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Abstract

We present a construction of a class of rational solutions of the Painlevé V Hamilton
equations that exhibit a two-fold degeneracy, meaning that there exist two distinct
solutions that share identical parameters.

The fundamental object of our study is the orbit of translation operators of the

A
(1)
3 affine Weyl group acting on the underlying seed solution that only allows action

of some symmetry operations. By linking points on this orbit to rational solutions, we
establish conditions for such degeneracy to occur after involving in the construction
additional Bäcklund transformations that are inexpressible as translation operators.
This approach enables us to derive explicit expressions for these degenerate solutions.
An advantage of this formalism is that it easily allows generalization to higher Painlevé
systems associated with dressing chains of even period N > 4.

1 Introduction

Painlevé equations are second order nonlinear differential equations with solutions without
any movable critical singularities in the complex plane, a property referred to as Painlevé
property (see e.g. [5]). These solutions are generally not solvable in terms of elementary
functions however for special values of the underlying parameters the Painlevé equations
possess rational and hypergeometric-type of solutions.

Although the discovery of Painlevé equations has its origin in, mathematically mo-
tivated, search for equations satisfying the Painlevé property, these equations and their
solutions found many practical applications and play an important role in several branches
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of mathematical physics, algebraic geometry, applied mathematics,fluid dynamics and sta-
tistical mechanics. A list of the areas where the Painlevé equations found their applications
includes correlation functions of the Ising model, random matrix theory, plasma physics,
asymptotics of nonlinear partial differential equations, quantum cohomology, conformal
field theory, general relativity, nonlinear and fiber optics, Bose-Einstein condensation
[5, 10]. Special solutions, such as rational solutions, turned out to play key role in these
applications and various methods were applied in their study.

This project is dedicated to the study of rational solutions of Painlevé V equation by
presenting an approach that finds conditions for existence of degeneracy of these solutions,
derives systematically their form and also explains in a fundamental way the origin of
degenracy in the setting of Painlevé V Hamiltonian formalism.

Painlevé V equation is invariant under the extended affine Weyl group A
(1)
3 of Bäcklund

transformations [7]. A central object of our study is a commutative subgroup of translation

operators of A
(1)
3 and an orbit formed by their actions on two different types of seed

solutions, one being invariant under an internal automorphism π of A
(1)
3 .

In a recent paper [1], we have shown how by acting with translation operators on a seed
solution, which is invariant under automorphism π, one obtains Umemura polynomials for
Painlevé V equation and their relevant recurrence relations [8]. For the other remaining
seed solution we have shown that only actions by selected translation operators are allowed
while the remaining translation operators produce divergencies.

The presence of degeneracy for a family of rational solutions of Painlevé V equation
was recently pointed out in [4], which also presented an explicit construction of special
function solutions in terms of the generalized Laguerre polynomials.

The novelty of our contribution is that here we link the origin of degeneracy of rational
solutions to existence of divergencies resulting from actions of various translation operators
and Bäcklund transformations on the underlying seed solution and use it to explicitly
construct the two-fold degenerated solutions of the Painlevé V Hamilton equations (5) and
resulting degeneracy of the Painlevé V equation (6) and to find the underlying consistency
relations that dictate values of the parameters of degenerated solutions (see also a preprint
[2] for initial study of such approach). The degeneracy of rational solutions of Painlevé
V equation (6) can be linked to its invariance under the simultaneous γ → −γ, x →
−x transformation. However on the level of Hamiltonian formalism with two canonical
variables which are not both transfroming trivially under γ → −γ, x → −x we find that
the right framework is provided by the method that employs the translation operators and
their orbits presented in this paper. In addition this formalism lends itself to be applied

to study of degeneracy for higher Painlevé systems with the A
(1)
2k+1, k > 1 affine Weyl

symmetry group as understood on basis of their connections with higher dressing chains
of even periodicity [1].

In section 2, we present the Hamiltonian approach to Painlevé V equation and discuss
the construction of rational solutions by actions of translation operators. We describe
solutions formed out by actions with T−n2

2 and T n4

4 translation operators, with ni, i = 2, 4
being positive integers, on the seed solution :

|q = z, p = 0〉αa
, (1)

that describes a solution of Hamilton equations (5) with values of q, p being q = z, p = 0
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and an arbitrary parameter a equal to α1 and with zero parameters α2 and α3. We find
the recurrence relation that allows finding explicitly the solutions derived from (1) and
obtain a close expression for their parameters in terms of a and integers ni, i = 2, 4.

In section 3, we explain a reason for existence of degenerated solutions in the Hamilto-
nian formalism due to infinities associated with actions of some Bäcklund transformations
on the seed solution (1) and use this observation to find the class of parameters that
are being shared by a pair of different in form solutions. We will show that degeneracy
occurs for some rational solutions derived from (1) for the parameter a that happens to
be an even integer. We propose an explicit construction of such solutions for a Bäcklund
transformation M such that infinity is generated if we are to set two sides of inequality

MT(n2, n4; a) 6= T(m2,m4; b) , ni,mi ∈ Z+, i = 2, 4 , (2)

to be equal. This potential divergence is the cause of degeneracy. In relation (2), the
notation is such that T(n2, n4; a) = T−n2

2 T n4

4 |q = z, p = 0〉αa
is a solution linked to the

orbit of the seed solution (1) under actions of T2 and T4 operators. To be responsible for
degeneracy the Bäcklund transformation M must be such that it satisfies two conditions.
First that it will cause the divergence, as described in equation (20), and secondly that
the equation

M (αn;a) = αm;b , (3)

with the symbol αn;a = (a + 2n2, −2n2, −2n4, 2 − a + 2n4) (see relation (14)), will have
a solution for some values of the parameters ni,mi, i = 2, 4 and a, b ensuring that both
sides of inequality (2) will share the same parameter. These two conditions are shown to
be satisfied for M being one of the Bäcklund transformations M12 = s1s2, M34 = s3s4,
M1 = πs1, M4 = π−1s4 and we call the corresponding set of degenerated solutions an
Mi-sequence. One of the main points of this paper is that all these four sequences are
equivalent. Specifically, the sequences M1,M12 and M4 are mapped into each other by
Bäcklund transformations, while M3,4 happens to be equivalent to M1 after a simple re-
definitions of underlying parameters as discussed in subsections 3.1 - 3.3. The equivalence
of these sequences is a new result not contained in unpublished reference [2].

The final section 4, offers conclusions and discussion of the results. This section re-
views the results shown in Examples 3.1, 3.2 and 3.4 to obtain an unifying discussion for
special values of parameters labeling the degenerated solutions of the Hamilton Painlevé
V equations. We find that the condition for a solution constructed in section 2 to be
equal to one of the degenerated solutions is that the underlying parameter a of the seed
solution is an even integer. We also remark that the fact that the discussion of degeneracy
of Painlevé systems is here placed firmly in the setting of the extended affine Weyl group

A
(1)
N−1, N = 4 lends itself naturally to being generalized to Painlevé systems associated

with higher dressing chains of even period N > 4, where more richer degeneracy structure
is expected to appear.

2 Background

We will mainly be working with the Hamiltonian approach to Painlevé V equation with
the Hamilton:

H = −q (q − z) p (p − z) + (1− α1 − α3) pq + α1zp− α2zq , (4)
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where αi, i = 1, 2, 3 are three constant parameters and q, p are two canonical variables
that satisfy Hamilton equations: zqz = dH/dp , zpz = −dH/dq:

zqz = −q(q − z)(2p − z) + (1− α1 − α3)q + α1z ,

zpz = p(p− z)(2q − z)− (1− α1 − α3)p+ α2z ,
(5)

from which one derives Painlevé V equation

yxx = −
yx
x

+

(

1

2y
+

1

y − 1

)

y2x +
(y − 1)2

x2

(

αy +
β

y

)

+
γ

x
y + δ

y(y + 1)

y − 1
, (6)

by eliminating one of the canonical variables and defining y = (q/z)(q/z − 1)−1, as well
as redefining the variable z → x with x = ǫz2/2. The coefficients α, β, γ of the Painlevé
V equation are given by:

α =
1

8
α2
3, β = −

1

8
α2
1, γ =

α2 − α4

2ǫ
, δ = −

1

2

1

ǫ2
, (7)

in terms of components αi = (α1, α2, α3, α4) with α4 = 2−
∑3

i=1 αi.
For δ to take a conventional value of −1

2 we need ǫ2 = 1.
The Hamilton equations are directly connected to symmetric Painlevé V equations:

z
dfi
dz

= fifi+2 (fi+1 − fi−1) + (1− αi+2) fi + αifi , fi+4 = fi, i = 1, 2, 3, 4 ,

via relations f1 = q, f2 = p, f3 = z − q, f4 = z − p. Since our formalism will be shown
to describe degeneracy of Painlevé V Hamilton equations (5) it will also automatically
provide such description for the symmetric Painlevé V equations as well as equation (6).

The Hamilton equations are invariant under Bäcklund transformations, π, si, i = 1, . . ., 4

that satisfy the A
(1)
3 extended affine Weyl group relations:

s2i = 1, sisj = sjsi (j 6= i, i± 1), sisjsi = sjsisj (j = i± 1),

π4 = 1, πsj = sj+1π, si+4 = si. (8)

An explicit form of these transformations on canonical variables p and q is shown in Table
1, Imposing the periodicity condition αi+4 = αi we can compactly describe the action of
the Bäcklund transformations on the constant parameters αi from equations (5) as :

si(αi) = −αi, si(αi±1) = αi + αi±1, si(αi+2) = αi+2, i = 1, 2, 3, 4 . (9)

Furthermore the automorphism π acts according to

π(αi) = αi−1 . (10)

Within the A
(1)
3 extended affine Weyl group one defines an abelian subgroup of trans-

lation operators defined as Ti = ri+3ri+2ri+1ri, i = 1, 2, 3, 4, where ri = r4+i = si for
i = 1, 2, 3 and r4 = π. The translation operators commute among themselves, TiTj = TjTi,
and as follows from relations (9) and (10) generate the following translations when acting
on the αi parameters:

Ti(αi) = αi + 2, Ti(αi−1) = αi−1 − 2, Ti(αj) = αj, j = i+ 1, j = i+ 2 .
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q p α1 α2 α3 α4

s1 q p+ α1

q
−α1 α1 + α2 α3 α1 + α4

s2 q − α2

p
p α1 + α2 −α2 α2 + α3 α4

s3 q p− α3

z−q
α1 α2 + α3 −α3 α3 + α4

s4 q + α4

z−p
p α1 + α4 α2 α3 + α4 −α4

π z − p q α4 α1 α2 α3

Table 1. A
(1)
3 Bäcklund transformations

The translation operators satisfy the following commutation relations

siTisi = Ti+1, siTjsi = Tj , j 6= i, i+ 1, π Ti = Ti+1 π , (11)

with the Bäcklund transformations si, i = 1, 2, 3, 4 and an automorphism π and the usual
periodicity condition Ti+4 = Ti being imposed.

The reference [1] described construction of rational solutions of Painlevé V equation
out of actions of translation operators on seed solutions that first appeared in [9]. Crucial
for this construction is that rational solutions fall into two classes depending on which
of the two types of seed solutions they have been derived from by actions of translation
operators. These two classes of seed solutions are:

1. q = z/2, p = z/2, with the parameter α = (a, 1− a, a, 1− a) ,

2. q = z, p = 0, with the parameter αa = (a, 0, 0, 2−a) denoted here by |q = z, p = 0〉αa
.

They both solve the Hamilton equations (5) for an arbitrary variable a. As shown in [1], the
first class of seed solutions gives rise to Umemura polynomials and the second to special
functions. It was also shown there that the solutions constructed with this procedure
satisfy all sufficient and necessary conditions for the parameters of rational solutions of
Painlevé V equation first derived in [6]. The action of the Bäcklund transformation si on
the seed solution (1) is :

∣

∣q = z, p = 0
〉

αa

si−→
∣

∣si(q = z), si(p = 0)
〉

si(αa)
,

and similarly for all the other Bäcklund transformations.
Acting repeatedly with the π automorphism on the seed solution (1) produces three

other variants of such solution. They all serve as seed solutions in analogous way to the
solution (1). Here we will limit our discussion only to the seed solution (1) and solutions
generated from it as the other solutions and the corresponding structure of degeneracy
follow from the same formalism under appropriate actions of π.

The Bäcklund transformations s2, s3 generate infinity when applied on the solution
(1) and accordingly only actions by some powers of T1, T2, T4 are well defined on a seed
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solution |q = z, p = 0〉αa
. The allowed operations are as follows [1]:

T n1

1 T−n2

2 T n4

4 |q = z, p = 0〉αa
, n1 ∈ Z, n2, n4 ∈ Z+ .

This operation is to be understood as producing new solutions q and p of the Hamilton
equations equal to T n1

1 T−n2

2 T n4

4 (q = z) and T n1

1 T−n2

2 T n4

4 (p = 0) and with a new parameter:

T n1

1 T−n2

2 T n4

4 (αa) = (a+ 2n1 + 2n2, −2n2, −2n4, 2− a+ 2n4 − 2n1) . (12)

Evidently, the action of T n1

1 only amounts to shifting a parameter a and as shown in [1]
leaves the configuration q = z, p = 0 unchanged. Thus :

T n1

1 |q = z, p = 0〉αa
= |q = z, p = 0〉αa+2n1

. (13)

We can therefore, largely, ignore T1 and restrict our discussion to the solutions of Painlevé
V equation of the form :

T(n2, n4; a) = T−n2

2 T n4

4 |q = z, p = 0〉αa
, n2, n4 ∈ Z+ ,

αn;a = T−n2

2 T n4

4 (αa) = (a+ 2n2, −2n2, −2n4, 2− a+ 2n4) ,
(14)

where we listed both the solution generated by translation operators and its corresponding
parameter αn,a. Z+ contains positive integers and zero.

To describe solutions T(n2, n4; a) we will first set n4 = 0 and recall expressions for an
action by T−n

2 [1]:

T−1
2 :

∣

∣q = z, p = 0〉αa
→ |q = z, p =

2z

a− z2
〉

(2+a,−2,0,2−a)

T−n
2 :

∣

∣q = z, p = 0〉αa
→ |qn = z, pn =

2nzRn−1(x, a)

Rn(x, a)

〉

(a+2n,−2n,0,2−a)
,

(15)

where x = −z2/2 and Rn(x, a) are Kummer polynomials that satisfy the recurrence rela-
tions:

2kRk−1(x, a) = Rk(x, a)−Rk(x, a − 2) =
dRk(x, a)

dx
, (16)

Rk+1(x, a) = 2xRk(x, a) + aRk(x, a + 2) , (17)

for k = 0, 1, 2, . . . with R0(x, a) = 1 (see e.g. [2, 3]).
The result for T−n2

2 |q = z, p = 0〉αa
is obtained by inserting n = n2 into equation (15).

The further action with T n4

4 utilizes expression

T4(q) = z − p− (α1 + α4)/(q + α4/(z − p)) ,

T4(p) = q + α4/(z − p)− (α1 + α2 + α4)/(p + (α1 + α4)/(q + α4/(z − p))) ,
(18)

describing action of the translation operator T4 on a solution q, p of the Hamilton equations
(5) with αi = (α1, α2, α3, α4). The recurrence relations obtained from expression (18) are:

q(k) = T k
4 (q0) = z − p(k−1) −

2(k + n2)

vk
= z − uk .

p(k) = T k
4 (p0) = vk −

2k

uk
.

α(k) = (a+ 2n2, −2n2, −2k, 2− a+ 2k), k = 1, 2, . . ., n4 ,

(19)
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where

vk = q(k−1) +
2k − a

z − p(k−1)
, uk = p(k−1) +

2(k + n2)

vk
,

and q0 = z and p0 =
2nzRn2−1(x,a)

Rn2
(x,a) . Setting k = n4 into α(k) we recover αn;a from expression

(14). The closed expressions for q(k), p(k) will be described in the future publication [3].
In the next section we will derive the parameters of degenerated solutions (see e.g.

(22)) and compare with the above value of the parameter αn;a on the orbit of T−n2

2 T n4

4 .
In section 4 we will find that for any a that is an even integer the parameter αn;a can be
cast in a form of a parameter of degenerated pair of solutions.

3 Degeneracy

The above construction of solutions in section 2 did not take into account existence of
any other Bäcklund transformations than translation operators. The Bäcklund transfor-
mations that are not expressible in terms of translation operators will play a role in what
follows. Our construction associates the (two-fold) degeneracy to inequality (2) with two
sides that are two different (finite) solutions of Painlevé V Hamilton equations that share
a common Painlevé V parameter (3).

In relations (2) and (3) the symbol M denotes a Bäcklund transformation, which is not
expressible in terms of translation operators only and such that Tm2

2 T−m4

4 MT(n2, n4; a)
is ill-defined as we will see below. For that reason the two solutions listed in (2) can not
be equal. We will refer to degenerated solutions of relations (2) and (3) as M -sequence.

To determine general conditions for degeneracy let us equate for the moment expressions
on the left and the right sides of the inequality (2) with each other and multiply both sides
with Tm2

2 T−m4

4 to get:

|q = z, p = 0〉αb
= Tm2

2 T−m4

4 MT−n2

2 T n4

4 |q = z, p = 0〉αa
= M T c3

3 T c2
2 T c4

4 |q = z, p = 0〉αa

obtained after commuting Tm2

2 T−m4

4 around M and ignoring potential presence of T1 on
the right hand side since it only amounts to shifting of a. The conditions for degeneracy
in this setting are

c3 6= 0, or c2 > 0 , or c4 < 0 , (20)

since they correspond to presence of operators that will cause divergence when acting on
|q = z, p = 0〉αa

. We next explore several candidates for M to see if they satisfy the
conditions (3) and (20).

We can easily discard M = s2,M = s3 as they do not satisfy the condition (3),
as it would require m2 = −n2 for s2 and m4 = −n4 for s3. Further, one finds that
M = s1,M = s4 do not produce infinities and accordingly fail to satisfy the conditions of
relation (20).

Moving on to the quadratic expressions of the type sisj we find that when j 6= i + 1
(e.g. s1s3 or s2s4) then both expressions do not satisfy the condition (3). The remaining
cases are of the type sisi+1 since sisi−1 can be moved from the left to the right hand side
of relation (2) to become sisi+1. Inspection of s1s2, s2s3, s3s4, s4s1 shows that only
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1. M12 = s1s2,

2. M34 = s3s4,

satisfy the condition (3) and the condition (20) for some values of mi, i = 2, 4. These
conditions are also satisfied by

3. M1 = πs1,

4. M4 = π−1s4,

that are effectively equivalent to the cases of M = π, π−1 [2]. It is also easy to see that
M1 and M4 are not invertible in the context of relation (2) since M−1

i , i = 1, 4 acting on
T(m2,m4; b) will cause a divergence. Thus if an equality between two solutions shown
in (2) held for M1 or M4 then an attempt to invert M1 or M4 would have produced an
infinity.

It suffices to consider operators M that consist of a single si multiplied by π or a
product of two si’s due to the following identities :

sisi+1 = πsi+2T
−1
i+2 = πT−1

i+3si+2, i = 1, 2, 3, 4 ,

si+1si = π−1si−1Ti = π−1Ti−1si−1, i = 1, 2, 3, 4 ,
(21)

for products of neighboring si that reduce them to one single si multiplied by a shift
operator and an automorphism π. Accordingly, in principle, the higher products of si can
be reduced to the lower number of si transformations [2].

We will now examine if there exists equivalence between the four cases with degeneracy
represented by M1,M4,M12,M34. We choose as a starting point the relation (3) with
M = M1 = πs1 and accordingly with the parameter :

πs1 (αn;a) = αm;b = 2(1 + n2 + n4,−m2,m2 − n2,−n4) , (22)

shared between the two solutions appearing in the inequality:

πs1T (n2, n4; a) 6= T (m2,m4; b) . (23)

Expression (22) holds when the following consistency conditions are satisfied :

m4 = n2 −m2 ≥ 0, n2 ≥ m2 ≥ 0, n2,m2, n4 ∈ Z+ , (24)

a = 2(m2 − n2) = −2m4, b = 2 + 2n4 + 2m4 = 2 + 2n4 − a . (25)

Example 3.1. We consider the case of

n2 = n4 = 2, m2 = 1 → m4 = n2 −m2 = 1, αi = 2(5,−1,−1,−2) , (26)

where we used relation (22) to calculate αi and the consistency condition (24). For the
corresponding coefficients of the Painlevé V equation we find from relation (7) for ǫ = 1:

α =
1

2
, β = −

25

2
, γ = 1 . (27)
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According to rules of the M1-sequence we have two degenerated solutions corresponding
to the parameters given in equation (26):

πs1T(n2 = 2, n4 = 2; a = −2) = πs1T
−2
2 T 2

4

∣

∣q = z, p = 0〉αa=−2
,

T(m2 = 1,m4 = 1; b = 8) = T−1
2 T 1

4

∣

∣q = z, p = 0〉αb=8
.

(28)

with a and b determined from relation (25).
We first calculate T(m2 = 1,m4 = 1; b = 8) from expression (28) using the first of

relations (15) with the parameter b followed by action with T4 according to (18) to get

q = z
(−b+ z2 + 2)(z4 − 2z2b+ b

2 + 2b)

(−b+ z2)(−2z2b+ z4 + 4z2 − 2b+ b2)

p = −2z
(−2z2b+ z4 + 4z2 − 2b+ b

2)

(−b+ z2 + 2)(−2z2b+ z4 − 2b+ b2)

(29)

which for b = 8 yields

q =
z(z2 − 6)(z4 − 16z2 + 80)

(z2 − 8)(z4 − 12z2 + 48)
, p =

−2z(z4 − 12z2 + 48)

(z2 − 6)(z − 2)(z + 2)(z2 − 12)
, (30)

with αi = (10,−2,−2,−4) = 2(5,−1,−1, 2). To obtain a solution y(x) of the Painlevé V
equation we transform q → y = (q/z)(q/z − 1)−1 and substitute z by x = −z2/2 with the
result:

y(x) = +
(x+ 3)(x2 + 8x+ 20)

(x+ 2)(x+ 6)
, (31)

which agrees with the expression of the Painlevé V solution w1,1(x; 1) obtained in Example
4.11 of [4].

Next we calculate πs1T(n2 = 2, n4 = 2; a = −2) from relation (28) acting first with
T−2
2 on q = z, p = 0 that according to equation (15) for n = 2 yields:

T−2
2 : q = z, p = 0 → q = z, p =

4z(a − z2)

z4 − 2az2 + a(a+ 2)
, (4 + a,−4, 0, 2 − a) , (32)

Applying T 2
4 , using expression (18), on the configuration in equation (32) we get a com-

plicated solution to Painlevé equation for αi = (4 + a,−4,−4, 6 − a). Inserting a = −2
simplifies αi to (2,−4,−4, 8) and the expressions for q, p simplify to:

q = z
(z4 + 12 z2 + 48) (z8 + 16 z6 + 96 z4 + 192 z2 + 192)

(z8 + 24 z6 + 216 z4 + 768 z2 + 1152) (8 z2 + 24 + z4)
,

p = −4
(z6 + 6 z4 + 24 z2 + 48) (z8 + 24 z6 + 216 z4 + 768 z2 + 1152)

z (z6 + 12 z4 + 72 z2 + 192) (z8 + 16 z6 + 96 z4 + 192 z2 + 192)
,

(33)

Applying then πs1 that transforms : (2,−4,−4, 8) → (10,−2,−2,−4) we are being taken
from solution (33) to:

q = z
(8 z2 + 24 + z4) (z6 + 18 z4 + 144 z2 + 480)

(z4 + 12 z2 + 48) (z6 + 12 z4 + 72 z2 + 192)
,

p = z
(z4 + 12 z2 + 48) (z8 + 16 z6 + 96 z4 + 192 z2 + 192)

(z8 + 24 z6 + 216 z4 + 768 z2 + 1152) (8 z2 + 24 + z4)
,

(34)
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which, as it was the case with expressions (30), solves the Painlevé V Hamilton equation
with αi = (10,−2,−2,−4).

The corresponding solution y(x) = (q/z)(q/z − 1)−1 of the Painlevé V equation for
coefficients (27) reads

y =
(x2 − 4x+ 6)(−x3 + 9x2 − 36x+ 60)

x4 − 12x3 + 54x2 − 96x + 72
, (35)

that agrees with expression for ŵ1,2(x;−1) of Example 4.11 of reference [4].

Example 3.2. Next we consider the case of

n2 = 3, n4 = 1, m2 = 2 → m4 = n2 −m2 = 1, αi = 2(5,−2,−1,−1) , (36)

For the corresponding coefficients of the Painlevé V equation we find from relation (7) for
ǫ = 1:

α =
1

2
, β = −

25

2
, γ = −1 . (37)

We notice that the above coefficients differ from the ones in equation (27) of Example 3.1
only by the sign of γ, which will be of importance below.

Again, according to rules of the M1-sequence we have two degenerated solutions corre-
sponding to the parameters given in equation (36):

πs1T(n2 = 3, n4 = 1; a = −2) = πs1T
−3
2 T 1

4

∣

∣q = z, p = 0〉αa=−2
,

T(m2 = 2,m4 = 1; b = 6) = T−2
2 T 1

4

∣

∣q = z, p = 0〉αb=6
.

(38)

with a = −2m4 = −2, b = 2 + 2n4 + 2m4 = 6.
We first use expression (15) that gives for n = 3 :

T−3
2 : q = z, p = 0 → q = z, p =

6zR2(x, a)

R3(x, a)
, αi = (6 + a,−6, 0, 2 − a) , (39)

where for x = −z2/2:

R1(x, a) = a+ 2x, R2(x, a) = −4x+ (2 + a+ 2x)(a + 2x) (40)

and

R3(x, a) = (2x)3 + 3(2x)2a+ 3(2x)a(a + 2) + a(a+ 2)(a + 4)

as follows from the recurrence relation (17). Using the transformation rule (18) and
applying πs1 and setting a = −2 so that αi = (10,−4,−2,−2) we obtain for the first of
equations (38)

πs1T(n2 = 3, n4 = 1; a = −2) = (q =
z(z6 + 22z4 + 176z2 + 480)

(z2 + 8)(z4 + 48 + 12z2)
,

p =
z(z2 + 8)(z4 + 12z2 + 24)

(6 + z2)(z2 + 4)(z2 + 12)
) ,
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which gives for y = (q/z)/(q/z − 1):

y =
(−x+ 3)(x2 − 8x+ 20)

(−x+ 6)(−x+ 2)
(41)

Note that going from Example 3.1 to Example 3.2 (αi = 2(5,−1,−1,−2) → αi =
2(5,−2,−1,−1)) only amounts to flipping sign of γ: γ → −γ in the Painlevé V equa-
tion. However the transformation γ → −γ amounts to x → −x. Thus we go from the
solution (31) of Painlevé V equation to the solution (41) only by flipping the sign of x as
it is easily verified by inspection.

Using (39) and the transformation rule (18) we get

T(m2 = 2,m4 = 1; b = 6) = (q =
z(z4 − 8z2 + 24)(z6 − 18z4 + 144z2 − 480)

(z4 − 12z2 + 48)(72z2 − 12z4 + z6 − 192)
,

p =
−4z(z4 − 12z2 + 24)(72z2 − 12z4 + z6 − 192)

(z4 − 8z2 + 24)(−24z6 + 216z4 − 768z2 + 1152 + z8)
) ,

which results in y = (q/z)/(q/z − 1) equal to

y = −
(x2 + 4x+ 6)(−x3 − 9x2 − 36x− 60)

(12x3 + x4 + 54x2 + 96x+ 72)
, (42)

which also follows from equation (35) by flipping the sign of x.

We will now discuss other choices for the transformation M and compare them to
results obtained by acting with Bäcklund transformations π, s3, s4 on αn;a from equation
(22). We will find for π, s4 that the resulting parameters will agree with those obtained
from relations (3) with M4 = π−1s4,M12 = s1s2, respectively, each with two degenerated
solutions entering inequality (2). The case of M34 = s3s4 will be shown to be equivalent
to M1 although it differs from the sequence obtained by acting with s3.

To trace more easily the effect of these transformations we rename the integers ni → xi,
mi → yi for i = 1, 2 to obtain from expression (22), 2(1+ n2+n4,−m2,m2 −n2,−n4), an
expression

πs1 (αn;a) = αm;b = 2(1 + x2 + x4,−y2, y2 − x2,−x4) , (43)

with the consistency condition x2 ≥ y2.
Applying π−1, s3, s4 on the above relation we get the following expressions for the

Bäcklund transforms αi parameters:

π−1 : 2(−y2, y2 − x2,−x4, 1 + x2 + x4) , (44)

s3 : 2(1 + x2 + x4,−x2, x2 − y2, y2 − x2 − x4) , (45)

s4 : 2(1 + x2,−y2, y2 − x2 − x4, x4) . (46)

Next, we review these expressions in the order they appeared above in equations (44)-
(46) and associate a new Bäcklund transformations Mi to each of the three cases. We
will be interested in whether the consistency conditions that will hold for each of the
Mi sequences will be fully derivable from the consistency condition (24) by action of
the Bäcklund transformations π−1, s3, s4 used in the above relations. If the consistency
relations are mapped into each other together with the parameters then we will conclude
that the two sequences are fully equivalent and the mapping did not generate a new
degeneracy.
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3.1 Case of expression (44) with M4 = π
−1
s4

Perform the following change of variables on variables of equation (44):

y2 → n2, x4 → m4, x2 → n2 + n4 −m4 (47)

with the condition x2 ≥ y2 transforming into n2+n4−m4 > n2 or n4 ≥ m4. The condition
y4 = x2 − y2 of M1-sequence is set to consistently transform to m2 = n4 −m4. This way
we obtain :

α = 2(−n2,m4 − n4,−m4, 1 + n2 + n4), n4 ≥ m4 ≥ 0, n2,m4 ∈ Z+ , (48)

which is associated with M4 = π−1s4 and

π−1s4T
−n2

2 T n4

4 |q = z, p = 0〉αa
6= T−m2

2 Tm4

4 (q = z, p = 0)b , (49)

with

a = 2(1 + n4 −m4) = 2 + 2m2, b = 2(−m2 − n2) = 2(1 − n2)− a, m2 = n4 −m4 .

We see that the model described by M1 = πs1 with its condition n2 ≥ m2 is being mapped
into a model described by M4 = π−1s4 with n4 ≥ m4 with only difference that negative
a/positive b transforms into positive a/negative b. Thus with consistency conditions being
mapped into each other the two sequences are fully equivalent. This will be illustrated in
the following example.

Example 3.3. Let us choose

m4 = 0, n4 = 1, n2 = 1, → a = 4, b = −4, m2 = n4 −m4 = 1 .

The corresponding solutions are :

π−1s4T
1
4 T

−1
2

∣

∣q = z, p = 0
〉

αa=4
6= T−1

2 T 0
4

∣

∣q = z, p = 0
〉

αb=−4
(50)

with αi = (−2,−2, 0, 6) holding for both sides.

We find for the left hand side of inequality (50):

q = −
2z(−4z2 + z4 + 8)

(−2 + z2)(−8z2 + z4 + 8)
, p =

2z(−8z2 + z4 + 8)

(z2 − 4)(−4z2 + z4 + 8)
,

while on the right hand side of (50) we find:

q = z, p =
2z

−4− z2
,

and indeed both solutions satisfy the Painlevé V Hamilton equations (5) with αi =
2(−1,−1, 0, 3).

Corresponding to the above parameters we find by inverting relations (47) that x2 = 2 >
y2 = 1 and x4 = 0. Further, since the condition m2 = n4−m4 transforms into y4 = x2−y2
we get y4 = 1 for the M1 = πs1 sequence. It follows that the corresponding parameter
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found from expression (3) is αi = 2(3,−1,−1, 0). Next we find that the corresponding
solutions of (2) for M1 = πs1 sequence are

πs1T (x2 = 2, x4 = 0; a = −2) = πs1T
−2
2 |q = z, p = 0〉αa=−2

= |(q =
z6 + 6z4

z(z4 + 4z2)
, p = z〉(6,−2,−2,0) ,

versus

T (y2 = 1, y4 = 1; b = 4) = T−1
2 T4|q = z, p = 0〉αb=4

= |q =
z
(

z2 − 2
) (

z4 − 8z2 + 24
)

(z2 − 4) (z4 − 4z2 + 8)
, p = −

2z
(

z4 − 4z2 + 8
)

(z2 − 2) (z4 − 8z2 + 8)
〉(6,−2,−2,0) ,

with both solutions of the Painlevé V equations (5) sharing the same parameters

αi = (6,−2,−2, 0) . (51)

Thus, as announced, we have been able to map two solutions of M1 and M4 sequences
into each other.

3.2 Case of expression (45), s3(M1) versus M34 = s3s4

Here we consider s3(αi) given in the equation (45) and we will show that although it
agrees with the parameters αi given in formula (3) when derived from expression (2) with
M34 = s3s4 the consistency conditions will not match. To study M34 = s3s4 we consider
the inequality

s3s4T
−n2

2 T n4

4 |q = z, p = 0〉αa
6= T−m2

2 Tm4

4 |q = z, p = 0〉αb
.

For parameters of solutions on both sides of this inequality to be equal we need to have

s3s4T
−n2

2 T n4

4 (a, 0, 0, 2 − a) = s3s4(a+ 2n2,−2n2,−2n4, 2− a+ 2n4)

= (2 + 2n2 + 2n4, 2− a− 2n2; a− 2,−2n4)

= T−m2

2 Tm4

4 (b, 0, 0, 2 − b) = (b+ 2m2,−2m2,−2m4, 2− b+ 2m4) .

(52)

Solving for a and b yields

a = 2− 2m4 = 2 + 2m2 − 2n2, b = 2 + 2m4 + 2n4 = 4 + 2n2 − a > 0 , (53)

with the consistency relation

m4 = n2 −m2 , (54)

required for the above equations to hold.

We notice that this consistency relation ensures that b is always positive.

Inserting the values of a and b back into the relation (52) we obtain:

αi = 2(1 + n2 + n4,−m2,m2 − n2,−n4) , (55)
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in full agreement with equation (45) reproduced below:

s3(αi) = 2(1 + x2 + x4,−x2, x2 − y2, y2 − x2 − x4) ,

when we identify x2 = m2, y2 = n2 , x4 = n2 + n4 − m2. Note however that since
n2 −m2 ≥ 0 it follows that (54) reads in terms of these variables as: y2 − x2 ≥ 0, which
is just opposite to the original condition x2 − y2 ≥ 0 of the M1-sequence seen below (45).
Thus this time the consistency relations did not get mapped into each other.

Does this result mean that theM34-sequence is independent of theM1-sequence because
s3 failed to connect those two cases? It turns out that M34-sequence is fully equivalent to
M1-sequence because of relation s3s4 = πs1T

−1
1 , which is a special case of relations (21).

It follows from this relation that

s3s4T
−n2

2 T n4

4 |q = z, p = 0〉αa=2−2m4
= πs1T

−1
1 T−n2

2 T n4

4 |q = z, p = 0〉αa=2−2m4

= πs1T
−n2

2 T n4

4 |q = z, p = 0〉αa=−2m4
,

(56)

where we inserted the value of a from relation (53) and used relation (13). The above
expression is equal to the one given in equation (23) then one takes into account the
value of the parameter a given in (25). Thus the M34-sequence is fully equivalent to the
M1-sequence.

It is still warranted to consider the sequence generated by action of s3 on the M1-
sequence. The following observation is crucial. Consider αi = (α1, α2, α3, α4) entering
expressions for the parameters α = α2

3/8, β = −α2
1/8 and γ = (α2 −α4)/2 of the Painlevé

V equation (6). The Bäcklund transformation s3 transforms αi into (α1, α2+α3,−α3, α4+
α3) maintaining the parameters α, β, γ of the Painlevé V equation (6) clearly invariant.
Note that the remaining Bäcklund transformations s1, s2, s4 will all change the parameters
α, β, γ. However the s3 transforms q, p as follows

s3 : q → q, p → p−
α3

z − q
,

and accordingly will leave the solution y of the Painlevé V equation (6) invariant. To
illustrate these considerations we will act with s3 on configurations given in example 3.1.

Example 3.4. As an example we consider acting with s3 on (34), which transforms
parameters as follows: 2(5,−1,−1,−2) → 2(5,−2, 1,−3) Accordingly, we deal with the
case of

n2 = 1, n4 = 3, m2 = 2 → m4 = n2 −m2 = −1, αi = (5,−2, 1,−3). (57)

We note that now m4 = n2−m2 is negative, however the corresponding coefficients of the
Painlevé V equation, for ǫ = 1, are the ones in (27) as seen in Example 3.1. Acting with
s3 on solution (30) we get

q =
z(z2 − 6)(z4 − 16z2 + 80)

(z2 − 8)(z4 − 12z2 + 48)
, p =

(z4 − 12z2 + 48)

z(z2 − 6)
, (58)

while acting with s3 on (34), we get

q = z
(8 z2 + 24 + z4) (z6 + 18 z4 + 144 z2 + 480)

(z4 + 12 z2 + 48) (z6 + 12 z4 + 72 z2 + 192)
,

p = −4
(z4 + 12 z2 + 48)

(z (8 z2 + 24 + z4)
.

(59)
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Solutions (58) and (59) satisfy the Painlevé V Hamilton equations (5) with αi = (10,−4, 2,−6)
that differ from solutions in Example 3.1, which satisfy the Painlevé V Hamilton equations
with the αi = 2(5,−1,−1,−2). However, since s3(10,−4, 2,−6) = 2(5,−1,−1,−2) and
s3(y(x)) = y(x), they give rise to the identical solutions y(x) as obtained in Example 3.1
for the Painlevé V equation (6) with the coefficients (27).

3.3 Case of expression (46) with M12 = s1s2

In this case we consider s4(α) from equation (46) and compare with an expression for the
α that we obtain from (3) for M = M12:

α = T−m2

2 Tm4

4 (b, 0, 0, 2 − b) = T−m2

2 Tm4

4 (b, 0, 0, 2 − b)

= (b+ 2m2,−2m2,−2m4, 2− b+ 2m4)

= s1s2T
−n2

2 T n4

4 (a, 0, 0, 2 − a) = (−a, a+ 2n2,−2n2 − 2m2, 2 + 2n4) .

(60)

The consistency requires this time that:

m4 = n2 + n4 , (61)

which leads to the following expressions:

a = −2n2 − 2m2, b = 2n2 = −2m2 − a .

Plugging these values back into equation (60) we obtain an expression for α:

α = 2(n2 +m2,−m2,−n2 − n4, 1 + n4) m2, n4 ∈ Z+, (62)

that also follows from inequality (2) with M12 = s1s2:

s1s2T
−n2

2 T n4

4

∣

∣

∣
q = z, p = 0

〉

αa

6= T−m2

2 Tm4

4

∣

∣

∣
q = z, p = 0

〉

αb

, m4 = n2 + n4 . (63)

Expression (60) agrees with the result of (46) for :

m2 = y2, n4 = x4 − 1, n2 = x2 − y2 + 1

Thus the coefficients x2, x4, y2 need to satisfy inequalities x4 ≥ 1, x2 ≥ y2, which are
consistent with conditions (25). Note that x2 + 1 > y2 always holds since x2 ≥ y2 and
accordingly n2 > 0.

We see that both sequences will map into each other when x4 variable of the M1

sequence takes values x4 = 1, 2, . . . and correspondingly the n2 variable of theM12 sequence
takes values n2 = 1, 2, . . ..

4 Discussion

We have examined the cases of two-fold degeneracy of the Painlevé V rational solutions
connected with the Bäcklund transformations M1 = πs1,M4 = π−1s4,M34 = s3s4,M12 =
s1s2 that enter the basic inequality (2) that relates the two degenerated solutions with
the equal parameter (3) and showed that all four sequences of degenerated solutions are
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fully equivalent by employing Bäcklund transformations π−1 and s4 to show equivalence
of M1-sequence with those of M4 = π−1s4,M12 = s1s2 and relation s3s4 = πs1T

−1
1 for

equivalence between M1 = πs1 and M34 = s3s4.
In number of Examples 3.1, 3.2 and 3.4 we have considered solutions with the Painlevé

V coefficients:

α =
1

2
, β = −

25

2
, γ = ±1 . (64)

Let us now summarize the results of these considerations in the setting of M1-sequence.
Recalling the expression (7) for the Painlevé V equation coefficients with ǫ = 1 and

inserting the relevant components of αi (22) into these expressions we find that in order
to match them with the expression (64) we need to solve the following three equations

(1 + n2 + n4)
2 = 25, (m2 − n2)

2 = 1, (n4 −m2)
2 = 1 , (65)

for the three variables n2, n4,m2 that all need to be positive integers.
Equations (65) have 8 solutions in total but only half of them with positive integers

n2, n4,m2 ∈ Z+. We list these 4 relevant solutions below:

A) n2 = n4 = 2, m2 = 1 → m4 = n2 −m2 = 1, γ = 1, αi = 2(5,−1,−1,−2).

B) n2 = 3, n4 = 1, m2 = 2 → m4 = n2 −m2 = 1, γ = −1, αi = 2(5,−2,−1,−1).

C) n2 = 1, n4 = 3, m2 = 2 → m4 = n2 −m2 = −1, γ = 1, αi = 2(5,−2, 1,−3).

D) n2 = 2, n4 = 2, m2 = 3 → m4 = n2 −m2 = −1, γ = −1, αi = 2(5,−3, 1,−2).

Items A) and B) have been discussed in Examples 3.1 and 3.2, where we noticed that they
satisfy the condition n2 ≥ m2 (or m4 ≥ 0) and are therefore a part of the M1-sequence.

We have seen that on the level of Painlevé V equation (6) the transformation of solutions
obtained inside the M1-sequence with the parameters listed in case A) to solutions of case
B) was fully accomplished by flipping γ → −γ or equivalently flipping x → −x. On
the level of the Hamilton Painlevé V equations the corresponding q, p solutions solve the
equations (5) with different αi given above in A) and B). Recall that in [1] we have
introduced x as x = z2/(2ǫ) with ǫ2 = 1. Thus here we are exercising the freedom of
changing a sign of ǫ that changes a sign of γ (see again [1]).

The cases C) and D) are mapped from A) and B) by action of s3:

C) = s3(A)), D) = s3(B)),

as can be verified by inspecting the parameters αi. We have seen the case C) being dis-
cussed in Example 3.4. Each of these two cases exhibits therefore the two-fold degeneracy
of the Hamilton Painlevé V equations with solutions that are an s3 image of the corre-
sponding solutions of M1-sequence with parameters of case A) and B). Since s3 keeps both
the coefficients and the solution of the Painlevé V equation (6) invariant, we conclude that
the Painlevé V solutions associated to cases C) and D) are fully equal to those already
found in cases A) and B).

In all examples we have seen a and b are even integers and having (to some degree) an
opposite sign. For the M1-sequence a ≤ 0 and b ≥ 2 and such that a/2 + b/2 = 1, 2, . . ..
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For the M12 sequence a ≤ 0 and b ≥ 0 and a/2+b/2 = 0,−1,−2, . . .. For the M4 sequence
a ≥ 0 and b ≤ 0 such that a/2 + b/2 = 0,−1,−2, . . .. For the M34-sequence it holds that
a ≤ 2 and b ≥ 2 and a/2+ b/2 = 2, 3, . . . as expected since the M34-sequence is equivalent
to the M1-sequence only with a shifted by 2.

As we have noted in section 2 the value of the parameter a can be shifted by an even
integer 2n through the action of T n

1 . For degenerated solutions one can use this freedom
to set, for example, the parameter a to zero since it is an even integer. However the same
operation will raise or lower the value of the connected parameter b and therefore maintain
invariant the value of their sum.

Example 4.1. As an example consider a and b such that a = −2n and b = 2n + 2k for
n ∈ Z and k = 1, 2, 3, . . .. Comparing with the paragraph above we see that this case fits
into the M1-sequence of degenerated solutions. Comparing with the expressions (24) and
(25) we find that n4 = k − 1 and m4 = n. We conclude that for any fixed integers n ≥ 0
and k > 0 we find a pair of solutions belonging to M1-sequence:

πs1T(n2, k − 1; a = −2n) and T(n2 − n, n; b = 2n + 2k) ,

that satisfy the Painlevé V equations with the same parameters

αi = 2(1 + n2 + n4,−m2,m2 − n2,−n4) = 2(n2 + k, n− n2,−n, 1− k) , (66)

valid for any integer n2 such that n2 ≥ n.

Comparing α(m; b) = (b+ 2m2, −2m2, −2m4, 2− b+ 2m4) from expression (14). we
recognize that it agrees with expression for the parameter (66) for b = 2(k + n) and
m2 = n2 − n ≥ 0, n = m4.

In summary, we have developed an explicit construction that applies to the two-fold de-
generacy of Painlevé V Hamilton equations and determines the two degenerated solutions
and the parameters of Painlevé V equations that they share. We also found a condition
for a solution T(m; b) on the orbit of T−m2

2 Tm4

4 to agree with one of the two degenerated
solutions and the condition is that the parameter b is an even integer ( a positive integer
for the M1-sequence and a negative for the M4-sequence).

Recall that the Painlevé V Hamilton system is closely related to the dressing chain of
even, N = 4 periodicity, see [1] and references therein. Our discussion based on translation
operators indicates that degeneracy will exist for all dressing chains of even periodicity
because of existence of exclusion rules for translation operators permitted to act on special
types of seed solutions. Especially, it will occur for N = 6 periodic dressing chain discussed
in [1]. A natural problem to investigate is whether a degree of degeneracy (how many
solutions will share the parameter αi) will change in case of higher dressing chains of even
period N > 4.
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