ and x′ as

η′ =
√
Bη, x′ =

x√
A
,

Dropping the primes, Eq. (63) becomes

iηt + ηxx + |η|2η = iDη. (64)

Introducing a function M(x, t) as

M(x, t) = η(x, t) exp (−Dt), (65)

we obtain from (64)

iMt +Mxx + exp (2Dt)|M |2M = 0. (66)

In order to reduce Eq. (64) into the standard form of the NLS with constant coefficients
we proceed in the following way. First of all we consider the wind forcing (2Dt) to be
weak, such that the exponential can be approximated by exp (2Dt) ∼ 1 + 2Dt so

iMt +Mxx + n|M |2M = 0, n = n(t) = 1− 2Dt. (67)

Now with a change of coordinates from (x, t) to (z, τ) defined by

z(x, t) = xn(t), τ(x, t) = xn(t), (68)

and scaling the wave envelope as [35]

M(z, τ) = Ψ(z, τ)
√
n(τ) exp (

−iDz2

n(τ)
), (69)

we reduce (67) to the standard focusing equation

iΨτ +Ψxx + |Ψ|2Ψ = 0. (70)

Equation (70) admits well known breather solutions that are simple analytical prototypes
for rogue wave events. They are the Akhmediev (ΨA) [36], the Peregrine (ΨP ) [37] and
the Kuznetsov-Ma (ΨM ) [38] breather solutions. [39] investigated whether freak waves in
deep water could be modeled by ΨA, ΨP or by ΨM . [35] considered the influence of weak
wind forcing and dissipation on these ΨA, ΨP or ΨM solutions in deep water. The present
work allows us to exhibit expressions for ΨA, ΨP and ΨM under the influence of weak
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wind forcing in finite depth h given by the extended Miles mechanism. These solutions
read [39]:

ηA = P (τ){cosh(Ωτ − 2iω)− cos(ω) cos(pz)

cosh(Ωτ)− cos(ω) cos(pz)
}, (71)

with p = 2 sin(ω), Ω = 2 sin(2ω) ω real and p related to the spatial period 2π/p

ηP = P (τ){1− 4(1 + 4iτ)

1 + 4z2 + 16τ2
}, (72)

ηM = P (τ){cos(Ωτ − 2iω)− cosh(ω) cosh(pz)

cosh(Ωτ)− cos(ω) cos(pz)
}, (73)

where p = 2 sinh(ω), Ω = 2 sinh(2ω) and Ω real and related to the time period 2π/Ω
and

P (τ) = n(τ) exp [
−iDz2

n(τ)
] exp [2iτ ].

It is worth noticing that many works are done on Akhmediev solutions and rogue waves.
We can mention here one of the recent works of Grinevich and Santini [40] and references
therein.

4 The Nonlinear Jeffrey’s approach

Jeffreys introduced a second significant mechanism, extensively researched today, in 1925.
The principle was that waves if sufficiently disrupted, could break the continuity of the
airflow and induce a gradient of pressure. This understanding could have practical impli-
cations, allowing the wave to grow quickly according to the relative distance between the
phase speed of the wave and the wind speed. Jeffreys found the main idea behind this
mechanism by analogizing it with a sphere immersed in a laminar fluid flow. Jeffreys no-
ticed that, in the viscous case, the fluid particles do not do everything around the sphere.
Those hitting the forehead slide on the sphere and take off shortly after the halfway point,
and on the other side, an area is almost stagnant and has a relative speed relative to the
sphere close to zero. (1925) When a wave is large enough, it breaks the continuity of the
airflow, and a horizontal axis vortex forms on the side sheltered from the wind by the
wave. Other smaller whirlpools form between the large vortex and the laminar flow. This
phenomenon, called airflow separation, has been observed in waves, see Figure (6). In
this case, the face of the wave opposing the wind will experience greater pressure, and the
sheltered side will experience less pressure. This gradient induces a reaction at the surface
level.

4.1 The Nonlinear Serre-Green-Naghdi Approximation

We associated water particles, in a system of two-dimensional Cartesian coordinates (x, z)
with origin 0, where z is the upward vertical direction. We let z = 0 at the water–air
interface. Hence, the positive values of z, z ∈ ]0,∞[, correspond to the (unperturbed)
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Figure 6. Jeffreys’ mechanism - Airflow separation observed by ”Particle Image Velocimetry”

over a breaking wave [41]. The air pressure on the windward face of the wave is larger than the

leeward face, which is the origin of continuous energy transfer from wind to wave.

air domain, while negative values of z, z ∈ [−h, 0] correspond to the (unperturbed) water
domain. Consequently, for the bottom of the water domain of depth h, we obtain z = −h.
The bottom is considered to be impermeable, and both water and air, are taken to be
inviscid and incompressible. Moreover, the surface tension effects, at the interface, are not
taken into account. The governing equations are the well known Euler equations, with the
mass conservation equations used in (x, z, t) frame, where t accounts for the time. Namely,

ux + wz = 0, (74a)

ρw(ut + uux + wuz) = −Px, (74b)

ρw(wt + uwx + wwz) = −Pz − gρw, (74c)

where u(x, z, t) and w(x, z, t) are the fluid’s horizontal and vertical velocities, respectively.
P (x, z, t) is the Archimedean pressure, g the gravitational acceleration, ρw is the water
density and subscripts x, z and t denote partial derivatives with respect to x, z and t, re-
spectively. The set of Equations (74) are completed by the following boundary conditions:

w = 0, at z = −h, (75a)

ηt + uηx − w = 0, at z = η, (75b)

P = Pa, at z = η, (75c)



134 ]ocnmp[ A Latifi, M A Manna and R A Kraenkel

where Pa(x, z, t) is the air pressure, and Equation (75c) expresses the pressure’s continuity
across the air/water interface. Notice that z = η(x, t) is the perturbed water surface. For
convenience, we introduced a reduced pressure P, such that P(x, z, t) = P (x, z, t)+ρwgz−
P0, where P0 denotes the atmospheric pressure. Using the reduced pressure P(x, z, t), the
set of Equations (74) can be written as follows:

ρw(ut + uux + wuz) = −Px, (76a)

ρw(wt + uwx + wwz) = −Pz, (76b)

P(x, η, t)− ρwgη + P0 = Pa(x, η, t). (76c)

Shallow water model equations, such as the Korteweg-Vries, modified Korteweg-Vries,
and Boussinesq equations and many others, are usually derived by performing an asymp-
totic analysis directly from the equations of continuity (74a), the motion Equations (3a,b)
and the boundary conditions (2a,b) and (76c) (see [9] and references therein). In this work,
our approach was somewhat different, in the sense that instead of applying a perturbation
theory to the entire problem, we first considered the nonlinear evolution of a given velocity
field profile. Indeed, we assumed the horizontal velocity u(x, z, t) to be independent of z,
i.e.,

u = u(x, t). (77)

The choice of Equation (77), is known as the columnar flow hypothesis, which was
introduced by [42], and [43]. Using Equations (74a), (75a) and (77) we obtain

w(x, z, t) = −(z + h)ux(x, t). (78)

Hence, Equations (75b) and (3a,b) read

ηt + [u(η + h)]x = 0, (79a)

ρw(ut + uux) = −Px, (79b)

ρw(z + h)(uxt + uuxx − u2x) = Pz. (79c)

The integration of Equation (79c), using Equation (76c), yields the pressure P(x, z, t)
:

P(x, z, t) =
1

2
ρw[(z + h)2 − (η + h)2](uxt + uuxx − u2x) + Pa(x, η, t) + ρwgη − P0.(80)

The next step consists of substituting Equation (80) in Equation (79b), and taking the
z-average of Equation (79b) for −h ≤ z ≤ η. Finally, using Equation (76c) we obtained
the following system:

ηt + [u(η + h)]x = 0, (81a)

ut + uux + gηx −
1

3(η + h)
{(η + h)3(uxt + uuxx − u2x)}x = − 1

ρw
[Pa(x, η, t]x. (81b)

If Pa = P0, Equations (8a,b) are reduced to the usual Serre–Green–Naghdi equations.
However, in our approach, Pa was not taken as equal to P0, and the expression of Pa(x, z, t)
was found using the sheltering mechanism.



]ocnmp[ Wind-wave interaction in finite depth 135

4.2 Jeffreys’ Sheltering Mechanism of Wind Waves Generation Applied
to Serre-Green-Nagdhi Equations

The physical sheltering mechanism assumes that the energy transfer is caused by pressure
drag (also known as “form drag”). The air pressure on the windward face of the wave
is larger than the leeward face, which is the origin of continuous energy transfer from
wind to wave. Using dimensional arguments, Jeffreys [2, 3] showed that the air pressure
perturbation Pa(x, z, t) evaluated on the surface can be represented by

Pa(x, z = η, t) = ρaϵ(U10 − c)2ηx(x, t), (82)

where ϵ is the sheltering coefficient, ρa is the air density and U10 is the wind velocity at
a 10 m height. The sheltering coefficient is less than 1 (ϵ < 1). By substituting Equation
(82) in Equation (81b), we obtained

ηt + [u(η + h)]x = 0, (83a)

ut + uux + gηx −
1

3(η + h)
{(η + h)3(uxt + uuxx − u2x)}x = −ϵs∆2ηxx, (83b)

where s = ρa
ρw

∼ 10−3 and ∆ = (U10 − c). Thus, Equation (83) constitutes the fully non-
linear Serre–Green–Naghdi system describing surface wave propagation in shallow water
under the action of the wind sheltering mechanism.

For convenience, we introduced new variables S(x, t), U(x, t) and α, defined as follows:

S(x, t) = η(x, t) + h, (84a)

U(x, t) = u(x, t), (84b)

α = ϵ∆2. (84c)

Using the variables (84), the system of Equation (10a,b) can be written as follows:

St + UxS + USx = 0, (85a)

Ut + UUx + gSx −
1

3S

{
S3
[
Uxt + UUxx − (Ux)

2
]}

x

= −αsSxx. (85b)

Considering the following frame σ, and the slow time τ :

σ = x− vt, (86a)

τ = st, (86b)

and applying Leibniz’s chain rules by considering the change of variables (86), the x and
t derivatives can be expressed as follows:

∂x = ∂σ, ∂t = −v∂σ + s∂τ , ∂2
xt = −v∂2

σσ + s∂2
τσ, ∂xx = ∂σσ, ∂xxx = ∂σσσ. (87)

With the parameter s being small (s ∼ 10−3), Equation (12a,b) can be expanded in
terms of s, as follows:

U = U0 + sU1 +O(s2), (88a)

S = S0 + sS1 +O(s2). (88b)
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Notice that the expansion should not be continued beyond the first order, because
Equation (85b) is an s1-order equation. Using the partial derivate chain rules (87) in the
SGN Equation (85) yields the following:

At order 0

− vS0,σ + U0,σS0 + U0S0,σ = 0, (89a)

− vU0,σ + U0U0,σ + gS0,σ + S0S0,σ

[
vU0,σσ − U0U0,σσ + (U0,σ)

2
]

+
1

3
(S0)

2
[
vU0,σσσ − U0U0,σσσ + U0,σU0,σσ

]
= 0. (89b)

At order 1

− vS1,σ + U0,σS1 + U1,σS0 + U0S1,σ + U1S0,σ = −S0,τ , (90a)

− vU1,σ + U0U1,σ + U1U0,σ + gS1,σ + (S0S1,σ + S1S0,σ)
[
vU0,σσ + (U0,σ)

2 − U0U0,σσ

]
+ S0S0,σ [vU1,σσ − U0U1,σσ − U1U0,σσ + 2U0,σU1,σ]

+
1

3
(S0)

2
[
vU1,σσσ − U0U1,σσσ − U1U0,σσσ + U0,σU1,σσ + U1,σU0,σσ

]
+

2

3
S1S0 [vU0,σσσ + U0,σU0,σσ − U0U0,σσσ] = −αS0,σσ − U0,τ − 1

3
(S0)

2U0,τσσ + S0S0,σU0,τσ.

(90b)

The set of Equations (89) and (90) can be reformulated in a matrix. Indeed, Equation
(89) can be written equivalently as follows:

(
Â0 B̂0

Ĉ0 D̂0

)(
U0

S0

)
=

(
0
0

)
, (91)

where

Â0 = S0∂σ, (92a)

B̂0 = −v∂σ + U0∂σ, (92b)

Ĉ0 = −v∂σ + U0∂σ +
1

3
(S0)

2 [v∂σσσ − U0∂σσσ + U0,σ∂σσ] , (92c)

D̂0 = g∂σ +
[
vU0,σσ − U0U0,σσ + (U0,σ)

2
]
S0∂σ. (92d)

Similarly, Equation (90) can be expressed as follows:

(
Â1 B̂1

Ĉ1 D̂1

)(
U1

S1

)
=

(
E1

E2

)
, (93)
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where

Â1 =S0∂σ + S0,σ, (94a)

B̂1 =− v∂σ + U0∂σ + U0,σ, (94b)

Ĉ1 =− v∂σ + U0∂σ + U0,σ + S0S0,σ [v∂σσ − U0∂σσ − U0,σσ + 2U0,σ∂σ]

+
1

3
(S0)

2 [v∂σσσ − U0∂σσσ − U0,σσσ + U0,σ∂σσ + U0,σσ∂σ] , (94c)

D̂1 =g∂σ +
[
vU0,σσ − U0U0,σσ + (U0,σ)

2
]
(S0∂σ + S0,σ)

+
2

3
S0 [vU0,σσσ − U0U0,σσσ + U0,σU0,σσ] , (94d)

E1 =− S0,τ , (94e)

E2 =− αS0,σσ − U0,τ +
1

3
(S0)

2U0,τσσ + S0S0,σU0,τσ. (94f)

4.3 Application of Green’s Theorem in One Dimension

Green’s theorem in one dimension has been proved and applied to linear differential oper-
ators [44–46]. Here, by extension, we applied this theorem to matrix differential operators.
To do so, we briefly recalled the following theorem:∫ b

a

[
zP (y)− yP̄ (z)

]
dx = [P (y, z)]ba , (95)

where P is a linear differential operator and y and z, any two functions of x and, P̄ (z) and
P (y, z), are the adjoint and the bilinear differential expressions of P (y), respectively [47].
This theorem, in its usual form, as it is shown in (95), was previously used to show the
damping of solitary waves [48,49].

In our case, we considered operators L̂0 and L̂1, defined as follows:

L̂0 =

(
Â0 B̂0

Ĉ0 D̂0

)
, L̂1 =

(
Â1 B̂1

Ĉ1 D̂1

)
.

Using L̂0 and L̂1, Equations (91) and (93) become

L̂0V0 = 0 and L̂1V1 = E, (96)

where

V0 =

(
U0

S0

)
, V1 =

(
U1

S1

)
, E =

(
E1

E2

)
.

Taking into account the symmetric behaviour of S(x, t) and U(x; t) at x = ±∞, the ex-
tension of Green’s theorem in one dimension to linear differential matrix operator L̂1 yields

∫ +∞

−∞

(
V †
0 L̂1V1 − V †

1 L̂1V0

)
dσ = 0, (97)

where V †
0 and V †

1 are V0 and V1 transposed, respectively. This extension can easily be
proved following the procedure proposed in the original work of [44].
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4.4 Blow-Up in Finite Time of the Serre-Green-Naghdi Soliton Solution

Using Equations (96) and (97), we have:∫ +∞

−∞

[
−U0S0,τ + S0

(
−αS0,σσ − U0,τ +

1

3
(S0)

2U0,τσσ + S0S0,σU0,τσ

)]
dσ = 0, (98)

which can be written as follows:

−
∫ +∞

−∞

[
∂

∂τ
(U0S0,)

]
dσ+α

∫ +∞

−∞
(S0,σ)

2dσ−α

[
S0S0,σ

]+∞

−∞
+

[
1

3
(S0)

3U0,τσ

]+∞

−∞
= 0, (99)

where U0 and S0 are the unperturbed solutions with a time-dependent amplitude, namely,

U0 =c0

(
1 +

a(τ)

h

)1/2(
1− h

S0

)
, (100)

S0 =
a(τ)

[cosh(β)]2
, β =

√
3

4

(
1

h

)(
a(τ)

a(τ) + h

)1/2
[
x− c0t

(
1 +

a(τ)

h

)1/2
]
. (101)

After inserting (101) and (100) into Equation (99), alongside Equation (86) it can be

noticed that the limit of
1

cosh(σ)
tends to zero, while σ → ±∞. The Equation (99) yields

the following:∫ a(τ)

a(0)

(a+ h)1/2(2a+ h)

a3
da =

4α

5c0

(
1

h

)3/2

τ. (102)

Using the variable r, Equation (102) yields:∫ r(τ)

r(0)

(1 + r)1/2(1 + 2r)

r3
dr =

4α

5c0h
τ. (103)

The series expansion for a small value of r in the Equation yields:∫ r(τ)

r(0)

(
1

r3
+

5

2r2
+

7

8r
− 3

16
+ o(r)

)
dr =

4α

5c0h
τ. (104)

After integration, Equation (104) becomes[
−3r

16
+

7 ln(r)

8
− 5

2r
− 1

2r2
+ o(r2)

]r(τ)
r(0)

=
4α

5c0h
τ, (105)

and by keeping the leading term for r small, Equation (105) becomes[
− 1

2r2

]r(τ)
r(0)

=
4α

5c0h
τ. (106)

Hence, the time dependent amplitude reads as follows:

a(τ) =
A0√

1− 8αA2
0τ

5c0h3

, (107)
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where A0 = a(0). From Eq. (107), it can be seen that the amplitude a(τ) tends to infinity,
when the slow time τ approaches a certain value τb, which we call the “slow” blow-up time.
Replacing α = ϵ∆2, and τ = st, the blow-up time can be written as follows:

tb =
5c0h

3

8ϵ∆2A2
0s

, (108)

where ∆2 = (U10 − CGN )2, and the dispersion relation of the SGN solitary wave CGN ,
can be written [10,50] as follows:

CGN =
c0√

1 + 1
3(kh)

2
. (109)

4.5 Blow-up Time’s Effective evaluation

In order to effectively evaluate the blow-up time tb and the growth rate of wind waves in
finite depth, we used detailed measurements of shallow water parameters in finite depth
experiments conducted in the IRPHÉ/Pythéas wind-wave tank [51]. These measurements
were carried out for non-dimensional depth kh and non-dimensional initial waves’ peak
value kA0. This led us to consider the non-dimensional soliton-like solution (a solution
which at any time looks exactly as a soliton but with parameters which are triggered by the
interaction with the source) kS0, instead of S0, as well as the non-dimensional amplitude
ka that we denoted as a function of non dimensional time t, as follows:

ka(t) =
kA0√

1− 8ϵ(kA0)
2s

5(kh)2
t

, (110)

where

t =
∆2

c0h
t. (111)

Notice that the values of c0 as well as U10 were also measured experimentally. For
this reason, in what follows, the values of c0 differ slightly from the theoretical values
c0 =

√
gh.

Using the experimental data of IRPHÉ/Pythéas facilities ( [51]), for

h = 0.14 m, kh = 1.54, kA0 = 0.114, c0 = 0.92 m/s, U10 = 4.82 m/s, (112)

for the sheltering coefficient, we used ϵ = 0.5, and for the small parameter we used
s = 0.001. Using experimental data (112) and Equations (108) and (109) assisted in
calculating the value of the blow-up time:

tb ≈ 1721 s. (113)

The x-position of the SGN soliton-like solution as a function of time is found using

x(t) = c0t

(
1 +

a(τ)

h

)1/2

. (114)
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Table 1. The growth rate of the SNG solitary wave at different times and positions, for depth

h = 0.14 m, and wind speed of 10 m U10 = 4.82 m/s.

t (s) 0 40 ... 750 1000 1250 1400

x (m) 0 35 ... 722 972 1229 1329

growth rate 0.09 ... 0.15 0.55 1 1.36

Table 2. The growth rate of the SNG solitary wave at different times and positions, for depth

h = 0.26 m, and wind speed at 10 m U10 = 4.35 m/s.

t (s) 0 40 ... 750 1000 1250 15,000

x (m) 0 41 ... 772 1030 1288 1547

growth rate 0.02 ... 0.06 0.08 0.1 0.12

The length of the IRPHÉ/Pythéas wind–wave tank facility was 40 m. The growing
solitary wave reaches the tank’s end after 40–45 s. Consequently, the wave amplitude is
not nearly that of the blow-up. The growth rate of the solitary wave at different times and
positions, for h = 0.14 m, and U10 = 4.48 m/s, is given in (Table 1). In these conditions,
when the wave reaches the tunnel’s end, the growth rate is approximately 0.1. Hence, it
is at the measurability limit of the IRPHÉ/Pythéas wind–wave tank facility.

And for

h = 0.26 m, kh = 2.57, kA0 = 0.146, c0 = 1.0 m/s, U10 = 4.35 m/s, (115)

with a sheltering coefficient ϵ = 0.5 and small parameter s = 0.001. Similarly, experimental
data (115) and Equations (108) and (109) led to the corresponding blow-up time:

tb ≈ 7008 s. (116)

The continuous growth of (kS0), leads to blow-up at finite time, tb ≈ 7008 s, which
of course, is out of reach. Therefore, in this case, a significant growth in the solitary
wave’s amplitude was not observable in experimental facilities, but it could be in situ.
The growth rate of the solitary wave solution at different times and positions, for h = 0.26
m, and U10 = 4.35 m/s, is given in (Table 2).

5 Korteweg-de Vries-Burger equation

The Jeffreys’ theory allows to compute the linear wave growth of wind-generated nor-
mal Fourier modes of wave-number k. The physical mechanism behind is ”focusing”,
in the sense that energy passes continuously from the air to the surface wave. Conse-
quently the wave amplitude η(x, t, k) (x space and t time) grows exponentially in time i.e.;
η(x, t, k) ∼ exp (γJ t) more or less quickly according to the coefficient γJ , which depends
on the wind speed and the water depth h. Once the linear and dispersionless approxima-
tion breaks down, non-linear and dispersive processes begin to play a role. So the issue
addressed here is: ”how to describe the evolution in time of a normal mode k, under the
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competing actions of (weak) nonlinearity, dispersion and anti-dissipation in the sense of a
contiuous energy transfer from wind to water?” Nonlinearity is likely to balance dispersive
effects, or to stop exponential decay or growth of wave amplitude in time due to dissi-
pation or ”anti-dissipation”. Equilibrium between nonlinearity and dispersion can evolve
in time to form solitary waves as in the Korteweg-de Vries equation [52, 53]. Balance
between dissipation or ”anti-dissipation” and nonlinearity creates shock structures as in
the Burgers equation [52]. The standard equation describing competition between weak
non-linearity, dispersion and dissipation is the KdV-B equation. It appears in many phys-
ical contexts [54–59]. In this section, in order to study simultaneous competing effects of
weakly nonlinearity, dispersion and ”anti-dissipation” we derive a KdV-B type equation
with dissipation turned into ”anti-dissipation”.

Green-Naghdi equations under the wind action [10, 50, 60] are given by Eqs (83a) and
(83b). We introduce dimensionless ”primed” variables, x′, t′ and η′ as follows:

x = λ0x
′, t =

λ0

c0
t′, η = a0η

′, (117)

where c0 = (gh)1/2, a0 and λ0 are initial typical wave amplitude and wavelength, respec-
tively. In addition, we define two fundamental parameters, commonly used in the classical
water surface studies, namely, ν and δ, as follows:

ν =
a0
h
, δ =

h

λ0
. (118)

Finally, in order to obtain the dimensionless, scaled Green-Naghdi equations of motion,
the following scaling is required [55]:

u = νu0. (119)

Introducing Eqs (117), (118) and (119) in Eqs (83b) and (83a), we obtain the following
dimensionless equations

u0,t + νu0u0,x + ηx = −ϵs∆2δηxx +
δ2

3(1 + νη)
{(1 + νη)3(u0,xt + νu0u0,xx − νu20,x)}x,

(120a)

ηt + [u0(1 + νη)]x = 0, (120b)

where, for convenience, the ”primes” of dimensionless quantities are omitted. Now, we
consider a wave moving from left to right [52]. At the lowest order, by neglecting the
terms of order ν and δ and any higher orders, Eqs (120a) and (120b) are reduced to

u0,t + ηx = 0, (121a)

ηt + u0,x = 0. (121b)

Eqs (121a) and (121b) are equivalent to

ηt + ηx = u0,t + u0,x = 0, (122)
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and its solution is

u0,x(x, t) = η(x, t). (123)

Now we look for a perturbed solution with follow form:

u0 = η + νA+ δB+ δ2C+O(δν, δ2ν, ν2), (124)

where A, B and C are functions of η and its derivatives. Inserting Eq. (124) in (120a) and
(120b), we obtain

ηt + ηx + ν(At + ηηx) + δ(Bt + ϵs∆2ηxx) + δ2(Ct −
1

3
ηxxt) +O(δν, δ2ν, ν2) = 0,

(125a)

ηt + ηx + ν(Ax + ηηx) + δ(Bx + δ2Cx +O(δν, δ2ν, ν2) = 0, (125b)

where

ηt = −ηx +O(δν, δ2ν, ν2). (126)

Therefore, in Eq. (125a), all the t-derivatives may be substituted by −∂x. Hence, Eqs
(125a) and (125b) are compatible, if

A = −1

4
η2, B =

1

2
sϵ∆2ηx, C =

1

6
ηxx. (127)

Substituting Eq. (127) in Eqs (125a) and (125b), yields

ηt + ηx +
3

2
νηηx +

δ2

6
ηxxx + sϵ

δ

2
∆2ηxx = 0, (128a)

u− η +
ν

4
η2 − sϵ

δ

2
∆2ηx −

1

6
δ2ηxx = 0. (128b)

Eq. (128a) is the KdV-B equation, while Eq. (128b) is a Riemann invariant.

5.1 Solution of Korteweg-de Vries-Burger equation

In order to find the solution of Eq.(128a), we apply the following change of variables:

σ = x− t, t1 = δ2t. (129)

Hence, Eq.(128a) becomes:

ηt1 +
3

2
ηησ +

δ2

6ν
∆2ησσσ +

δ

2ν
∆2sησσ = 0. (130)

It worth noticing that the limit of Eq. (130), as s → 0, yields to the well known KdV
equation:

ηt1 +
3

2
ηησ +

δ2

6ν
∆2ησσσ = 0. (131)
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This result is quite natural, since s → 0, amounts to neglecting the action of the wind.
Therefore, it is possible to assume that the solution KdV-B, Eq. (130), has the same form
as the solution of Eq. (131), namely

η(σ, t1) =
a

cosh2 [P (σ − c′t1)]
. (132)

This is the typical ”soliton” solution of KdV equation, with one difference however, the
amplitude a in Eq. (132) can be time-dependant, whereas the amplitude of KdV equation
is not.

Inserting (132) in (130), we obtain

P =

√
3ν

4δ2
, c′ =

a

2
. (133)

Now, the task is to find the time-dependent expression of a(t) in Eq. (132).

Noticing that the anti diffusive term
δ

2ν
∆2sησσ in Eq. (130), is of order δ3 and small

enough at t = 0, one can find the solution of Eq. (130) by perturbation. For this purpose,
we introduce a slow time t2, as follows

t2 = δ2t1 = δ3t, (134)

and we expand η in terms of δ as follows

η = η0(σ, t2) + δη1(σ, t2) +O(δ2), (135)

where η0 is the solution given by Eq. (132).
Introducing ν0 as follows

ν = ν0δ
2, (136)

and inserting Eq. (135) in Eq. (130), we obtain

at order 0 of δ:

∂η0
∂t1

+
3

4
ν0η0

∂η0
∂σ

+
1

6

∂3η0
∂σ3

= 0, (137a)

and, at order 1 of δ:

∂η1
∂t1

+
3

2
ν0η0

∂η1
∂σ

+
3

2
ν0η0,ση1 +

1

4
ν0

∂3η1
∂σ3

= −η0,t2 −
s0
2
ϵ∆2

0η0,σσ. (137b)

Introducing operators L̂0 and L̂1 as follows

L̂0 =
∂

∂t1
+

3

4
ν0η0

∂

∂σ
+

1

6

∂3

∂σ3
, (138a)

L̂1 =
∂

∂t1
+

3

2
ν0

(
η0

∂

∂σ
+ η0,σ

)
+

1

4
ν0

∂3

∂σ3
. (138b)
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Eqs (138a) and (138b) read

L̂0η0 = 0, (139a)

L̂1η1 = −η0,t2 −
s0
2
ϵ∆2

0η0,σσ. (139b)

To go further, we apply Green’s theorem in one dimension. One can find the application
of this theorem to linear differential operators in various works [44–46]. In particular, the
damping of solitary waves [48,49] has been shown using this theorem and an extension to
matrix differential operators has been performed by [8].

Applying Green’s theorem to our case by replacing Eqs (138a) and (138b) in Eq. (95),
yields∫ +∞

−∞

(
η0L̂1η1 − η1L̂0η0

)
dσ = 0. (140)

Notice that the right hand side of (140) is null due to the symmetric behaviour of η0 and
η1 at ±∞. Replacing η0 by Eq. (132) with a time dependant amplitude a(t2), Eq. (140)
yields:

a(t2) =
1

1− 2
5
sϵ∆2

δ2
t2
. (141)

Using the approximation O(ν) = O(δ2), Eq. (134) can equivalently be written as t2 = νδt.
Hence, Eq. (141) becomes

a(t) =
1

1− t
tb

, (142)

where

tb =
5δ

2ϵs∆2ν
. (143)

From Eq. (142), it can be seen that the amplitude a(t) → ∞, when t → tb which we call
the blow-up time. Hence, the solution of (128a) reads:

η = a(t) cosh−2(θ), (144)

where

θ(x, t) = αa1/2
[
x− t+

ν

2
tb ln

(
1− t

tb

)]
, α =

(
3

4

a0
h

)1/2 λ0

h
, (145)
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5.2 Blow-up in finite time and the evolution of the solitary wave solu-
tion’s shape

In this section we shall study the evolution of the soliton-like solution’s shape in time ,
Eq. (144), before the blow up time tb.

Coming back to variables with dimensions, Eq. (117), the solution of KdV-B, i.e. Eq.
(144) reads:

η(x, t) =
a0

1− t
tb

cosh−2

{
α

(1− t
tb
)1/2

1

λ0

[
x− c0t+

ν

2
c0tb ln

(
1− t

tb

)]}
. (146)

For t = 0, we have

η(x, 0) = a0 cosh
−2

(
α

λ0
x

)
, (147)

where

α2 =
3ν

4δ2
=

3

4

a0λ0
2

h3
. (148)

Using Eq. (148), the blow-up time, tb can also be expressed as follows for further use:

tb =
5

2

c0h
2

ϵsa0∆2
. (149)

The wave number k and the frequency ω, for a monochromatic progressive wave with
a phase θ(x, t) = kx− ωt, are defined as follows:

k =
∂θ

∂x
, ω = −∂θ

∂t
. (150)

These definitions can be generalized for k and ω depending on x and t:

k(x, t) =
∂θ

∂x
(x, t), ω(x, t) = −∂θ

∂t
(x, t). (151)

Using Eqs (151), (145) and (142), the wavelength λ(t) and the wave number k(t) of the
soliton-like solution (144) are

λ(t) =
λ0

α

(
1− t

tb

)
=

(
4h

3a0

)1/2

h

(
1− t

tb

)1/2

, (152)

k(t) =

(
3a0
4h

)1/2 1

h

(
1− t

tb

)−1/2

= αa1/2(t). (153)

We define the effective wave number, noted k̃, as follows:

k̃ =
α

λ0
=

(
3a0
4h

)1/2 1

h
, (154)
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and we define the associated effective wavelength, noted λ̃, defined as follows:

λ̃ =
1

k̃
=

(
4h

3a0

)1/2

h. (155)

It worth noticing that for t → tb, Eqs (152), (153) and(142) give

lim
t→tb

λ(t) = 0, lim
t→tb

k(t) = ∞, lim
t→tb

a(t) = ∞, (156)

respectively. This is the first indication of the narrowing of the solitary wave solution’s
shape while its amplitude a(t) grows.

To go further, we are going to examine the speed of phase planes on either side of the
soliton-like solution’s crest. Using Eq. (153), it is useful to write Eq. (145) as a function
of k(t) as follows

θ(x, t) = k(t)(x− t) + νtbk(t) [ln(x)− ln (k(t))] . (157)

Using Eq. (153), we have

∂k(t)

∂t
=

k3(t)

2α2tb
. (158)

Eqs (151) and (158) together, yields ω as a function of k(t):

ω(x, t) = − k3(t)

2α2tb
(x− t) + k(t)− νtb

k3(t)

2α2tb

[
ln

(
α

k(t)
− 1

)]
. (159)

The dimensionless phase velocity c(x, t) of the soliton-like solution is

c(x, t) =
ω(x, t)

k(t)
= 1 +

ν

2α2
k2(t)− k(t)θ(x, t)

2α2tb
, (160)

which, by using Eq. (153), can equivalently be written as a function of a(t) as follows

c(x, t) = 1 +
ν

2
a(t)− a1/2(t)

2αtb
θ(x, t). (161)

The position of solitary wave’s crest is found by solving

θ(x, t) = 0, (162)

at any time t. The dimensionless phase θ is given by the first of the equations in Eq.
(145), while the phase velocity c is given by Eq. (161). Therefore, the position of the
solitary wave’s crest and the velocity of the solitary wave at it’s crest are

xcrest(t) = t+
νtb
2

ln[a(t)], (163)

c(xcrest, t) = 1 +
ν

2
a(t), (164)

respectively.
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Using Eqs (161) and (145), the phase speed becomes:

c = ccrest −
α

2

a(t)

tb

[
(x− t)− ν

2
tb ln [a(t)]

]
= ccrest −

α

2

a(t)

tb
[x− xcrest] . (165)

Therefore, the speed of the phase planes at (xcrest −∆x) and (xcrest +∆x) are

ccrest−∆x = ccrest +
α

2

a(t)

tb
∆x, (166a)

ccrest+∆x = ccrest −
α

2

a(t)

tb
∆x, (166b)

respectively. Hence,

ccrest−∆x > ccrest > ccrest+∆x. (167)

This means that the phase planes at the left side of xcrest have greater speed than the
phase planes at the right side of xcrest resulting to a narrowing the soliton-like solution’s
shape while it’s amplitude a(t) grows (Figure 7).

At the first glance, the wave breaking does not result directly from the solitary wave
solution of KdV-B equation. However, knowing that we have an accelerating solitary
wave at the speed ccrest, the breaking might result from phase planes with non equal
accelerations. This will be the subject of fore coming studies.

In the following subsections, various criteria of wave breaking are reviewed.

Figure 7. On the left, the soliton-like solution is plotted at t = 0. The amplitude at crest is a0
and its effective wavelength is λ̃. The origin of coordinates is placed at its crest position. On the

left side, at t > 0, the solitary wave has moved to the right, its shape has sharpened, λ(t) < λ̃, and

its amplitude has grown, a(t) > a0. Notice that for convenience, scales are not respected.

5.3 Wave breaking criteria

As noticed in the previous section, the wave breaking does not result from the evolution
of the wave as the soliton-like solution of KdV-B equation. Therefore, we have to consider
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other reasons for the wave breaking. The most well-known criteria of wave breaking
for linear monochromatic waves are the McCowan criterium [61], The Miche criterium
[62] and the horizontal velocity criterium [63]. But, as we shall see, this latest cannot
be applied to our case. Therefore, we propose an alternative criterium that we shall
call ”alternative velocity criterium”. For further use, we call td,Mc, td,Mi and td,alv, the
wave breaking times within McCowan criterium, Miche criterium and alternative velocity
criterium, respectively.

In what follows, we shall compute the breaking time td, as well as the amplitude,
the wavelength and the phase velocity of the solitary wave at t = td within each of the
mentioned criteria.

5.4 McCowan criterium

The McCowan criterium is established for linear solitary waves and studies the highest
maximum height that such waves might attain without breaking. McCowan has shown
that the breaking occurs at a given rate between the maximum wave amplitude amax and
the water depth h. Namely:

amax

h
≈ 0.78. (168)

Applying this criterium to the soliton-like solution Eq. (146), where a(t) = a0(1− t
tb
)−1,

Eq. (168) yields(a0
h

) 1

1− td,Mc

tb

≈ 0.78. (169)

Eq. (169) gives the breaking time according to McCowan criterium, which is

td,Mc ≈ tb(1− 1.28ν). (170)

Using Eq. (146), it is easy to calculate the maximum height reached at t = td,Mc. This is

ηmax = amax ≈ a0
1.28ν

≈ 0.78h. (171)

In addition Eq. (152), one obtains the solitary wave’s wavelength at the moment of wave
breaking, namely λ(td,Mc):

λ(td,Mc) ≈ 1.28

(
4

3
a0h

)1/2

. (172)

5.5 Miche Criterium

The Miche criterium is based on empirical observations of linear waves’ dispersion relations
in a finite depth h with a wave length λ. The Miche criterium fixes the maximum height
amax reached by the wave before the break down as follows(a

λ

)
max

=
1

7
tanh

(
2πh

λ

)
. (173)
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In our case, replacing a by a(t) = a0(1− t
tb
)−1, and λ by Eq. (152), in the right side of

Eq. (173), we have

(a
λ

)
max

=
ν

2
(3ν)1/2

(
1−

td,Mi

tb

)3/2

. (174)

Now, replacing λ by Eq. (152) in the left side of Eq. (173), using ν = a0/h, taking

t = td,Mi and expanding the hyperbolic tangent up of
(a
λ

)
max

up to order (3ν)3/2, we

obtain

1

7
tanh

(
2πh

λ

)
=

1

7

π(3ν)1/2

(1− td,Mi

tb
)1/2

− 1

21

π3(3ν)3/2

(1− td,Mi

tb
)3/2

+O(ν5/2). (175)

Using Eqs (173), (174) and (175), and neglecting terms of higher order than ν, we obtain

td,Mi = tb

(
1− 7ν

2π
− π2ν

)
. (176)

The maximum height reached by the wave at t = td,Mi is

ηmax = amax ≈ 0.09a0
ν

≈ 0.09h. (177)

Using Eqs (174) and (176), the solitary wave’s wavelength can be calculated at t = td,Mi,
which is

λmax ≈ 4.7× 10−3

(
h

a0

)5/2

h. (178)

5.6 Alternative horizontal velocity criterium

The horizontal velocity criterium assumes that the wave breaking occurs when the group
velocity of a water plane wave exceeds the speed of the phase plane at crest. In our
case, this criterium cannot be applied because, for a solitary wave, at first approach, the
group velocity does not mean much. Therefore, alternatively we replace this criterium
by an alternative approach which assume that the wave breaking occurs when the fluid
horizontal velocity exceeds the phase plane velocity at crest. At this moment, the matter
starts to be ejected from the wave.

The phase plane velocity is given by Eq. (161). The phase velocity at crest, i.e. for
θ(x, t) = 0, is given be Eq. (164). The horizontal water velocity is given by Eq. (128b).
Using Eqs (135) and (119), as well as (134) or equivalently t2 = νδt, the water velocity
can be expanded as follows

u0 = η − ν

4
η2 +O(δ, δ2). (179)

It can be seen from Eq. (144) that at crest η(θ = 0) = a(t). Hence the alternative velocity
criterium reads

1 +
ν

2
a ≥ a− ν

4
a2 (180)
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the above inequality yields the following quadratic equation

a2 +

(
2− 4

ν

)
a+

4

ν
≥ 0 (181)

Taking into account that ν is a small parameter, the solution of Eq. (181) are a ⪅ 1
2

and a ⪆ 4
ν − 5

2 . the first part of the solution is not acceptable since it corresponds to
negative times, while the latest, using Eq. (142) and neglecting terms of order ν2 , gives
the breaking time td,alv, as follows

td,alv ≈ tb

(
1− ν

4

)
. (182)

Using Eq. (146), the maximum height reached at t = td,alv is given by

amax(td,alv) ≈ 4h (183)

The wave length at t = td,a is obtained from Eq. (152), and reads

λ(t = td,alv) =

(
1

3

)1/2

h. (184)

6 Integrability perspectives

Recently, the integrability of a general form of the KdV and NLS equations with forcing
involving product of eigenfunctions has been proved [64,65].

More specifically, in [64] it is proved that the following forced version of NLS is inte-
grable:

iqt +
α

2
qxx − αλ|q|2q =

2i

π

∫
R

g(t, k)

a0(k)
Φ+
1 (x, t, k)Ψ

+
1 (x, t, k)e

iλ(HG(t,k)|b0|2(k))dk,

x ∈ R, t > 0, (185)

where α is a constant real parameter, λ = ±1, Φ+
1 , Ψ

+
1 are appropriate eigenfunctions,

G(t, k) =

∫ t

0
g(τ, k)dτ, b0(k) = lim

x→−∞
e2ikxΨ+

10(x, k),

a0(k) = lim
x→−∞

Ψ+
10(x, k), (186)

and (Ψ+
10(x, k),Ψ

+
20(x, k)) are defined in terms of q0(x) = q(x, 0) by

Ψ+
10(x, k) = −

∫ ∞

x
dξe2ik(ξ−x)q0(ξ)Ψ

+
20(ξ, k),

Ψ+
20(x, k) = 1−

∫ ∞

x
dξλq0(ξ)Ψ

+
10(ξ, k), −∞ < x < ∞ Imk ≥ 0. (187)
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Eq. (185) possesses the following Lax pair:

Xx + ik[σ3, X]−QX = 0, Q =

(
0 q
λq 0

)
, (188)

Xt+iαk2[σ3, X]− α

(
kQ− i

2
(Qx +Q2)σ3

)
X

=
1

2i
(Hg)Xσ3 −

1

2i
(HgXσ3X

−1)X, x ∈ R, t > 0, k ∈ R, (189)

where Hf denotes the Hilbert transform

(Hf)(k) =
1

π
p

∫
R

f(l)

l − k
dl, k ∈ R. (190)

And in [65], it is shown that the forced integrable extension of the KdV, namely the
following equation is integrable.

ut + α(uxxx + 6uux) = dx(x, t) + 2hx(x, t), (191)

where α is introduced in order to consider the α = 0 limit and d and h are defined by

d(x, t) =
1

π

∫
R
g(t, l)(v11v22 + v12v21)(x, t, l)dl, (192a)

h(x, t) =
1

π

∫
R
g(t, l)v21v22(x, t, l)dl, (192b)

is integrable. The functions vij , i, j = 1, 2 are the ij components of the matrix v given by

v(x, t, k) =
1

2


ϕ(x, t,−k)− 1

ik
ϕx(x, t,−k) ϕ(x, t, k)− 1

ik
ϕx(x, t, k)

ϕ(x, t,−k) +
1

ik
ϕx(x, t,−k) ϕ(x, t, k) +

1

ik
ϕx(x, t, k)

 , (193)

where ϕ is an appropriate solution of the associated Lax pair. Namely, ϕ satisfies

ϕxx + (u+ k2)ϕ = 0, (194)

and

ϕt + α(4ik3 − ux)ϕ+ α(2u− 4k2)ϕx +
1

2i
(Hg)ϕ− 1

4i
[Hg(ϕϕ̂+

1

k2
ϕxϕ̂x)]

ϕx

ik

+
1

4i
[Hg(ϕϕ̂− 1

k2
ϕxϕ̂x)]ϕ− 1

4i
[Hg(

1

ik
(ϕϕ̂)x)]

ϕx

ik
= 0, (195)

where the hat denotes evaluation at −k.
We have strong indications to think that both the KdV-Burger equation (128a) and the

NLS equation (70), with appropriate air and water dynamics and wind/wave interaction
can be integrable. This will be the subject of fore coming studies.
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7 Conclusions

In the first part of this review paper, our aim was exclusively to derive a linear Miles’ theory
for waves propagating at finite depth h. Hence, we extended the well-known Miles’ theory
to the finite depth context under breeze to moderate wind conditions. We have linearized
the equations of motion governing the dynamics of the air/water interface problem in
finite depth and have studied the linear instability in time of a normal Fourier mode k.
The prediction of exponential growth of wave amplitude (or energy) is well confirmed
by field and laboratory experiments. As an extension, we have derived an anti-diffusive
nonlinear Schrödinger equation in finite depth and found the Akhmediev, Peregrine and
Ma solutions for weak wind inputs in finite depth.

In the second part, We derived a SGN fully nonlinear, dispersive and focusing system
of equations in the context of the nonlinear dynamics of surface water waves under wind
forcing, in finite depth. We found that its soliton-like solution with amplitude, velocity,
and effective wavelength increased with time. Antidissipation due to wind action through
the sheltering Jeffreys’ mechanism increases the amplitude of the solitary wave and leads
to blow-up which occurs in finite time for infinitely large asymptotic space. The blow-up
time is calculated. As an extension, the anti-diffusive Korteweg-de Vries-Burger equation
is derived. we have studied in detail the kinetics of the breaking of the wind/wave solitary
wave and reviewed various break-up criteria. Experimentally, it is clear that the breaking
will occur before the blow up. The experimental confirmation of the present theory can
be tested in existing facilities. We will conduct further investigations in this direction in
forecoming studies.

Finally, the perspectives of integrability for the NLS equation and the KdV-B equation
have been exposed which also be investigated in forecoming studies.

Appendix: Direct derivation of the anti-diffusive Korteweg-
de Vries-Burger equation from Euler Equations

Let us consider a quasi-linear air/water system with the air dynamics linearized and the
water dynamics considered nonlinear and irrotational. The system is (2 + 1) dimensional
(x, z, t) with x and z the vertical and the horizontal space coordinates. The aerodynamic
air pressure Pa(x, z, t) evaluated at the free surface z = η(x, t) has a component in phase
and a component in quadrature with the water elevation. For an energy flux to occur from
the wind to the water waves there must be a phase shift between the fluctuating pressure
and the interface. Hence, the energy transfer is only due to the component in quadrature
with the water surface, or in other words in phase with the slope. To simplify the problem
we consider, following references [3,30,66], only the pressure component in phase with the
slope on the interface i.e.,

Pa = ϵρa∆
2ηx with ∆ = [

κU1√
C10

− c] (196)

where ϵ < 1 is the sheltering coefficient, c =
√
g/k tanh(kh), U1 = u∗/κ with u∗ the

friction velocity, κ ∼ 0, 41 the Von Kàrmàn constant, C10 the wind-stress coefficient and g
the gravitational acceleration. This is nothing more that Jeffrey’s sheltering mechanisms.
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In order to adimensionalize the equations of motion we introduce dimensionless primed
variables: x = lx′, z = hz′, t = lt′/c0, η = aη′, ϕ = glaϕ′/c0, U1 = c0U

′
1 with ϕ the velocity

potential and a and l typical wave amplitude and wavelength and c0 =
√
gh. We define

two dimensionless parameters ν = a/h < 1 and δ = h/l < 1. So with this assumption the
complete irrotational Euler equations and boundary conditions are (dropping the primes)

δ2ϕxx + ϕzz = 0, −1 ≤ z ≤ νη, (197)

ϕz = 0, z = −1, (198)

ηt + νϕxηx −
1

δ2
ϕz = 0, z = νη, (199)

ϕt +
ν

2
ϕ2
x +

ν

2δ2
ϕ2
z + η + δϵs∆2ηx = 0, z = νη, (200)

where s = ρa/ρw ∼ 10−3 with ρa (ρw) the air (water) density. We solve the Laplace
equation and its boundary conditions with an expansion in powers of (z + 1), namely

ϕ =
m=∞∑
m=0

(z + 1)mδmqm(x, t). (201)

Substituting (201) in Eq.(197) and using Eq.(198) we obtain

ϕ =

m=∞∑
m=0

(−1)m
(z + 1)2m

(2m)!
δ2mq0,2mx. (202)

Using the kinematic and dynamics boundary conditions Eq.(199) and Eq.(200) and disre-
garding terms in O(νδ2) and O(δ4) we find, with r = q0,x, the system

ηt + {(1 + νη)r}x −
1

6
δ2rxxx = 0, (203)

ηx + rt + νrrx −
1

2
δ2rxxt + δϵs∆2ηxx = 0. (204)

The linear wave solution of (203) and (204) moving to the right is r(ξ) = η(ξ), ξ = x− t,
with η (or r) an arbitrary function of ξ. Now we look for a solution with nonlinear
corrections to the orders O(ν), O(sδ), and O(δ2). Following procedure in reference [52]
we obtain

r = η − 1

4
η2ν +

ϵ

2
∆2ηxsδ +

1

3
ηxxδ

2 +O(νδ2, s2δ2, δ4), (205)

Substituting (205) in (203) and (204) we obtain a focusing KdV-B equation

ηt + ηx +
3

2
νηηx +

1

6
δ2ηxxx +

s

2
δϵ∆2ηxx = 0. (206)

For traveling wave solutions, the action of dissipation or ”anti-dissipation” in KdV-B is
not of great matter except for the sign of the slope [67]. But the soliton-like solutions
under the continuous energy transfer from wind to water, exhibits a blow-up and breaking
in finite time.
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