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Abstract

We study the link between the degree growth of integrable birational mappings of
order higher than two and their singularity structures. The higher order mappings we
use in this study are all obtained by coupling mappings that are integrable through
spectral methods, typically belonging to the QRT family, to a variety of linearisable
ones. We show that by judiciously choosing these linearisable mappings, it is possible
to obtain higher order mappings that exhibit the maximal degree growth compatible
with integrability, i.e. for which the degree grows as a polynomial of order equal to
the order of the mapping. In all the cases we analysed, we found that maximal degree
growth was associated with the existence of an unconfining singularity pattern. Several
cases with submaximal growth but which still possess unconfining singularity patterns
are also presented. In many cases the exact degrees of the iterates of the mappings were
obtained by applying a method due to Halburd, based on the preimages of specific
values that appear in the singularity patterns of the mapping, but we also present
some examples where such a calculation appears to be impossible.

1 Introduction

There is a deep link between the singularity structure and the growth properties of bira-
tional mappings. In fact, the slow growth which characterises integrable discrete systems
[1] is intimately related to the property known as singularity confinement [2]. Both phe-
nomena share a common origin: they are due to the simplifications [3] that can occur
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when the iteration of a birational mapping, starting from some initial values, hits an in-
determinate point of the mapping. This is best illustrated by an example. Consider the
QRT [4] mapping

xn+1xn−1 = a

(

1−
1

xn

)

, (1)

which is known [5] to possess the (confining) singularity pattern

{1, 0,∞,∞, 0, 1},

as well as the length-7 cyclic pattern

{•, 0,∞,∞, 0, •,∞, •, 0,∞ . . . },

where the dots • indicate finite, non-zero values that involve the initial conditions. In
order to compute the degree growth of the mapping we introduce initial conditions x0 = r
and x1 = p/q and compute the degree dn in p, q of the successive iterates. We find thus
the sequence of values: 0, 1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 21, 25, 28, 33, 37, 42, 47, 52, 58,
63, 70, 76, 83, 90, 97· · · , which corresponds to a quadratic growth in the initial condition
x1, and thus to a dynamical degree equal to 1. The latter is defined as

λ = lim
n→∞

d1/nn , (2)

and is therefore equal to 1 if the degree dn grows polynomially. A mapping with a
dynamical degree that is equal to 1 is said to be integrable.

To illustrate how the singularity structure is intimately linked to this degree growth we
start from (1) and the same initial conditions, x0 = r and x1 = p/q and iterate the map
without implementing any simplifications. We thus find

x2 = a
p− q

pr

x3 =
qP1

p(p− q)

x4 =
prP2

qP1(p− q)

x5 =
pP3(p− q)

pqrP2P1

x6 =
pqP4P1(p− q)

p2rP3P2(p − q)

x7 =
p2qrP5P2P1(p− q)2

p2qP4P3P1(p− q)2

where the Pn are polynomials in p, q, r of degree n in p, q. Note that the degrees of the
iterates x2, · · · , x7 written in this way, without simplifications, are: 1, 2, 3, 5, 8, 13.

First, let us follow the singularity induced by p = 0. We obtain for xn the sequence
r, 0,∞,∞, 0, s,∞, t, where s,∞, t are the values obtained from x5, x6 and x7 at p = 0
once p is divided out. We remark that this succession of values follows precisely the cyclic
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pattern of (1). Next, we study the singularity induced by p = q. We now find for the
xn the successive values r, 1, 0,∞,∞, 0 and once the (p − q) factor is divided out in x6 a
precise calculation of this iterate leads to the value 1. Similarly, a precise calculation of
x7 for p = q leads to the value r, i.e. we recover the initial value x0 lost in the iterations
through the singularity at x1 = 1. This phenomenon is what is commonly referred to
as singularity confinement. The (finite length) singularity pattern induced by p/q = 1
is precisely the confining pattern given above, and it is clear it could only arise because
of the indeterminate nature of the iterates at x6 and x7. If a mapping solely has such
confining patterns, possibly accompanied by cyclic patterns as the one above induced by
0, we say that the mapping has the singularity confinement property.

As mentioned earlier, an important consequence of the successive simplifications in the
above iterations is a lowering of the degree at each iteration as of x5. Simple inspection
shows that the degrees of the first 7 iterates are indeed 0, 1, 1, 2, 3, 4, 6, 7. Computing
one more iterate we find

x8 =
p4qP6P3P2P

2
1 (p− q)3

p3q2P5P4P2P 2
1 (p− q)3

and the simplification removes a factor p3qP2P
2
1 (p− q)3, which leads to a degree of 10.

Such massive simplifications often have as result that the dynamical degree of the
mapping is equal to 1, and thus that the mapping is integrable. Exceptions do exist
however, for which the simplifications are sufficient for the singularities of the mapping to
confine but do not curb its degree growth sufficiently to have a dynamical degree that is
equal to 1.

Obtaining the degree growth of a birational mapping, relying solely on its singularity
structure, is perfectly possible thanks to the ingenious method proposed by Halburd in
[6]. This method is based on the observation that the degree dn of the n-th iterate of the
mapping, fn, is equal to the number of preimages of some value of that function if one
regards fn as a (complex valued) function of just the single variable x1. However, instead
of finding the preimages for just any arbitrary value, Halburd proposes to use the special
values that appear in the singularity patterns of the mapping. Nonetheless, in order to be
able to derive a precise formula for the degree growth of the mapping, one must not limit
oneself to the confining singularity patterns but also take into account all contributions
stemming from the cyclic patterns (even if, strictly speaking, some of these might not
involve any singular points of the mapping). We illustrate this in the case of (1). We
denote by Zn the spontaneous appearance of the value 1 at some step n. But, as is clear
from its confining singularity pattern, a value of 1 can also be the result of a spontaneous
appearance of 1 five steps before. Thus the degree dn obtained from the preimage of 1 is
given by

dn(1) = Zn + Zn−5. (3)

The same degree is obtained when we count the number of occurrences of 0 and/or ∞ in
the singularity patterns. Neglecting the contributions of the cyclic pattern, as one does in
what we have called the “express” method [7], would simply lead to the conclusion that
the dynamical degree for this mapping is equal to one, something which is of course to be
expected given the integrable character of (1). However, for a precise calculation of the
degree, it is imperative that we consider the contribution of the cyclic pattern. We thus
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have
dn(0) = Zn−1 + Zn−4 + f7(n), (4)

dn(∞) = Zn−2 + Zn−3 + g7(n), (5)

where f7 and g7 are periodic functions of n of period 7: f7 is equal to one when n mod 7
is equal to 1,3,4,6 and 0 otherwise, and g7 equal to 0 if n = 7m and equal to 1 otherwise.

Since the degree computed from (3) with either of the equations (4) or (5) is necessarily
the same, we can establish an inhomogeneous linear equation for Zn involving f7 and g7
and solve it (assuming Zn = 0 for n ≤ 0) to find an explicit expression for dn:

dn = (n2 + 4 + ψ7(n))/7. (6)

Here the periodic function ψ7(n) is obtained by the periodic repetition of the string
[−4, 2,−1, 1, 1,−1, 2], which is in perfect agreement with the degrees computed above.

The literature abounds with studies of the singularity structure of second-order bira-
tional mappings and there exist several methods for determining the precise growth of
such a mapping [8]. The case of higher-order mappings, despite not being a complete
terra incognita [9,10,11,12,13,14,15], has so far drawn less attention. The construction of
integrable higher-order mappings starting from an integrable second-order one by coupling
it to linearisable mappings was introduced by two of the authors, in collaboration with S.
Lafortune in [16], where it was called the Gambier approach. This name refers directly to
the construction of the Gambier mapping [17], which consists of two homographic map-
pings coupled in cascade. An important point must be stressed here. It is well known that
second-order linearisable mappings may exhibit non-confined singularities [18] and as we
shall see throughout this paper, coupling an integrable mapping with confined singulari-
ties to one or more linearisable ones in order to construct higher-order mappings may also
result in mappings with non-confined singularities, be they anticonfined [19] or genuinely
unconfined [20].

Most of the explicit examples we shall present in this paper are of third and fourth order.
However, we believe that our conclusion that an analysis of the singularity structure of
a mapping is indispensable if one wants to understand the structures that underlie the
integrability of a higher order mapping, is in fact applicable to birational mappings of any
order. As we shall see, at higher orders, whereas a mere study of the degree growth of a
mapping does not give any information beyond the integrability or nonintegrability of the
mapping, combining it with singularity analysis may actually provide insight into the way
such a mapping might be integrated.

2 Some exact results

Diller and Favre [21] have established the following classification of the different possible
degree growths for second-order birational autonomous mappings, in terms of the proper-
ties of their singularities.

– the degree growth can be bounded, which is of course the case for periodic mappings,
but if such a mapping is non-periodic it is known to be birationally equivalent to a pro-
jective mapping on P

2 [22]. The singularity confinement property is irrelevant for such
mappings.
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– the degree can grow linearly with n, in which case the mapping preserves a rational
fibration over P1 and is de facto linearizable. Such mappings however do not possess the
singularity confinement property: they necessarily possess non-confined singularities.

– the degree can grow quadratically with n, in which case the mapping always has the
confinement property and, moreover, preserves an elliptic fibration over P1.

In all of the above cases, the dynamical degree will be equal to 1. Such mappings are
very special and generic second-order birational mappings will of course have exponential
degree growth (i.e., they have a dynamical degree that is greater than 1). However, this
does not necessarily preclude them from possessing the singularity confinement property
(as exemplified by the example in [23]).

A similar classification was obtained by one of the authors for non-autonomous second-
order birational mappings, modulo certain general conditions on the type of non-autonomous
behaviour that can be tolerated in the mapping [24].

For higher-order birational mappings, there is no established classification for their
degree growth. There is however an intriguing conjecture formulated by Silverman in [25],
which can be roughly summarized as stating that for a birational mapping ϕ on C

N with
dynamical degree λϕ, the quantity deg(ϕn)λ−n

ϕ grows at most polynomially with n, for a
polynomial with degree at most N . This conjecture has been shown to hold for monomial
mappings for general N (and holds for integrable mappings, i.e. mappings for which λ = 1,
when N = 2), but as far as the authors are aware of it is still an open problem in all other
cases. An obvious consequence of the conjecture is of course that the maximal growth for
an integrable mapping would be dn ∼ nN .

Another important result is that obtained in [26] where it was shown that the degree of
any mapping (possibly of order greater than 2) that can be obtained as a direct reduction
of the A-or B-type discrete KP equations, can only grow as nℓ where ℓ is 0, 1 or 2.
A similar result is expected to hold for the C-and D-type discrete KP equations studied
by Schief et al. [27,28]. This result strongly suggests that mappings that arise ‘naturally’
in the theory of discrete integrable systems, i.e. those which inherit some of the extremely
rich geometric and algebraic structures that are present in the discrete KP equations, will
never have degree growth faster than n2 and any integrable mapping that does exhibit
faster polynomial growth must therefore lose certain of the aforementioned properties. In
this paper, we would like to argue that the property that will be lost in such cases is
singularity confinement.

Another important result in this respect, due to two of the present authors and collab-
orators, concerns the M -th order Gambier mapping. The latter has the form

x
(1)
n+1 =

a(1)x(1) + b(1)

c(1)x(1) + d(1)
,

x
(i)
n+1 =

(e(i)x(i−1) + f (i))x(i) + (g(i)x(i−1) + h(i))

(j(i)x(i−1) + k(i))x(i) + (l(i)x(i−1) +m(i))
, i = 2, . . . , N. (7)

i.e., it consists of a cascade of homographic equations where the solution of each one enters
linearly into the coefficients of the next one. As has been shown in [29], generically an
N -th order Gambier mapping exhibits a degree growth dn ∼ nN−1. Moreover, it is known
that any mapping on P

1 ×P
1 that has linear growth can, after some transformations, be
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expressed as the coupling of two homographies (see e.g. p.139 in [30] and the proof of
Lemma 4.2 in [21]).

Combining these results we arrive at the conjecture that for integrable mappings on
C

N the maximal degree growth will be dn ∼ nN and that this maximal growth can only
be achieved by coupling at least one second-order mapping that exhibits quadratic growth
with a sufficient number of linear (or linearizable) mappings.

This will be the strategy adopted in the sections that follow, but before moving on to
the main body of the paper let us first give a simple example on which the problems that
we wish to address can be easily explained.

An interlude

An illustrative example of such a coupling of an integrable map with quadratic growth
to a linearizable one, is that of a discrete Painlevé equation considered in conjunction with
the defining equation for the functions through which the independent variable enters its
coefficients. Consider the discrete Painlevé equation

xn+1xn−1 =
qn
xn

+
1

x2n
, (8)

where qn = q0λ
n. The equation satisfied by qn is simply qn+1qn−1 = q2n, which is obviously

linearisable. Given the form of (8) we can eliminate qn and obtain for xn the fourth-order
autonomous mapping

x2n(xn+2x
2
n+1xn − 1)(xn−2x

2
n−1xn − 1)− xn+1xn−1(xn+1xn−1x

2
n − 1)2 = 0. (9)

This mapping is equivalent (in the gauge yn = qnxn) to the generalized Y-system for
the Somos-4 recurrence (equation (2.12) in [31]). The degree growth of the fourth order
mapping defined by (9) is readily obtained: we find the sequence dn=0, 0, 0, 1, 3, 7,
14, 24, 38, 57, 81, 111, · · · which shows cubic growth. This result is of course easy to
understand. The equation for qn considered by itself has a solution, q1−n

0 qn1 , with linear
degree growth. This growth is combined with the quadratic one of a QRT mapping, i.e.
the autonomous limit of (8), leading to an overall cubic growth for the solutions of the
coupled system (9). Note that a similar cubic growth has been observed [32] for the tau
functions for the discrete Painlevé equation (8), in terms of the parameter λ in qn = q0λ

n

(the corresponding degree sequence for the case λ = 2 is listed in the On-Line Encyclopedia
of Integer Sequences as sequence A095708 [33]).

On the other hand, if we consider an additive discrete Painlevé equation,

xn+1 + xn−1 =
zn
xn

+
1

x2n
, (10)

in which the independent variable enters through zn = αn + β, we do not expect an
increase in the degree growth beyond the quadratic. Indeed, the function zn now obeys
the linear equation zn+1 − 2zn + zn−1 = 0 the solution of which exhibits zero growth and
adds nothing to the quadratic growth of the QRT mapping. The resulting mapping

xn+2xn+1 − xn+1xn − xnxn−1 + xn−1xn−2 −
1

xn+1
+

2

xn
−

1

xn−1
= 0, (11)
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therefore also has quadratic growth: dn = 0, 0, 0, 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, · · · .

It is worthwhile to take a closer look at the difference between these two couplings
at the level of their singularity structures. For the case of equation (11), we find that
starting from generic x0, x1, x2 and x3 = 0, we have a confined singularity with pattern
{0,∞2, 0}, which is exactly the same pattern as for the second order mapping (10). (The
meaning of the exponents in the pattern above is the following: if we introduce a small
parameter ǫ in lieu of 0 then 0k and ∞k stand for terms proportional to ǫk and ǫ−k).
Similarly, for generic x0, x1, x2 and x3 = ∞ we find that this initial sequence is part of
an anticonfining pattern of the form {· · · , •,∞, •,∞, •, •, •,∞, •,∞, •, · · · } which replaces
the (nonsingular) cyclic pattern {•,∞} that we have for (10) (see [19] for more details
on anticonfined singularities). Note that there are many other singularity patterns for
the fourth order mapping (11), such as {· · · , •,∞, •,∞, •, •, 0, •,∞, •,∞, •, · · · }, that start
from a co-dimension 1 initial condition. There are of course many more that start from
initial conditions with greater co-dimensions, however, in the following we shall only treat
N−point mappings for which we will only consider singularity patterns that arise from
co-dimension 1 initial conditions in which a non-generic value is specified for the initial
condition with the ‘highest’ index, i.e. xN−1 if the first initial condition is given at x0. In
all cases that we consider, these patterns turn out to be sufficient to analyse the behaviour
of the mappings.

Coming back to the difference between (11) and (9), if we analyse the singularities that
arise from special values for x3 for the mapping (9) we find that it also inherits the confining
pattern {0,∞2, 0} from (8), just as (11), but that the original cyclic pattern of (8) is now re-
placed by an unconfining one which exhibits linear growth in the mutiplicities of the singu-
lar values: {•, •, •,∞,∞,∞,∞2,∞2,∞2,∞3, · · · }. This unconfining pattern has its origins
in the anticonfining singularity pattern {· · · , 03, 02, 01, •,∞1, ∞2,∞3,∞4, · · · } that exists
for the equation qn+1qn−1 = q2n through the relation qn = (xn+1xnxn−1 − 1/xn), which
obviously links the linear growth in the above anticonfining pattern to that in the uncon-
fining one for (9). On the other hand, the anticonfining pattern {· · · ,∞,∞, •,∞,∞, · · · }
for the linear relation zn+1 − 2zn + zn−1 = 0 for zn = (xn+1 + xn−1)xn − 1/xn in the ad-
ditive equation (10), clearly cannot produce such an unconfining pattern for the mapping
(11). Hence, though both mappings are integrable, due to these fundamentally different
couplings the singularity structures of the mappings (9) and (11) are very different, the
unconfined singularity structure of the former leading to a cubic degree growth which is
unattainable for the latter.

3 Coupling QRT mappings to linearisable systems

As a first step in the study of the growth properties and singularity structures of higher-
order mappings, we will concentrate on mappings of orders 3 and 4, which we are going
to construct by coupling a QRT mapping to some linearisable equation.

In fact, the simplest case we shall consider is when the latter is just a homographic
mapping (although second-order linearisable equations will also be considered). As was
the case in the example at the end of section 2., we will also restrict ourselves to couplings
that allow us to write the resulting system explicitly as a 3rd or 4th order mapping. This
has as a consequence that the variable of the initial QRT mapping must appear linearly



]ocnmp[ Singularities and growth of higher order discrete equations 53

in the coefficients of the homographic equation. In order to illustrate this we present a
coupled mapping which was first studied in [16].

Let us start with the QRT mapping

xn+1 + xn−1 =
a

xn
+

1

x2n
, (12)

which has the confining singularity pattern {0,∞2, 0}, as well as the cyclic pattern {•,∞, •,
∞, · · · }.

If we wish the two patterns for (12) to appear in the coupled equation we can convince
ourselves that the coupling should have the form yn+1 = H(xnyn) where H is a homog-
raphy of its argument. In order to make the analysis that follows somewhat easier, we
separate the general coupling into two subcases,

A : yn+1 = ynxn, (13)

and,
B : yn+1 = ynxn + 1, (14)

which cover the general case, up to a homography on yn and scaling of xn. Note that
these forms of the coupling yn+1 = H(xnyn) favour singularities at 0 and ∞. There exist
mappings where the singularity patterns involve more than two values. In this case, the
coupling will map these extra values to values for y which will have nothing special. Still,
the analysis can proceed in exactly the same way.

The study of the growth of the resulting third-order mappings is straightforward. In
the case of coupling A we obtain the mapping

yn+1 = yn−1

(

a+
yn−1

yn

)

−
ynyn−1

yn−2
, (15)

for which we find quadratic growth: the degree sequence is dn= 0, 0, 1, 2, 4 , 6, 9, 12, 16,
20, 25, 30, 36, 42, 49, 56, 64, · · · . In the case of coupling B, we find the mapping

yn+1 = 1 +
ynyn−1(a(1 − yn)− yn−1)

(1− yn)2
+
yn(1 + yn−1)

yn−2
, (16)

and the degree sequence dn= 0, 0, 1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308,
· · · , clearly a cubic growth as the third difference of the terms in the sequence leads to
a periodically repeating pattern (0, 1). How can we explain these two different growths?
The answer can be found in their different singularity structure. In the case of coupling
A the singularity structure is simple. We have just

{0,∞} (confined)

{· · · , 02, 0, 0, z0, z1,∞,∞,∞2,∞2,∞3,∞3, · · · } (anticonfined)

where the anticonfining pattern exhibits linear growth in its exponents.
The case of coupling B however has the following singularities, including an unconfined

one:
{0, 1} (confined)



54 ]ocnmp[ R Willox, T Mase, A Ramani and B Grammaticos

{1,∞2,∞,∞,∞, · · · } (unconfined)

{· · · , •, 0, •, 0, y0, y1,∞,∞,∞2,∞2,∞3,∞3,∞4,∞4, · · · } (anticonfined).

Applying Halburd’s method to the patterns obtained from coupling B, and denoting re-
spectively by Zn and Mn the spontaneous appearance of the values 0 and 1 at some step,
the degree dn obtained from the preimage of 0 is just

dn = Zn, (17a)

for n ≥ 0 and that obtained from the preimage of 1 has two contributions, from the
confining and the unconfining patterns:

dn = Zn−1 +Mn. (17b)

The contribution of ∞ comes from the unconfining pattern as well as from the anticon-
fining one. For n ≥ 0 we have

dn =
[n

2

]

+ 2Mn−1 +Mn−2 +Mn−3 + · · · , (17c)

where [p] stands for the integer part of a real number p. Note that this expression is
not valid for n < 0. Moreover, since there are never any negative contributions, the fact
that d0 and d1 vanish means that Mn must vanish for all n ≤ 1. From (17a,b) we find
Mn = dn− dn−1 for n ≥ 1 and substituting this expression into (17c) therefore only yields
a finite number of terms. Combining with (17a), we obtain for the degree the equation
(for n ≥ 1)

dn+1 − 2dn + dn−1 =

[

n+ 1

2

]

=
2n + 1− (−1)n

4
. (18)

Its solution, with initial conditions d0 = 0, d1 = 0 is

dn =
n3

12
+
n2

8
−

n

12
−

1

16
(1− (−1)n), (19)

which reproduces exactly the degree sequence we computed for this coupling (and where
we readily see where the periodic term in the third difference comes from). For further

reference we shall denote this degree as d
{19}
n .

The calculations in the case of coupling A proceed along the same lines. The degree
dn obtained from the preimage of 0, (for n ≥ 0 so we can ignore the contribution from the
anticonfining pattern), is again

dn = Zn, (20a)

while the contribution of the ∞ coming from the anticonfining pattern is, also for n ≥ 0

dn = Zn−1 +
[n

2

]

. (20b)

The equation for the degree becomes now (for n ≥ 1)

dn − dn−1 =
2n+ 1− (−1)n

4
, (21)
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with solution, for initial conditions d0 = 0, d1 = 0

dn =
n2

4
−

1

8
(1− (−1)n). (22)

Again the expression of dn reproduces exactly the degree sequence we have found. Note

also that this expression coincides exactly with the difference d
{19}
n − d

{19}
n−1 .

Next, we introduce one further coupling, resulting in a mapping of order 4. Clearly, we
can combine the two couplings A and B in four different ways. The coupling through two
successive A-type couplings, yn+1 = ynxn and zn+1 = znyn leads to the following equation:

zn+1 =
z3n−1 + aznzn−1zn−2 − z2nzn−3

z2n−2

. (23)

The confining pattern we had for the single A coupling has now disappeared and the
anticonfining pattern which remains now exhibits quadratic growth in the exponents:

{· · · ,∞4,∞2,∞, z0, z1, z2,∞,∞2,∞4,∞6,∞9,∞12, · · · }.

The growth in the exponents we see in the pattern coincides exactly with the degree growth
of the mapping, dn= 0, 0, 0, 1, 2, 4, 6, 9, 12, 16, · · · , and is precisely the same we obtained
for the third order mapping (15) resulting from a single A coupling.

Coupling first with A and then with B, yn+1 = ynxn and zn+1 = znyn + 1, we obtain
the mapping

zn+1 = 1+
zn(zn−1 − 1)

(

zn−1(zn−2 − 1)
(

azn−2(zn − 1) + zn−1(zn−1 − 1)
)

− zn−3zn−2(zn − 1)2
)

(zn − 1)zn−1(zn−2 − 1)z2n−2

.

(24)
The sequence of degrees for this mapping, dn= 0, 0, 0, 1, 3, 7, 13, 22, 34, 50, · · · shows
cubic growth and is, in fact, the very same sequence we found at order three for a single
coupling of type B. The singularity structure for the variable of the fourth-order equation
(24) is actually quite similar to that for the mapping (16) obtained from a single B coupling,
albeit now with a quadratic growth of the exponents in the anticonfining pattern:

{0, 1} (confined)

{1,∞,∞,∞,∞, · · · } (unconfined)

{· · · ,∞4,∞2,∞, z0, z1, z2,∞,∞2,∞4,∞6,∞9,∞12, · · · } (anticonfined).

With the same notations as above we have that the degree dn obtained from the preimage
of 0 is just

dn = Zn, (25a)

for n ≥ 0 because the fact that d0 = 0 precludes any contribution of possible unconfining
patterns extending all the way to −∞ in n and ending with 0. As before, the degree from
the preimage of 1 has two contributions, from both the confining and the unconfining
patterns:

dn = Zn−1 +Mn. (25b)



56 ]ocnmp[ R Willox, T Mase, A Ramani and B Grammaticos

Because d0, d1 and d2 are zero, Mn must vanish for all n ≤ 2. The contribution of ∞
comes from the unconfining pattern with a source term coming from the anticonfining one.
We find, for n ≥ 0

dn =
n2

4
−
n

2
+

1

8
(1− (−1)n) +Mn−1 +Mn−2 +Mn−3 + · · · . (25c)

From (25ab), for n ≥ 1, we have Mn = dn − dn−1 for n ≥ 1 and because d0 = 0 the sum
of the Mk in (25c) is just dn−1. So

dn − dn−1 =
n2

4
−
n

2
+

1

8
(1− (−1)n), (26)

as mentioned before, the integration of which leads precisely to the cubic sequence of

degrees given in expression (19): dn = d
{19}
n−1 for n ≥ 1.

Coupling first with B and then with A leads to the mapping

zn+1 =
zn−3zn(zn−2 − zn−1)(zn−1 − zn)

2 + zn−1

(

z2n−2(zn−1 − zn)
2 − azn−2zn−1zn(zn−1 − zn) + z3n−1zn

)

zn−1z2n−2(zn−1 − zn)2
.

(27)
Implementing two successive B-type couplings, on the other hand, would lead to a map-
ping which is unfortunately too complicated to be explicitly given here. Both map-
pings however have the same unconfined singularity: starting from the unconfined sin-
gularity {1,∞2,∞,∞,∞, · · · } for the variable y we find for z the singularity pattern
{•,∞2,∞3,∞4,∞5, · · · }, for both couplings. Both mappings also have the same anticon-
fining singularity pattern, {· · · ,∞3∞2,∞2,∞,∞, •, •, •,∞,∞2,∞4,∞6,∞9,∞12,∞16, · · · },
which exhibits quadratic growth in the exponents. Both couplings (B-B as well as B-A)
actually lead to the same degree sequence as well, dn= 0, 0, 0, 1, 4, 11, 24, 46, 80, 130,
200, 295, 420, · · · , showing quartic degree growth (n ≥ 1) :

dn =
n4

48
−
n2

12
+

1

32
(1− (−1)n). (28)

Note that the first difference of this quartic function is precisely the cubic one we obtained

in (19): we have d
{19}
n = dn+1 − dn, where d

{19}
n − d

{19}
n−1 is the quadratic function (22).

Computing the growth in this case by Halburd’s method would have been interesting, but
unfortunately, the structure of the singularities of these fourth-order mappings is such that
there are simply not enough equations to perform the calculations.

At this point, it is interesting to examine one more A coupling in the case A+A,
which still gave a quadratic growth for case of the fourth order equation (23) although
the singularity structure had significantly changed compared to the case of a single A
coupling. From the A+A+A coupling of (12) we obtain the mapping

zn+1 =
znzn−3

z2n−2

(

z3n−1zn−3

z3n−2

+ azn −
z2nz

2
n−3

z2n−1zn−4

)

, (29)

for which we find that its growth is no longer quadratic but now becomes cubic. It
is easy to see where this cubic growth stems from. Besides the unconfined singularity
{•, 0, 0, 0, · · · } this mapping also has an anticonfined one,

{· · · , 0, w0, w1, w2, w3,∞,∞3,∞7,∞13,∞22,∞34,∞50,∞70, · · · } (anticonfined),
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on which a cubic growth of the exponents is clear. The overall degree growth of the
mapping cannot be smaller than this and, when computed explicitly, turns out to be
precisely that of the anticonfining pattern. It is given by (19), shifted by two steps:

dn = d
{19}
n−2 for n ≥ 2.

Next, we turn to another QRT mapping (which is known to lead to a q-discrete Painlevé
equation [34])

xn+1xn−1 =
xn − a

xn − b
. (30)

It has two confining singularity patterns, {a, 0, 1/b,∞, b} and {b,∞, 1/b, 0, a}, as well
as a cyclic one {•,∞, •, 0, · · · }. We couple it with a mapping of type B and obtain the
third-order mapping

yn+1 = 1 +
yn−2yn
1− yn−1

1− yn + ayn−1

1− yn + byn−1
. (31)

The confined singularities of (30) induce an unconfined singularity {•,∞,∞,∞, · · · } for
(31), while the cyclic pattern of (30) leads to the cyclic pattern {•, •,∞,∞}. Computing
explicitly the degree we obtain the sequence, dn= 0, 0, 1, 2, 3, 5, 8, 12, 17, 24, 32, 42, 54,
68, 84, 103, 124, 148, · · · , we can confirm that it has cubic growth and, moreover, obtain
an explicit expression for the degree as a function of n (valid for n > 1)

dn =
n3

36
+
n2

24
−

n

12
+

137

144
−

(−1)n

16
+

1− j

27
jn +

1− j2

27
j2n, (32)

where j is a (complex) cubic root of unity.

Coupling to second-order linearisable mappings

Up to now, we have considered only couplings of a QRT mapping to a first-order
linearisable (and in practice, linear) equation. However, it is interesting to analyse the
case where the coupling is to a second-order linearisable equation. Two such cases were
already presented in section 2., but here we will examine two more cases, one where the
coupling is through a projective mapping and one where the second-order mapping is of
Gambier type.

The general form of the projective second-order equation has been given, for instance,
in [35] and [36]. In this case, we shall consider a simplified form of it and use the coupling

zn+1 =
xn

znzn−1
. (33)

Using this coupling with (12) we obtain the fourth-order mapping

zn+1z
3
nz

3
n−1z

2
n−2 + z2nz

3
n−1z

3
n−2zn−3 + aznzn−1zn−2 + 1 = 0. (34)

Its singularity patterns are

{•, •, •,∞, 0,∞} (cyclic),

{0,∞3, 03, •,∞3, 03, •,∞3, 03, · · · } (unconfined).

Direct computation of the degree growth for this mapping leads to the sequence dn= 0,
0, 0, 1, 3, 7, 12, 21, 33, 49, 69, 94, 123, · · · , which exhibits cubic growth. Given the
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structure of the singularities, we can apply Halburd’s method for the calculation of the
degree. Following the same procedure as before we find that the degree obtained from the
preimage of 0 is

dn = Zn + 3(Zn−2 + Zn−5 + Zn−8 + · · · ) +

[n−4

6
]

∑

p=0

δn−4−6p, (35a)

while for ∞ we have

dn = 3(Zn−1 + Zn−4 + Zn−7 + · · · ) +

[n−3

6
]

∑

p=0

δn−3−6p +

[n−5

6
]

∑

p=0

δn−5−6p. (35b)

The terms involving the δn correspond to the contributions from the anticonfining pattern.
Notice that the series appearing in the two expressions are in fact finite sums, since Zk = 0
for k ≤ 2 so as to have dn = 0 for n = 0, 1, 2. Combining the two equations we find

Zn = dn − dn−1 +

[n−6

6
]

∑

p=0

δn−6−6p, (36)

and substituting back into (35) we can obtain explicit expressions for Zn and dn. We
shall not enter into these details but just give the result: for Z we find that Zn = n2/4−
n/2 + (1− (−1)n)/8 −

∑

p=0 δn−6−6p and finally for the degree

dn =
n3

12
−
n2

8
−

n

12
+

1

16
(1− (−1)n)−

[n

6

]

, (37)

which reproduces precisely the degree sequence we have obtained above.
We turn now to a coupling of the mapping (12) with the Gambier-type mapping we

introduced in [17],

zn+1 − zn +
1

zn
−

1

zn−1
= xn. (38)

This leads to a fourth-order mapping of the form

zn+1 = zn−zn−1+zn−2+
1 + a(zn − zn−1 +

1
zn−1

− 1
zn−2

)

(zn − zn−1 +
1

zn−1
− 1

zn−2
)2

−
1

zn
+

1

zn−1
−

1

zn−2
+

1

zn−3
. (39)

The singularity patterns of (39) are

{0,∞} (confined)

{· · · , 0, 0, •, •, 0, 0, z0, z1, z2,∞,∞, •, •,∞,∞, · · · } (anticonfined)

{z0, z1, z2, z3 = z2 −
1

z2
+

1

z1
,∞2,∞2,∞2,∞2, · · · } (unconfined)

for generic values of z0, z1, z2. Calculating the degree growth directly on this mapping
leads to the sequence dn= 0, 0, 0, 1, 4, 10, 24, 51, 96, 164, 264, 405,· · · , which exhibits
quartic growth and can be represented by the expression

dn =
1

24

(

n4 − 4n3 + 2n2 + 16n + ψ4(n)
)

, (40)
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where ψ4(n) is a periodic function obtained by the repetition of the string [0,−15,−24,−15].
Note that the singularity structure for this mapping is such that Halburd’s method cannot
be applied directly to obtain its exact degree growth.

4 Coupling linearisable mappings to other linearisable ones

In section 2 we saw that an Nth order Gambier mapping leads to a degree growth dn ∼
nN−1. Thus if we couple a second-order Gambier mapping, which has a linear degree
growth, to a homographic mapping we expect the resulting mapping, in general, to have
quadratic degree growth. Coupling two second-order Gambier mappings is expected to
lead to a cubic degree growth and so on. However, as we shall see in the following,
there exist departures from this maximal growth scenario depending on the details of the
mappings involved.

As we have explained in previous publications (see for instance [37]) there exist, at
order two, three different families of linearisable mappings: projective ones, Gambier-type
mappings and the family we have dubbed “third-kind”. All the known examples of the
latter belong to the QRT family at the autonomous limit, but, as is the case for all second-
order linearisable systems, contain arbitrary functions of the independent variable. We
shall start by studying the coupling of the third-kind mapping

xn+1xn−1 = x2n − 1, (41)

with the Gambier mapping (38). We thus obtain a fourth-order mapping which is quite
involved and will not be given here, but which has two singularity patterns, a confining
one {0,∞} and an anticonfining one {· · · , 02, 0, •, •, •, •, •,∞,∞2,∞3, · · · }. The direct
computation of the degree yields the following sequence dn= 0, 0, 0, 1, 3, 7, 13, 21,
31, 43, 57, 73, 91, 111, 133, 157· · · , which corresponds to a quadratic growth and not
a cubic one. For n ≥ 3 the sequence of degrees can be represented by the expression
dn = n2 − 5n+ 7.

Another interesting coupling is of (41) with twice the mapping A, which amounts to
introducing

zn+2 =
xnz

2
n+1

zn
. (42)

We obtain thus the fourth-order mapping

zn+1zn−3z
6
n−1 + z2n−2z

2
n(z

4
n−1 − z2nz

2
n−2) = 0. (43)

It has two singularity patterns:

{z0, z1, z2, z3 = ±z22/z1, 0, 0
2, 03, 04, · · · } (unconfined)

{· · · ,∞120,∞84,∞56,∞35,∞20,∞10,∞4,∞, z0, z1, z2, 0, 0
2, 02, •,∞5,∞14,∞28,∞48 · · · } (anticonfined).

Note that for the unconfining pattern, we start from generic z0, z1, z2 but chose a special
value for z3 to enter the singularity.
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The result is that the degree sequence obtained by direct calculation, namely dn= 0, 0,
0, 1, 4, 10, 20, 40, 70, 112, 168, 240, 330, 440, · · · , this time indeed corresponds to cubic
growth, as expected. For n ≥ 6 the degrees are represented by the expression

dn =
(n− 1)(n − 2)(n − 3)

3
. (44)

Next, we consider the coupling of the Gambier mapping

xn+1 − xn +
1

xn
−

1

xn−1
= 0, (45)

with a simple projective one

zn+1 =
xn

znzn−1
. (46)

The resulting fourth-order mapping is

zn+1zn−3zn−2z
2
n−1z

2
n + zn−3(1− z2nz

2
n−1z

2
n−2)− zn = 0. (47)

Two singularity patterns exist here as well:

{0,∞2, 0, 0,∞2, 0, 0, · · · } (unconfined)

{· · · , 0, •, •, z0, z1, z2, ,∞, •, •,∞, · · · } (anticonfined).

The direct calculation of the degree sequence however leads to dn= 0, 0, 0, 1, 2, 4, 7,
10, 14, 19, 24, 30, 37, 47, 52,· · · , and hence a quadratic growth which for n ≥ 1 can be
represented by

dn =
n2

3
− n+

7

9
+
jn + j2n

9
, (48)

where j is a complex cubic root of unity. Note that this growth is different from the cubic
growth one would have obtained by coupling with a Gambier mapping instead.

The expressions for (44) and (48) can, in principle, also be obtained from Halburd’s
method but the calculations are quite involved and we shall not go into these details.

Finally, we shall consider two different couplings of the Gambier mapping

(xn+1 + xn)(xn + xn−1) = a(x2n − 1). (49)

This mapping, although linearisable, has the special property of having confined singu-
larities, with patterns {±1,∓1}. As a consequence of the result by Diller-Favre (21) the
degree of the successive iterates for such a mapping must be bounded, and we have in
fact the sequence 0, 1, 2, 2,· · · . Coupling (49) with another Gambier mapping, using
(38), or with a projective mapping, using (46), it turns out that while in the former case
the degree growth is linear dn = 0, 0, 0, 1, 3, 5, 7, 9, 11, · · · , in the second case it is in fact
quadratic: dn = (n − 3)2 (for n ≥ 3). The singularity structures that appear in both
couplings turn out to be very different. For the fourth order mapping that results from
coupling of (49) with the projective mapping (46), and which has quadratic growth, we
find two unconfining singularity patterns

{0, 02, 03, 04, 05, 06, 07, · · · }
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{∞,∞3,∞6,∞10,∞15,∞21,∞28,∞36, · · · },

the second one of which exhibits quadratic growth in the exponents that appear in it.
For the mapping that is the result of a coupling to the Gambier mapping (38) and which
turned out to only have linear growth, however, we find that the resulting mapping still
possesses one confining pattern, {0,∞} which is now accompanied by an unconfining one
that shows no growth in the exponents that appear in it:

{∞,∞,∞, · · · }.

5 Conclusions

In this paper we studied the singularity structures and growth properties of higher-order
integrable mappings that are obtained through coupling various types of first and sec-
ond order mappings. We showed that, in such mappings, all four types of singularities,
confined, cyclic, anticonfined and unconfined can appear and will play a role in determin-
ing the degree growth of the mapping. A particularly important finding is the existence
of mappings with unconfined singularities, or with anticonfined singularities exhibiting
growth in the associated singularity pattern, but which are still integrable mappings in
that their dynamical degree is equal to 1.

As discussed in Section 2, an integrable Nth order mapping can have a degree growth
dn ∼ nN , and we have given several examples of couplings that achieve this maximal
growth. For a fully linearisable mapping, i.e. fully linearisable by means of birational
transformations, the degree growth is not faster than dn ∼ nN−1. On the other hand, one
does not expect a higher-order mapping integrable through spectral methods to have a
growth faster than n2 (which is, as explained, the maximal growth for mappings that are
obtained as direct reductions of 3 dimensional lattice equations such as the discrete KP or
BKP equations [26]). Therefore it seems that in order to obtain a mapping with maximal
growth, one must couple a mapping with quadratic growth with a linearisable one. In
our paper, we illustrated this with mappings of orders three and four. In every case, it
turned out that the singularity structure of the mapping involved one unconfining pattern.
The case of the coupling of linearisable mappings was also considered resulting, in some
cases, to the maximal possible growth but in some others in a submaximal one depending
on the precise structure of the singularities of the system. The role played by couplings
with Gambier mappings is particularly intriguing as the effect such a coupling has on the
singularity structure and degree growth of the resulting mapping seems to depend greatly
on the mapping it is coupled with.

Moreover, whenever an integrable mapping with unconfined singularities appears we
consider this as an indication of the presence of a coupling to one or more linearisable
equations. Finding the latter and uncoupling the mapping (which is more easily said than
done) would result in an integrable confining mapping, including cases where the base
equation is just a homography on P

1.

We have also shown that in many cases one can use the singularity structure in order
to exactly derive the degree growth using the method proposed by Halburd. However, this
is not always possible. In some cases, the singularities are such that they do not allow one
to establish a sufficient number of equations needed for the calculation of the number of
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preimages and thus of the degree dn. This is something that was already observed in the
case of second-order mappings and we found that this problem is present for higher-order
systems as well. One way to address this difficulty is to introduce auxiliary variables which
increase the number of equations to be satisfied by the preimages. In many cases, this
turns out to be sufficient allowing the direct application of Halburd’s method [7].
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