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Abstract

The construction of Integrable Hierarchies in terms of zero curvature representation
provides a systematic construction for a series of integrable non-linear evolution equa-
tions (flows) which shares a common affine Lie algebraic structure. The integrable
hierarchies are then classified in terms of a decomposition of the underlying affine Lie
algebra Ĝ into graded subspaces defined by a grading operator Q. In this paper we
shall discuss explicitly the simplest case of the affine ŝl(2) Kac-Moody algebra within
the principal gradation given rise to the KdV and mKdV hierarchies and extend to
supersymmetric models.

Inspired by the dressing transformation method, we have constructed a gauge-
Miura transformation mapping mKdV into KdV flows. Interesting new results con-
cerns the negative grade sector of the mKdV hierarchy in which a double degeneracy
of flows (odd and its consecutive even) of mKdV are mapped into a single odd KdV
flow. These results are extended to supersymmetric hierarchies based upon the affine
ŝl(2, 1) super-algebra.

1 Introduction

Integrable field theories are very peculiar models admitting infinite number of conservation
laws and soliton solutions. The KdV and mKdV equations are for instance, typical exam-
ples of such a class of models and have acted as prototypes for many new developments
in the subject. In fact apart from a single equation, say mKdV (or KdV) a series of other
(higher/lower grade) evolution equations of motion (flows) can be systematically derived
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from a zero curvature representation and a single universal operator of Lie algebraic origin
(Lax operator). These evolution equations (flows) form an Integrable Hierarchy which are
constructed in terms of a decomposition of the affine Lie algebra Ĝ according to a grading
operator denoted by Q. The Lax operator is further specified by a second decomposition
according to a choice of a constant grade one generator E. It therefore follows that an
Integrable Hierarchy is defined by three Lie algebraic ingredients, namely, i) the affine Lie
algebra Ĝ, ii) the grading operator Q and iii) the constant grade one generator E (see for
instance [1] for a review).

Both KdV and mKdV hierarchies are constructed from the decomposition of the affine
Ĝ = ŝl(2) algebra according to the principal grading, Q. Details are explicitly displayed
in the Appendix and, at this stage it should be pointed out that different decomposition
generate different hierarchies. The general structure for a flow (tN , N ∈ Z) is given by
the zero curvature representation,

[∂x +Ax, ∂tN +AtN ] = 0 (1.1)

in terms of a universal Lax operator L = Ax.
In section 2, we review the bosonic case. We first discuss the KdV and mKdV positive

grade (N > 0) sub-hierarchies. It is shown that the graded structure of the decomposition
of Ĝ = ŝl(2) algebra implies N = 2n+ 1. Next, the negative sub-hierarchies are proposed
and it is shown that for mKdV there are no restrictions upon the negative integers N , i.e.,
negative odd and negative even sub-hierarchies can be constructed consistently, [1]. For
the KdV however, only a few equations were known for N negative odd (see [2, 3]). More
recently, a general ansatz for constructing the entire negative odd KdV sub-hierarchy was
proposed in [4]. An interesting feature of the mKdV negative even sub-sector requires
soliton solutions build from strictly non-zero vacuum. These are constructed by gauge
transforming the zero curvature representation (1.1) in the vacuum configuration into a
non trivial configuration (dressing method) involving the construction of deformed vertex
operators see [1]. Next, the gauge-Miura transformation S mapping AmKdV

µ → AKdV
µ is

discussed. The mapping is shown to be one to one as far as N is odd positive. The novelty
is a double degeneracy between the two negative sectors. It is verified that S maps the
first negative odd and its subsequent negative flows of the mKdV hierachy into the first
negative odd of the KdV hierarchy. The argument generalises to lower graded flows,

tmKdV
−2j

tKdV
−2j+1

tmKdV
−2j+1

S

S

(1.2)

j = 1, . . . .Interesting to point out that the flows tmKdV
−2j and tmKdV

−2j+1 require strictly non-

zero and strictly zero vacuum solutions respectively, while the flow tKdV
−2j−1 admits both,

see [4].
An important attempt to introduce supersymmetry in integrable models dates from

the pionnering paper by Kuperschmidt [5]. Later Khovanova [6] considered a model based
upon sl(2, 1) affine algebra and showed to be invariant under supersymmetry transfor-
mation. Moreover Miura transformation connecting the SKdV and SmKdV models was
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proposed. In this paper we extend those results to the entire hierarchy considering both
positive and negative graded sub-hierarchies. In section 3 we discuss the construction of
the supersymmetric mKdV hierarchy based upon the affine super algebra ŝl(2, 1). We first
discuss the positive hierarchy and show that the flows are labeled by odd integers and the
equations admit both zero and non-zero constant vacuum solutions. Next we consider the
negative sub-hierarchy and show that there is split into negative odd and negative even
graded flows. The negative odd admits only zero-vacuum whilst the negative even, strictly
non-zero vacuum solutions.

In section 4 we discuss the supersymmetric KdV hierarchy. It is shown that both SKdV
and SmKdV possess the same algebraic structure and the SKdV flows are constructed
systematically for the positive graded sub-hierarchy. The negative sub-hierarchy is then
proposed by direct ansatz for the time component of two dimensional gauge potential.

In section 5 we rederive the negative SKdV flows by gauge-Miura transforming the
potentials from the SmKdV. The compatibility recovers the known Miura transformation
together with additional conditions involving temporal derivatives, temporal Miura trans-
formation. These shows that the gauge-Miura mapping is one to one as far as positive
sub-hierarchy is concerned and is a two to one for the negative grade sector.

Finally in section 6 we discuss the various implications about such gauge-Miura map
in terms of the structure of vacuum solutions.

2 Review of bosonic case

In this section, we shall discuss the construction of the mKdV and KdV hierarchies from an
algebraic formalism. Both hierarchies share the same algebraic structure and are related
by the well-known Miura transformation. A crucial ingredient is the fact that the zero
curvature condition is preserved under gauge transformation. We formulate the Miura
transformation as gauge transformation acting on zero curvature condition (1.1). We also
cover the main results related to the negative flows of both hierarchies and how they are
interconnected.

The mKdV and KdV hierarchies can be constructed through gauge potentials that are
elements of an affine ŝl(2) algebra endowed with a principal grading operator. The spatial
gauge potential for the mKdV hierarchy is given by

AmKdV
x = E(1) +A0 =

(
v 1
λ −v

)
, (2.1)

where E(1) = K
(1)
1 = E

(0)
α +E

(1)
−α ∈ G1 is a grade one constant element, and A0 = v h

(0)
1 ∈

G0 contains the field of model v = v(x, tN ). The spatial gauge potential for the KdV
hierarchy differs from (2.1) due to the algebraic element associated with the field of the
theory, namely

AKdV
x = E(1) +A−1 =

(
0 1

λ+ J 0

)
, (2.2)

where A−1 = J E
(0)
−α1

∈ G−1 contains the field of model J = J(x, tN ). Given the spatial and
temporal gauge potentials, Ax and AtN , respectively, we can derive equations of motion
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associated with the temporal flow tN from the zero curvature condition (1.1) where AtN

is constructed from a sum of graded elements of the algebra G. For the so-called positive
sub-hierarchy of mKdV, the temporal gauge potentials are given by

AmKdV
tN

= D
(N)
N +D

(N−1)
N + · · ·+D

(0)
N (D

(a)
N ∈ Ga) (2.3)

whereas for the KdV hierarchy, they are written as follows

AKdV
tN

= D(N)
N +D(N−1)

N + · · ·+D(0)
N +D(−1)

N (D(a)
N ∈ Ga) (2.4)

The various elements D(a) or D(a) are recursively determined through the graded decom-
position of the zero curvature condition. It is noteworthy that for the highest grade, we
obtain the following component for both mKdV and KdV hierarchies[

E(1),D(N)
]
= 0 and

[
E(1), D(N)

]
= 0, (2.5)

which implies that the elements D(N) and D(N) belong to the Kernel KE of the element
E(1). In particular, the elements of KE have odd grades for the sl(2) algebra, i.e., N =
2m + 1, with m ∈ N (see (A.5a)). Thus, the positive temporal flows of both hierarchies
are constrained to be labeled by odd numbers.

Concerning the negative temporal flows, t−N , we can obtain them through the temporal
gauge potentials defining the so-called negative sub-hierarchy of mKdV, given by

AmKdV
t−N = D

(−N)
−N +D

(−N+1)
−N + · · ·+D

(−1)
−N (D

(a)
−N ∈ Ga) (2.6)

similar to the positive temporal flows, we can decompose the zero curvature condition ac-

cording to its graded structure and determine its various components D
(−a)
−N . We therefore

obtain equations of motion which are in general non-local. From the the lowest grade of

the decomposition, we find the non local equation for D
(−N)
−N ,

∂xD
(−N)
−N +

[
A0, D

(−N)
−N

]
= 0 (2.7)

and henceforth find no restrictions for the negative temporal flows of mKdV hierarchy.
Now, concerning the KdV negative sub-hierarchy, consider the temporal gauge potential

given by

AKdV
t−N = D(−N−2)

−N +D(−N−1)
−N + · · ·+D(−1)

−N (D(a)
−N ∈ Ga), (2.8)

which can also be determined by the decomposition of the zero curvature condition. Unlike
the mKdV case (2.7), we obtain the following equation from the lowest grade,[

A−1,D(−N−2)
−N

]
= 0. (2.9)

Since A−1 = J(x, t−N )E
(0)
−α1

, the above relation will be only satisfied if the element

D(−N−2)
−N is proportional to E

(−m)
−α1

. This condition constraints the negative temporal flows
to be N = 2m+ 1, i.e., the negative sub-hierarchy of KdV admits only odd flows.

For the mKdV hierarchy, we have the following equations of motion for the few first
temporal flows:
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• for N = 1:

∂t1v = ∂xv, (2.10)

which is just the wave equation.

• for N = 3:

4∂t3v = ∂3xv − 6v2∂xv (2.11)

we obtain the well-known mKdV equation, which names the whole hierarchy.

• for N = −1:

∂t−1∂xϕ = 2 sinh(2ϕ), (2.12)

we get the well-known sinh-Gordon equation. Here, we have introduced a convenient
reparametrization for the field, v(x, t−N ) = ∂xϕ(x, t−N ).

• for N = −2:

∂t−2∂xϕ = −2
(
e−2ϕ∂−1

x e2ϕ + e2ϕ∂−1
x e−2ϕ

)
, (2.13)

where the anti-derivative operator is defined by ∂−1
x f =

∫ x
f(y)dy.

For the KdV hierarchy, we have the following equations of motion for the first tem-
poral flows:

• for N = 1:

∂t1J = ∂xJ, (2.14)

corresponds to the wave equation.

• for N = 3:

4∂t3J = ∂3xJ − 6J∂xJ, (2.15)

gives the well-known KdV equation, which names the hierarchy.

• for N = −1:

∂t−1∂
3
xη − 4∂xη∂t−1∂xη − 2∂2xη∂t−1η = 0, (2.16)

where we have defined J(x, t−N ) = ∂xη(x, t−N ). This equation is the counterpart of
the sinh-Gordon equation in the KdV hierarchy.
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3 Gauge-Miura transformations

The mKdV and KdV equations can be related through the well-known Miura transfor-
mation, initially proposed in [7]. Other formulations have been proposed to perform this
procedure, such as [8, 9], including mappings not only between individual equations but
also between each flow of both hierarchies. For the case of sl(2) algebra, this was achieved
for the temporal flows in [12], and generalized to sl(n + 1) in [13]. More recently, the
relation between negative temporal flows has been addressed using an approach in which
Miura transformations are performed as gauge transformations that links the gauge po-
tentials of both hierarchies, as discussed in [17, 4].

Our proposal to establish a connection between the two hierarchies involves relating the
spatial gauge potentials (2.1) and (2.2) by a gauge transformation, which we have dubbed
the gauge-Miura transformation,

AKdV
x = S±A

mKdV
x S−1

± + S±∂xS
−1
± , (3.1)

where

S+ =

(
1 0
v 0

)
and S− =

(
0 1/λ
1 −v/λ

)
. (3.2)

The spatial gauge potentials (2.1) and (2.2) satisfy the relation (3.1) provided that the
mKdV and KdV fields are related as follows,

J = v2 ∓ ∂xv, (3.3)

which are precisely the well-known Miura transformations, depending on the respective
transformation S±. These gauge-Miura transformations also act on all temporal potentials
of both hierarchies,

AKdV
tN

= S±A
mKdV
tN

S−1
± + S±∂tNS

−1
± . (3.4)

It was shown in [4, 17], that the positive flows between the mKdV and KdV hierarchies
can be related in a one-to-one correspondence,

tmKdV
N tKdV

N , N = 1, 3, . . .S (3.5)

On the other hand, the negative flows satisfy a quite peculiar two-to-one correspondence,
namely

tmKdV
−N

tKdV
−N

tmKdV
−N−1

S

S

(3.6)

N = 1, 3, . . . . In the case of negative flows an additional relation is required involving
time derivatives, temporal Miura (see [4]). For example, eqn. (3.4) for N = −1 is valid
provided the following condition is satisfied,

∂t−1η = 2 e−2ϕ(x,t−1). (3.7)



]ocnmp[ SKdV, SmKdV and supersymmetric gauge-Miura transformations 71

On the other hand, if the map occurs between tmKdV
−2 and tKdV

−1 the relation is completely
different

∂t−1η = 4 e−2ϕ(x,t−2)∂−1
x (e2ϕ(x,t−2)), (3.8)

and similarly for lower flows. Notice that (3.7) involves solution of mKdV according to
flow t−1 while (3.8) involves solution according to t−2.

These correspondences are particularly useful when analyzing the solutions of these
equations. For the positive flows, for each mKdV solution, we can obtain two distinct
solutions for the corresponding KdV equation through (3.3). In contrast, for the negative
flows, there is a greater degeneracy of solutions for KdV due to the two-to-one correspon-
dence between the flows. That is, for each pair of negative mKdV flows related to their
negative KdV counterpart, there will be four distinct solutions, see [18].

Another relevant fact about both hierarchies is their behavior concerning vacuum solu-
tions, i.e., trivial solutions. For the mKdV hierarchy, the positive flows admit both zero,
v = 0 and non-zero constant vacuum solutions v = v0. However, the odd negative flows of
the mKdV hierarchies admit only zero vacuum solutions, while the even negative flows ad-
mits strictly non-zero vacuum solution. In [4], we discuss that such classification in terms
of vacuum orbits and define two different hierarchies: mKdV-I and mKdV-II.The mKdV-I
contains positive and negative odd flows and is defined in the orbit of a zero vacuum. The
mKdV-II, in turn contains positive odd and negative even flows and is defined in the orbit
of strictly non-zero vacuum. This analysis can be extended to the KdV hierarchy through
Miura transformations as shown in diagrams (3.5) and (3.6) how the two different vacuum
structures are couched within the two, KdV and mKdV hierarchies.

In the next sections, we will present the main elements for constructing the supersym-
metric versions of the mKdV and KdV hierarchies. We derive the equations of motion for
the first temporal flows, and show how to derive the supersymmetric version of the gauge-
Miura transformations, along with their implications for the correspondence between the
flows of both hierarchies.

4 Super mKdV hierarchy

In this section we extend previous results to supersymmetric KdV/mKdV hierarchies. The
algebraic structure is based on the super Kac-Moody algebra sl(2, 1), endowed with the
principal grading operator Q, and the grade one constant element E(1), which decompose
the algebra into graded subspaces Gn, of grade n. All the details can be found in appendix
B (see also [10], [11]).

Consider the following spatial Lax operator [17]:

ASmKdV
x = E(1) +A0 +A 1

2
, (4.1)

where E(1) = K
(1)
1 +K

(1)
2 ∈ G1 is the grade one constant element, and A0 = v h

(0)
1 ∈ G0

and A 1
2
= ψ̄ G

( 1
2
)

2 ∈ G1/2 contain the bosonic and fermionic fields of the model, v(x, tN )

and ψ̄(x, tN ), respectively. Concerning the smKdV positive sub-hierarchy, the temporal
gauge potential is defined as follows,

ASmKdV
tN

= D
(N)
N +D

(N−1/2)
N + · · ·+D

(1/2)
N +D

(0)
N (D

(a)
N ∈ Ga). (4.2)
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By decomposing the zero curvature condition (1.1), we find the following set of equations

[
E(1), D

(N)
N

]
= 0, (4.3a)[

E(1), D
(N− 1

2
)

N

]
+
[
A 1

2
, D

(N)
N

]
= 0, (4.3b)[

E(1), D
(N−1)
N

]
+

[
A 1

2
, D

(N− 1
2
)

N

]
+
[
A0, D

(N)
N

]
+ ∂xD

(N)
N = 0, (4.3c)

...[
A 1

2
, D

(0)
N

]
+

[
A0, D

( 1
2
)

N

]
+ ∂xD

( 1
2
)

N − ∂tNA 1
2
= 0, (4.3d)[

A0, D
(0)
N

]
+ ∂xD

(0)
N − ∂tNA0 = 0 (4.3e)

Since our model is based on a superalgebra, the ansatz for the temporal gauge potential
(4.2) contains elements with semi-integer grades. From the highest grade (4.3a), we find

that D
(N)
N must belong to the kernel of E(1), implying that N = 2m+ 1, with m ∈ N (see

details in (B.4)). Thus, the positive flows of the super mKdV hierarchy are constrained
to be odd. The first non-trivial positive temporal flow occurs when N = 3, which yields
the following equations of motion,

4∂t3v = ∂3xv − 6v2∂xv − 3ψ̄∂x
(
v∂xψ̄

)
, (4.4a)

4∂t3ψ̄ = ∂3xψ̄ − 3v∂x
(
vψ̄

)
, (4.4b)

which are the well-known Super mKdV equations. Another relevant flow is for N = 1/2,
which provides us with supersymmetry transformations relating the bosonic and fermionic
fields of our model, as follows

∂t 1
2

v = ξ ∂xψ̄, (4.5a)

∂t 1
2

ψ̄ = ξ v, (4.5b)

where ξ is a fermionic constant. It can be verified that equations (4.4a) and (4.4b) are
invariant under these supersymmetric transformations.

To complete the construction of our hierarchy, let us propose the gauge potential for
the negative sub-hierarchy of super mKdV as

ASmKdV
t−N = D

(−N)
−N +D

(−N+ 1
2
)

−N + · · ·+D
(− 1

2
)

−N (D
(a)
−N ∈ Ga). (4.6)

It can be solved from the zero curvature equation (1.1) recursively from the following
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equations, [
A0, D

(−N)
−N

]
+ ∂xD

(−N)
−N = 0, (4.7a)[

A 1
2
, D

(−N)
−N

]
+

[
A0, D

(−N+ 1
2
)

−N

]
+ ∂xD

(−N+ 1
2
)

−N = 0, (4.7b)

...[
E(1), D

(−1)
−N

]
+

[
A0, D

(− 1
2
)

−N

]
− ∂t−NA0 = 0, (4.7c)[

E(1), D
(− 1

2
)

−N

]
− ∂t−NA 1

2
= 0. (4.7d)

Unlike the positive flows, in this case we do not get any restriction upon the values of
N . The N = −1 temporal flow provide us with the following temporal Lax

ASinhG
t−1

= cosh 2ϕ K
(−1)
1 +K

(−1)
2 −sinh 2ϕ M

(−1)
2 −ψ sinhϕ F

(− 1
2
)

2 −ψ coshϕ G
(− 1

2
)

1 (4.8)

associated with the super sinh-Gordon equation,

∂x∂t−1ϕ = 2 sinh 2ϕ− 2ψ̄ψ sinhϕ, (4.9a)

∂t−1ψ̄ = 2ψ coshϕ, (4.9b)

∂xψ = 2ψ̄ coshϕ, (4.9c)

where v(x, tN ) = ∂xϕ(x, tN ). For N = −2, we obtain,

AmKdV
t−2

=M
(−2)
1 − eϕψ−

2

(
F

(− 3
2
)

1 +G
(− 3

2
)

2

)
− e−ϕψ+

2

(
F

(− 3
2
)

1 −G
(− 3

2
)

2

)
+ a−

(
K

(−1)
1 +M

(−1)
2

)
− a+

(
K

(−1)
1 −M

(−1)
2

)
+ (1 + ψ−ψ+)K

(−1)
2

+Ω+

(
F

(− 1
2
)

2 +G
(− 1

2
)

1

)
+Ω−

(
F

(− 1
2
)

2 −G
(− 1

2
)

1

) (4.10)

yielding the pair of equations

∂t−2∂xϕ = −2 (a− + a+) + 2ψ̄ (Ω− +Ω+) , (4.11a)

∂t−2ψ̄ = −2 (Ω+ − Ω−) , (4.11b)

where

ψ± = ∂−1
x

(
e±ϕψ̄

)
, (4.12a)

a± = e±2ϕ∂−1
x

[
e∓2ϕ (1 + ψ∓∂xψ±)

]
, (4.12b)

and

Ω± =
e±ϕ

2
∂−1
x

[
e∓2ϕψ± − ψ̄∓ ∓ ∂xψ∓∂

−1
x

(
∓2a± + ψ̄−ψ̄+ + 1

)]
. (4.13)

In the following section, we will systematize the supersymmetric hierarchy of KdV.
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5 Super KdV Hierarchy

The super KdV hierarchy shares the same algebraic structure as the super mKdV hier-
archy, based on the superalgebra sl(2, 1) detailed in Appendix B, and is characterized by
the spatial gauge potential,

ASKdV
x = E(1) +A−1 +A− 1

2
, (5.1)

where E(1) is the same given in eqn. (4.1) for the SmKdV, A−1 = J E
(0)
α1 ∈ G−1 contains

the bosonic field, J(x, tN ) and A− 1
2
= χ̄ (E

(− 1
2
)

α2 − E
(− 1

2
)

−α2
) ∈ G−1/2 the fermionic field

χ̄(x, tN ) of the theory.

The positive sub-hierarchy of sKdV is given by the temporal gauge potential defined
as follows,

ASKdV
tN

= D(N)
N +D(N−1/2)

N +D(N−1)
N + · · ·+D(0)

N +D(−1/2)
N +D(−1)

N (D
(n)
N ∈ Gn). (5.2)

By decomposing the zero curvature condition (1.1), we obtain,[
E(1),D(N)

N

]
= 0, (5.3a)[

E(1),D(N− 1
2
)

N

]
= 0, (5.3b)

∂xD(N)
N +

[
E(1),D(N−1)

N

]
= 0, (5.3c)

...

∂xD
(− 1

2
)

N +

[
A−1,D

( 1
2
)

N

]
+
[
A− 1

2
,D(0)

N

]
− ∂tNA− 1

2
= 0, (5.3d)

∂xD(−1)
N +

[
A−1,D(0)

N

]
+

[
A− 1

2
,D(− 1

2
)

N

]
− ∂tNA−1 = 0. (5.3e)

The highest grade eqn. (5.3a) implies that D(N)
N must belong to the kernel of E(1), and

hence N = 2m+1, m ∈ N (see details in (B.4)). Thus, the positive flows of the super KdV
hierarchy are odd. The first non-trivial positive temporal flow occurs for N = 3 yielding
the Super KdV equation,

4∂t3J = ∂3xJ − 6J∂xJ − 3χ̄∂2xχ̄, (5.4a)

4∂t3χ̄ = ∂3xχ̄− 3∂x (Jχ̄) , (5.4b)

As before, the positive temporal flow for N = 1/2 provides us with supersymmetry
transformations namely,

∂t 1
2

J = ξ ∂xχ̄, (5.5a)

∂t 1
2

χ̄ = ξ J, (5.5b)
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where ξ is a fermionic constant. The equations of motion (5.4) remains invariant under
supersymmetry transformations (5.5). Now, to complete the construction of the sKdV
hierarchy, let us consider the temporal gauge potential associated to negative grades,

ASKdV
t−N = D(−N−2)

−N +D(−N− 3
2
)

−N +D(−N−1)
−N + · · ·+D(−1)

−N +D
(− 1

2
)

−N (D
(n)
−N ∈ Gn) (5.6)

which by the decomposition of (1.1) leads to the following equations,

[
A−1,D(−N−2)

−N

]
= 0, (5.7a)[

A− 1
2
,D(−N−2)

−N

]
+

[
A−1,D

(−N− 3
2
)

−N

]
= 0, (5.7b)

∂xD(−N−2)
−N +

[
A−1,D(−N−1)

−N

]
+

[
A− 1

2
,D(−N− 3

2
)

−N

]
= 0, (5.7c)

...

∂xD(−1)
−N +

[
A− 1

2
,D(− 1

2
)

−N

]
+
[
E(1),D(−2)

−N

]
− ∂t−NA−1 = 0, (5.7d)

∂xD
(− 1

2
)

−N +

[
E(1),D(− 3

2
)

−N

]
− ∂t−NA− 1

2
= 0, (5.7e)[

E(1),D(−1)
−N

]
= 0, (5.7f)[

E(1),D(− 1
2
)

−N

]
= 0. (5.7g)

From the lowest-grade equation (5.7a), we deduce that the D(−N−2)
−N must be proportional

to E
(m)
−α1

∈ G2m+1, thus the temporal flows are always odd, i.e., N = 2m+ 1. Considering
the first negative temporal flow, we find for the temporal gauge potential:

ASKdV
t−1

= D(−3)
−1 +D(− 5

2
)

−1 +D(−2)
−1 +D(− 3

2
)

−1 +D(−1)
−1 +D(− 1

2
)

−1 (5.8)
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with

D(−3)
−1 = −1

8

{
∂x(∂t−1∂xη + ∂xγ)− 2∂xη

(
∂t−1η + γ

)
+∂xη̄

(
ν̄− − ν̄+ + 2γ̄ − ∂t−1∂xγ̄

)}(
K

(−3)
1 −M

(−3)
2

)
, (5.9a)

D(− 5
2
)

−1 =
1

8

(
∂x(ν̄+ + ν̄−)− ∂t−1∂

2
xγ̄ + 2∂xγ̄ γ + 2∂xγ̄

)(
F

(− 5
2
)

2 +G
(− 5

2
)

1

)
, (5.9b)

D(−2)
−1 =

1

4

(
∂t−1∂xη + ∂xγ

)
M

(−2)
1 , (5.9c)

D(− 3
2
)

−1 =
1

4
(ν̄+ − ν̄− − 2γ̄) F

(− 3
2
)

1 − 1

4
∂t−1∂xγ̄ G

(− 3
2
)

2 , (5.9d)

D(−1)
−1 =

1

2
γ
(
K

(−1)
1 +K

(−1)
2

)
+

1

2
∂t−1η K

(−1)
1 +K

(−1)
2 , (5.9e)

D(− 1
2
)

−1 =
1

2
∂t−1 γ̄ F

(− 1
2
)

2 (5.9f)

Here we have used the following relations,

J(x, tN ) = ∂xη(x, tN ), χ̄(x, tN ) = ∂xγ̄(x, tN ), ∂xγ = ∂xγ̄∂t−1 γ̄, (5.10a)

∂xν̄+ = ∂t−1η∂xγ̄, ∂xν̄− = ∂xη∂t−1 γ̄. (5.10b)

yielding the following pair of equations of motion,

∂3x∂t−1η + ∂2xγ − 2∂2xη
(
∂t−1η + γ

)
− 4∂xη∂∂xη + ∂xγ̄

(
∂t−1 γ̄∂xη − ∂t−1∂xγ̄ − ∂∂2xγ̄

)
+ ∂2xγ̄

(
ν̄− − ν̄+ + 2γ̄ − ∂t−1∂xγ̄

)
− 2∂xη∂xγ̄∂t−1 γ̄ = 0, (5.11a)

∂x
(
∂t−1η∂xγ̄ + ∂xη∂t−1 γ̄ − ∂t−1∂

2
xγ̄ + 2∂xγ̄

)
+ ∂xη

(
ν̄+ − ν̄− − 2γ̄ + 2∂t−1∂xγ̄

)
+ ∂xγ̄

(
∂t−1∂xη + ∂xγ

)
= 0. (5.11b)

A natural step now is to determine the connection between the SmKdV and SKdV
hierarchies using a gauge-Miura transformation.

6 Gauge Super Miura transformation

Now that we have established the structure for both SmKdV and SKdV Hierarchies, we are
able to proceed in determining the Super Miura transformation via gauge transformation,
in such a way that it will be possible to map not only the SmKdV equation into SKdV
equation, but also the entire hierarchy, including the negative flows. The unifying element
employed here is the mapping the spatial Lax operators which in the matrix form can be
written as

ASKdV
x =


√
λ 1 0

J + λ
√
λ χ̄

−χ̄ 0 2
√
λ

, ASmKdV
x =


√
λ+ v 1 −ψ̄
λ

√
λ− v

√
λψ̄√

λψ̄ −ψ̄ 2
√
λ

. (6.1)
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We therefore search for a gauge transformation S such that,

ASKdV
x = SASmKdV

x S−1 + S∂xS−1. (6.2)

From the experience gathered with the bosonic case [13] we propose the following ansatz,

S =

a11 0 0
0 a22 0
0 0 a33

+

 0 0 1√
λ
a13

0 0 a23
a31

1√
λ
a32 0

+


1√
λ
b11

1
λa12 0

a21
1√
λ
b22 0

0 0 1√
λ
b33

 (6.3)

which leads to two different solutions,

S± =

 1 0 0
v 1 −ψ̄
±ψ̄ 0 ±1

. (6.4)

These, in turn leads to the Super Miura transformation relating SKdV and SmKdV field
variables 1 2

J (±) = v2 − ∂xv + ψ̄∂xψ̄,

χ̄(±) = ∓vψ̄ ± ∂xψ̄.
(6.5)

We notice that if we consider the inversion matrix L− acting upon the fermionic subspace,
i.e.,

L− =

1
1

−1

 (6.6)

the following relations holds

S− = L− S+.

Thus, we can proceed assuming S = S+ without loss of generalization. Such fact is very
convenient, as is possible to write the gauge-Miura S+ in the exponential form

S ≡ S+ = e
v
2

(
K

(−1)
1 −M

(−1)
2

)
− ψ̄

2

(
F

(− 1
2 )

2 +G
(− 1

2 )

1

)
. (6.7)

As expected, we have verified after tedious but straightforward calculation that the Super
gauge Miura transformation indeed maps the temporal Lax ASmKdV

t3 into ASKdV
t3 connecting

equations (4.4) and (5.4). In fact, for higher positive flows it is possible to show using

1It also possible to obtain a second pair of Super gauge Miura transformation using a second matrix

with a different ansatz, given by S2,± =

0 1
λ

0
1 − v

λ
ψ̄

0 ∓ψ̄ ±1√
λ

 associated with the two pairs of super Miura

transformation: J(2,±) = v2 + ∂xv + ψ̄∂xψ̄ and χ̄(2,±) = ∓vψ̄ ∓ ∂xψ̄. This choice leads to the Mathieu’s
Super Miura transformation [19] under χ̄→ iχ̄ and ψ̄ → iψ̄ transformation.

2The fact that exists four different Super Miura transformation is a manifestation of the symmetry of
Super mKdV equation under the parity transformation v → −v and ψ̄ → −ψ̄.
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only the exponential form (6.7) together with (6.5) that each positive SmKdV flow can
be mapped into its corresponding SKdV flow:

tSmKdV
N tSKdV

N .S (6.8)

Let us now extend our analysis to the negative sector using the exponential form of S
(6.7). Consider first a generic negative odd flow ASmKdV

t−2n+1
under the gauge transformation

induced by S. The gauge transformation (6.7) yields the following graded structure

ASKdV
t−2n+1

≡ S
(
D

(−2n+1)
−2n+1 +D

(−2n+ 3
2
)

−2n+1 + · · ·+D
(− 1

2
)

−2n+1

)
S−1 + S∂t−2n+1S−1

= D(−2n−1)
−2n+1 +D(−2n+ 1

2
)

−2n+1 +D(−2n)
−2n+1 + · · ·+D(−1)

−2n+1 +D(− 1
2
)

−2n+1.

(6.9)

On the other hand, if we now consider the subsequent negative even flow ASmKdV
t−2n

, its

lower operator is now proportional to D
(−2n)
−2n ∼M

(−2n)
1 , such that the final transformation

presents the same algebraic structure, i.e.,

ÃSKdV
t−2n+1

≡ S
(
D

(−2n)
−2n +D

(−2n+ 1
2
)

−2n + · · ·+D
(− 1

2
)

−2n

)
S−1 + S∂t−2nS−1

= D̃(−2n−1)
−2n+1 + D̃(−2n+ 1

2
)

−2n+1 + D̃(−2n)
−2n+1 + · · ·+ D̃(−1)

−2n+1 + D̃(− 1
2)

−2n+1.

(6.10)

Since the potentials ASKdV
x and ASmKdV

x are universal within the hierarchies, the zero
curvature condition for (6.9) and (6.10) must yield the same operator, i.e.,

ASKdV
t−2n+1

= ÃSKdV
t−2n+1

, (6.11)

and the two gauge potentials provide the same evolution equations. We therefore conclude
that, as in the pure bosonic case, subsequent negative integer odd and even SmKdV flows
collapse into the same negative odd SKdV flow, which is consistent with the fact that there
is no even negative flow within the SKdV hierarchy. This can be illustrated by

tSmKdV
−N

tSKdV
−N

tSmKdV
−N−1

S

S

(6.12)

for N = 2n− 1, n = 1, 2, . . . .

In order to illustrate such phenomena, we consider an explicit example of ASmKdV
t−1

and

ASmKdV
t−2

given by (4.8) and (4.10). Indeed the gauge transformation (6.2) results in the

same temporal Lax ASKdV
t−1

(5.8).

Nevertheless, to obtain such result, it is necessary to introduce an additional infor-
mation concerning time derivatives. If the mapping occurs between tSmKdV

−1 and tSKdV
−1

ASKdV
t−1

= SASmKdV
t−1

S−1 + S∂xS−1, (6.13)
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the KdV fields (η, γ̄) must obey the following relations

ηt−1 = 2
(
e−2ϕ + e−ϕψψ̄

)
, (6.14)

γ̄t−1 = 2e−ϕψ, (6.15)

where the mKdV fields in the r.h.s are solutions of t−1 eqns. (4.9) .

However, if we are mapping tSmKdV
−2 into tSKdV

−1

ASKdV
t−1

= SASmKdV
t−2

S−1 + S∂xS−1, (6.16)

this relation is completely different, namely

ηt−1 = 4

(
a− +Ω−ψ̄ +

1

2
ψ̄+ψ̄−

)
, (6.17)

γ̄t−1 = 4Ω−, (6.18)

where ψ̄±, a± and Ω± are given by (4.12a), (4.12b) and (4.13) and satisfy eqns. (4.12).

Notice that such set of relations involving KdV variables, (η, γ̄) define a distinct set of
solutions for equation (5.11). One class of solutions must respect relations (6.5) together
with the pair (6.14) and (6.15), and the second one must obeys (6.5), (6.14) and (6.15).
This allows us to determine a larger range of solutions for the negative flows within the
SKdV Hierarchy.

7 Discussion and further developments

In this paper, we have discussed the Miura mapping between the mKdV and KdV flows,
extending the approach already used in the pure bosonic case to the supersymmetric
case based upon the sl(2, 1) affine algebra and the zero curvature representation. The
approach employed here involves a gauge transformation acting upon the zero curvature
condition. Such a framework has the virtue of relating the entire two hierarchies and
henceforth is dubbed the Gauge Super Miura transformation. Using such an approach,
we are able to recover well-known results such as the Super Miura transformation [19],
and also, to discover new ones, such as the coalescence of two subsequent negative flows
of SmKdV hierarchy into a single flow of the SKdV hierarchy. We also provide a complete
algebraic formulation for the SKdV hierarchy and extend the SmKdV hierarchy [14] to the
negative even flows. This result represents a generalization of the bosonic case proposed
in [4] and demonstrates how an approach focused on algebraic structure together with the
formulation of zero curvature enables a general structure that allows the discover of new
results.

On the other hand, it is important to make some comments on such coalescence feature,
in particular on the vacuum structure of the equations of motion involved. In order to
construct solutions (or a family of solutions) for an integrable, model such as SmKdV, it
is necessary to define a vacuum orbit, i.e., a simple solution which leads to more general
ones. In such a scenario, soliton solutions can be obtained by gauge-transforming the
gauge potentials in the vacuum, Avac

µ = Aµ(ϕ0), into a nontrivial configuration Aµ(ϕ).
Such a framework is the basis of the dressing method [15]. The fact that the flows share
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the same vacuum orbit is crucial to their involution, and guarantees the existence of the
hierarchy [20].

It has been shown in several works [1, 16, 21] that not only is possible to have a
zero vacuum orbit (v, ψ̄) = (0, 0), but it is also possible to use a non-zero vacuum orbit
(v, ψ̄) = (v0, ψ̄0). Now, it turns out that for the SmKdV system, we can verify that
equation (4.4) admits, besides the zero and non-zero vacuum solutions, intermediary states
as (0, ψ̄0) and (v0, 0). However, this is not true for the negative flows. For instance, in the
case of N = −1 (Super sinh-Gordon), only a vacuum solution is possible; and for N = −2,
only non-zero bosonic vacuum is possible, (v0, ψ̄0) with v0 ̸= 0. In fact, this leads to two
different SmKdV hierarchies:

• The SmKdV-I hierarchy has negative odd and positive odd flows, and is defined in
the orbit of a bosonic and fermionic zero vacuum;

• The SmKdV-II hierarchy has negative even and positive odd flows, and is defined in
the orbit of a nonzero bosonic vacuum and both zero or nonzero fermionic vacuum.

For the SKdV Hierarchy, this picture is completely different. As one might notice analyzing
equation (5.4) and (5.11), all the equations shared the same vacuum orbit, either (J, χ̄) =
(0, 0), (J, χ̄) = (J0, χ̄0), (J, χ̄) = (0, χ̄0) or (J, χ̄) = (J0, 0), are valid for all the equations3.
In such a case,

• Each integrable model within the positive and negative part of the SKdV hierarchy
admits both zero as well as nonzero vacuum solutions.

This feature certainly explains why the two flows of the negative part of the SmKdV model
collapses into one SKdV time flow, since each one posses the vacuum configuration that
is necessary for the negative SKdV time flow.

It would be interesting to construct soliton solutions for the SmKdV and the SKdV
hierarchies, by implementing both the dressing method, and the Super gauge Miura trans-
formation developed in this work. These issues also currently under investigations and
will be reported elsewhere.
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3To verify this for the negative flows of SKdV, it is crucial to use the temporal Super Miura relations
(6.14), (6.15) or (6.17), (6.18) due the existence of pure temporal derivatives in the equation of motion
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A Algebra sl(2)

Consider the G = sl(2) centerless Kac-Moody algebra generated by4

G = sl(2) =
{
h
(m)
1 = λmh1, E

(m)
α1

= λmEα1 , E
(m)
−α1

= λmEα−1

}
(A.1)

where α1 is a simple root. The principal grading operator is defined by

Q = 2d̂+
1

2
h1, (A.2)

where d̂ is a derivation operator that satisfies[
d̂, T (m)

a

]
= m T (m)

a , T (m)
a ∈ G

The principal grading operator decomposes the algebra in graded subspaces, G =
⊕

i Gi,
where

[Q,Ga] = a Ga, [Ga,Gb] ∈ Ga+b,

for a, b ∈ Z. For our purposes, the subspaces to consider are:

G2m =
{
h
(m)
1

}
,

G2m+1 =
{
E(m)

α1
, E

(m+1)
−α1

}
.

(A.3)

Another key ingredient to construct our models is a grade one constant element,

E(1) = E(0)
α1

+ E
(1)
−α1

=

(
0 1
λ 0

)
(A.4)

that decomposes the algebra into G = K
⊕

M where KE = {x ∈ G | [E, x] = 0} and ME

its complement,

KE =
{
K

(2m+1)
1 = E(m)

α1
+ E

(m+1)
−α1

}
, (A.5a)

ME =
{
M

(2m)
1 = h

(m)
1 , M

(2m+1)
2 = E(m)

α1
+ E

(m+1)
−α1

}
. (A.5b)

From (A.2) and (A.4), we can reorganize the graded subspaces (A.3) in terms of decom-
position kernel-image as follows

G2m =
{
M

(2m)
1

}
,

G2m+1 =
{
K

(2m+1)
1 , M

(2m+1)
2

}
.

(A.6)

The commutation relations of the algebra are given by[
K

(2m+1)
1 ,K

(2n+1)
1

]
= 0,[

K
(2m+1)
1 ,M

(2n)
1

]
= −2M

(2m+2n+1)
2 ,[

K
(2m+1)
1 ,M

(2n+1)
2

]
= −2M

(2(m+n+1))
1 ,

[
M

(2m)
1 ,M

(2n)
1

]
= 0,[

M
(2m)
1 ,M

(2n+1)
2

]
= 2K

(2m+2n+1)
1 ,[

M
(2m+1)
2 ,M

(2n+1)
2

]
= 0.

4We employ the following representation for generators:
h1 =

(
1 0
0 −1

)
, Eα1 = ( 0 1

0 0 ), E−α1 = E†
α1

.
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B Superalgebra sl(2, 1)

In this section we employ the algebraic formalism to construct an integrable hierarchies
with supersymmetry. Consider the G = sl(2, 1) centerless super Kac-Moody algebra gen-
erated by5

L0 =
{
h
(m)
1 = λmh1, h

(m)
2 = λmh2, E

(m)
±α1

= λmE±α1

}
,

L1 =
{
E

(m)
±α2

= λmE±α2 , E
(m)
±(α1+α2)

= λmE±(α1+α2)

}
,

where λ ∈ C and m ∈ N. The L0 and L1 are called the bosonic and fermionic parts of
algebra, respectively, that satisfying the following relations

[L0, L0] ⊂ L0, [L0, L1] ⊂ L1, [L1, L1] ⊂ L0.

The principal grading operator is defined by

Q = 2d̂+
1

2
h1 (B.1)

where d̂ is a derivation operator that satisfies[
d̂, T (m)

a

]
= m T (m)

a , T (m)
a ∈ G

The principal grading operator decomposes the algebra in graded subspaces, G =
⊕

i Gi,
where

[Q,Ga] = a Ga, [Ga,Gb] ∈ Ga+b,

for a, b ∈ Z. For our purposes, the subspaces to consider are:

G2m =
{
h
(m)
1

}
,

G2m+ 1
2
=

{
E(m+1/2)

α2
, E

(m)
α1+α2

, E
(m)
−α2

, E
(m+1/2)
−α1−α2

}
,

G2m+1 =
{
E(m)

α1
, E

(m+1)
−α1

, h
(m+1/2)
2

}
,

G2m+ 3
2
=

{
E(m+1/2)

α2
, E

(m+1/2)
α1+α2

, E
(m+1/2)
−α2

, E
(m+1)
−α1−α2

}
.

(B.2)

Another key ingredient to construct our models is a grade one constant element,

E(1) = E(0)
α1

+ E
(1)
−α1

+ h
(1/2)
1 + 2h

(1/2)
2 =


√
λ 1 0

λ
√
λ 0

0 0 2
√
λ

, (B.3)

5We employ the following representation for generators:

h1 =
(

1 0 0
0 −1 0
0 0 0

)
, h2 =

(
0 0 0
0 1 0
0 0 1

)
, Eα1 =

(
0 1 0
0 0 0
0 0 0

)
, Eα2 =

(
0 0 0
0 0 1
0 0 0

)
,

Eα1+α2 =
(

0 0 1
0 0 0
0 0 0

)
, E−α1 = E†

α1
, E−α2 = E†

α2
, E−(α1+α2) = E†

(α1+α2)
.
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that decomposes the algebra into G = K
⊕

M where KE = {x ∈ G | [E, x] = 0} and ME
its complement,

KBose = KE ∩ L0 =
{
K

(2m+1
1 , K

(2m+1)
2

}
,

KFermi = KE ∩ L1 =
{
F

(2m+1/2)
1 , F

(2m+3/2)
2

}
,

MBose = ME ∩ L0 =
{
M

(2m)
1

}
,

MFermi = ME ∩ L1 =
{
G

(2m+3/2)
1 , G

(2m+1/2)
2

}
,

(B.4)

where the bosonic generators are be defined as

K
(2m+1)
1 = E(m)

α1
+ E

(m+1)
−α1

,

K
(2m+1)
2 = h

(m+1/2)
1 + 2h

(m+1/2)
2 ,

M
(2m)
1 = h

(m)
1 ,

M
(2m+1)
2 = E(m)

α1
− E

(m+1)
−α1

,

and the fermionic generators are

F
(2m+ 1

2
)

1 =

(
E

(m+ 1
2
)

α2 + E
(m)
α1+α2

)
+

(
E

(m)
−α2

+ E
(m+ 1

2
)

−(α1+α2)

)
,

F
(2m+ 3

2
)

2 =

(
E(m+1)

α2
+ E

(m+ 1
2
)

α1+α2

)
−

(
E

(m+ 1
2
)

−α2
+ E

(m+1)
−(α1+α2)

)
,

G
(2m+ 3

2
)

1 =

(
E(m+1)

α2
− E

(m+ 1
2
)

α1+α2

)
+

(
E

(m+ 1
2
)

−α2
− E

(m+1)
−(α1+α2)

)
,

G
(2m+ 1

2
)

2 =

(
E

(m+ 1
2
)

α2 − E
(m)
α1+α2

)
−
(
E

(m)
−α2

− E
(m+ 1

2
)

−(α1+α2)

)
.

From (A.2) and (B.3), we can reorganize the graded subspaces (B.2) in terms of decom-
position kernel-image as follows

G2m =
{
M

(2m)
1

}
,

G2m+ 1
2
=

{
F

(2m+ 1
2
)

1 , G
(2m+ 1

2
)

2

}
,

G2m+1 =
{
K

(2m+1)
1 , K

(2m+1)
2 , M

(2m+1)
2

}
,

G2m+ 3
2
=

{
F

(2m+ 3
2
)

2 , G
(2m+ 3

2
)

1

}
.

(B.6)
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The commutation relations of the algebra are then given by

[
K

(2m+1)
1 ,K

(2n+1)
1

]
= 0,[

K
(2m+1)
1 ,K

(2n+1)
2

]
= 0,[

K
(2m+1)
1 ,M

(2n)
1

]
= −2M

(2m+2n+1)
2 ,[

K
(2m+1)
1 ,M

(2n+1)
2

]
= −2M

(2(m+n+1))
1 ,[

K
(2m+1)
2 ,K

(2n+1)
2

]
= 0,[

K
(2m+1)
1 , F

(2n+1/2)
1

]
= F

(2(m+n)+3/2)
2 ,[

K
(2m+1)
1 , F

(2n+3/2)
2

]
= F

(2(m+n+1)+1/2)
1 ,[

K
(2m+1)
1 , G

(2n+3/2)
1

]
= −G(2(m+n+1)+1/2)

2 ,[
K

(2m+1)
1 , G

(2n+1/2)
2

]
= −G(2(m+n)+3/2)

1 ,[
K

(2m+1)
2 , F

(2n+1/2)
1

]
= −F (2(m+n)+3/2)

2 ,[
K

(2m+1)
2 , F

(2n+3/2)
2

]
= −F (2(m+n+1)+1/2)

1 ,[
K

(2m+1)
2 , G

(2n+3/2)
1

]
= −G(2(m+n+1)+1/2)

2 ,[
K

(2m+1)
2 , G

(2n+1/2)
2

]
= −G(2(m+n)+3/2)

1 ,

[
K

(2m+1)
2 ,M

(2n)
1

]
= 0,[

K
(2m+1)
2 ,M

(2n+1)
2

]
= 0,[

M
(2m)
1 ,M

(2n)
1

]
= 0,[

M
(2m)
1 ,M

(2n+1)
2

]
= 2K

(2m+2n+1)
1 ,[

M
(2m+1)
2 ,M

(2n+1)
2

]
= 0.[

M
(2m)
1 , F

(2n+1/2)
1

]
= −G(2(m+2)+1/2)

2 ,[
M

(2m)
1 , F

(2n+3/2)
2

]
= −G(2(m+2)+3/2)

1 ,[
M

(2m)
1 , G

(2n+3/2)
1

]
= −F (2(m+2)+3/2)

2 ,[
M

(2m+1)
1 , G

(2n+1/2)
2

]
= −F (2(m+2)+1/2)

1 ,[
M

(2m+1)
2 , F

(2n+1/2)
1

]
= −G(2(m+n)+3/2)

1 ,[
M

(2m+1)
2 , F

(2n+3/2)
2

]
= −G(2(m+n+1)+1/2)

2 ,[
M

(2m+1)
2 , G

(2n+3/2)
1

]
= F

(2(m+n+1)+1/2)
1 ,[

M
(2m+1)
2 , G

(2n+1/2)
2

]
= F

(2(m+n)+3/2)
2 .

and the anti-commutations relations, given by

{
F

(2m+1/2)
1 , F

(2n+1/2)
1

}
= 2(K

(2m+2n+1)
1 +K

(2m+2n+1)
2 ),{

F
(2m+1/2)
1 , F

(2n+3/2)
2

}
= 0,{

F
(2m+1/2)
1 , G

(2n+3/2)
1

}
= −2M

(2(m+n+1))
1 ,{

F
(2m+1/2)
1 , G

(2n+1/2)
2

}
= −2M

(2m+2n+1)
2 ,{

F
(2m+3/2)
2 , F

(2n+3/2)
2

}
= −(K

(2(m+n+1)+1)
1 +K

(2(m+n+1)+1)
2 ),{

F
(2m+3/2)
2 , G

(2n+3/2)
1

}
= 2M

(2(m+n+1)+1)
2 ,{

F
(2m+3/2)
2 , G

(2n+1/2)
2

}
= 2M

(2(m+n+1))
1 ,{

G
(2m+3/2)
1 , G

(2n+3/2)
1

}
= −2(K

(2(m+n+1)+1)
1 −K

(2(m+n+1)+1)
2 ),{

G
(2m+3/2)
1 , G

(2n+1/2)
2

}
= 0,{

G
(2m+1/2)
2 , G

(2n+1/2)
2

}
= 2(K

(2m+2n+1)
1 +K

(2m+2n+1)
2 ).
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