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Abstract: We consider here the class of fully-nonlinear symmetry-integrable third-order
evolution equations in 141 dimensions that were proposed recently in Open Communications
in Nonlinear Mathematical Physics, vol. 2, 216-228 (2022). In particular, we report all zero-
order and higher-order potentialisations for this class of equations using their integrating
factors (or multipliers) up to order four. Chains of connecting evolution equations are also
obtained by multi-potentialisations.

1 Introduction

We recently reported a class of fully-nonlinear symmetry-integrable evolution equations in
141 dimensions with rational nonlinearities in their highest derivative [4]. This class of
equations admit an infinite number of higher-order generalised symmetries, also called Lie-
Béacklund symmetries, and the equations admit recursion operators that generate these sym-
metries. This class of equations is presented by the following four cases:

Proposition 1. [J]/: The following evolution equations, in the class uy = F(ug,Uzy, Uzyy)
where F' a rational function in Uz, are symmetry-integrable:

e Case I: The equation

6
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where {a, B} are arbitrary constants, not simultaneously zero, and Q(u,) needs to
satisfy

Q 440

which admits for a # 0 the gemeral solution

3 2
Q(uz) = c5 (u;p - é) + ¢y (u;p - é) +c3 (u;p + é)
(6% (6% (6%

/8 _1
+co <ux + E) + c1. (1.3)
and for a = 0, the general solution is
Q(uz) = sty + caul) + c3ul + oty + 1. (1.4)
Here c; are arbitrary constants.

e Case II: The equation
ud, (A1 + )\gum)?’

Ut = 5 (15)
u%fﬂfﬂ
where {\1, Ao} are arbitrary constants but not simultaneously zero.
e Case III: The equation
11
au,
wy = (qug + ) - (1.6)
2
[(auy + B)uges — 302, ]
where {a, B} are arbitrary constants but not simultaneously zero.
e Case IV: The equation
4u? U

(2bu2 — 2upuyyy + 3u2,)? = (b—9)?’

where b is an arbitrary constant and S is the Schwarzian derivative

2
g Yooe 3 <@> . (1.8)

Uy 2\ ug

The recursion operators for each equation listed in Proposition [l is given in [4] (regarding
recursion operators we refer to [5] and [2], and the references therein).

The current article is organised as follows: In Section 2 we discuss the method that is
applied here for the potentialisation of the evolution equations. We state a useful Proposi-
tion for the calculation of the conserved currents and define the concept of a higher-order
potentialisation, whereby the “usual” potentialisation (see for example [2]) is defined as the
zero-order potentialisation of an evolution equation. In Section 3 we report all potentisalisa-
tions of the equations listed in Proposition 1 and also perform multi-potentialisations where
possible. In Section 4 we make some concluding remarks.
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2  Owur method using higher-order potentialisations

In this section we describe the method that is apply to systematically map the equations listed
in Proposition 1 by using the equations’ conservation laws. The first step in to calculate the
equations’ integrating factors to obtain, in each case, an appropriate conserved current and
flux. We give a short review and introduce our notations.

On the notation: For a given function V(x, u, Uy, Ugy, Ugzg, - - - Unz ), WheTe Uy, denotes the
nth-derivative of u with respect to x, we use the notation ¥[x,u] to indicate the dependencies.
The order of W is defined by the highest x-derivation in the argument of the function. The
same notation is also used to indicate the dependencies of a linear operator.

It is well known that every integrating factor A[z,u| (also known as a multiplier) of a given
nth-order evolution equation

E :=u — Flz,u] =0 (2.1)
leads to a conserved current ®' and a corresponding flux ®* for (2.1]), such that
D@ [z, u] + D" [z, u] =0. (2.2)
E=0

Now, A is an integrating factor of (2.I)) if and only if

Elu] (Alzx,u]E) =0, (2.3)

where E[u] denotes the Euler operator

. 0 0 0 0 0
Eu):= =—— — Dyo — — D, D? - D3 2.4
[ ou Lo out ° Oug @ © OUgy @ © QMg + (2:4)
Note that condition (2.3]) is equivalent to
Ly [u]A[z, u] =0 (2.5a)
E=0
and Lp[u]E — Li[u]lE = 0. (2.5b)
Here Lg denotes the linear operator
oF OF OF ok OF
Lplu] = - + =D+ ——D, + ——D? D3 ... 2.
mlu] ou + Ou et Ouy + Ougy ° + OUgrs + (2.62)
and L7, the adjoint of Lg, namely
OF OF OF ok OF
Lylu) := — — Do — — D, D? -D? 2.
Blu] ou t° Ouy ° Ouy T e Oy z © OUgra (2.6b)

For more details, we refer to [I] and [2], and the references therein. Note that the first
condition (2.5al) requires A to be an adjoint symmetry for (21]), whereas the second condition
[235D) requires A to be self-adjoint, which means that A must necessarily be even-order. If
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A is an adjoint symmetry for (2]), then, due to the linear form of the adjoint symmetry
condition (Z.5al), we know that A must be linear in its highest derivative. This observation
is essential (see Proposition 2 below).

The relation between a non-zero integrating factors A and its corresponding conserved
currents ®! for (2.1)) is given by the relation

Alu] = E[u]®*[z, u], (2.7)

whereby the flux ®*, say of order m, is related to A, F' and ®* as follows [2]:

%[z, u) = —D;L(AF) + Z(_l)k(D;F) Dkl <85(q_>+k)> . (2.8)

Following the relation (7)), it is clear that the order of a conserved current ®' for (2.1))
is closely related to the order of the corresponding integrating factor A. To potentialise an
evolution equation (1), if at all possible, we make use of the equation’s integrating factors
whereby the corresponding lowest order conserved current ® are of particular interest. In
this sense the following statement, which follows directly from (235al) and (2.5b)), is useful:

Proposition 2: Assume that a given nth-order evolution equation of the form (211), viz.
Ut = F[$7 ’LL],

admits an integrating factor A of order 2m, where m is a natural number or zero and n > 1.
Then A is of the form

Alz,u] = g1(z,u, Ug, - - Umna ) U2m)z + 90 (T Uy Ug, - -+ 5 U2m—1)z) (2.9)

and the lowest order conserved current ®' of (21)) is of order m, i.e.

Oz, u] = PNz, Uy Ug, - - s Umnar),s (2.10)
whereby
9’ m
oz (=1)™g1(t, g, - . Umg)- (2.11)

In the current article we are interested in potentialisations of zero and higher-order, which
we define as follows:

Definition: Consider an nth-order evolution equation of the form (2.1) and assume that it
admits an integrating factor A with corresponding conserved current ®' and flux ®*.

a) Equation (21)) is said to be potentialisable of order zero if there exist a new depen-
dent variable v(z,t), where

vg i= B[z, ], that is (2.12a)
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b)

vy = —P% [z, u, (2.12b)
such that
Oz, u) = Go(x, vz, ..., Ung). (2.12¢)
v =0t

The so constructed evolution equation
v = —Go(T, Vg, .., Ung) (2.12d)

is a zero-order potential equation for (21)), where the explicit form of Gy depends
on the given equation (21)), on its conserved current ®', and on the corresponding flux
T,

Equation (21)) is said to be potentialisable of order one if there exist a new depen-
dent variable w(x,t), where

wy := Dy ®'x,u], that is (2.13a)
wy = =D, Oz, ul, (2.13Db)
such that
D, ®% [z, u] = Gi(x, W, Wy, ..., Wnz). (2.13c)
wWe=D, ot

The so constructed evolution equation
wy = —G1(z,w, wey ..., Wny) (2.13d)

is a first-order potential equation for (2)), where the explicit form of Gy depends
on the given equation (21), on its conserved current ®, and on the corresponding flux
o,

Equation (2.1)) is said to be potentialisable of order p if there exist a new dependent
variable w(zx,t), where p > 1 and

wy = DP®'[x,u], that is (2.14a)
wy = —DPO*[x, ul, (2.14b)
such that
DP &% [z, u] = Gp(z,w, Wy, ..., Wnz). (2.14c¢)
we=DEdt

The so constructed evolution equation
wy = —Gp(x, W, Wy, ..., Wny) (2.14d)

is a potential equation of order p for (2.1), where the explicit form of G, depends
on the given equation (21), on its conserved current ®', and on the corresponding flux
T,
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Remarks:

1. From the above Definition it is clear that an evolution equation of the form (2.1I), which
admits a zero-order potentialisation with v, = ®!, will also admit a first-order poten-
tialisation w, = D,®! for the same conserved current ®!, whereby v, = w. However,
an equation that does not admit a zero-order potentialisation may, or may not, admit
a first-order potentialisation. This is also the case for higher-order potentialisations.

2. Of course, a given equation (2] might not admit a potentialisation of any order for
a specific integrating factor. As far as we know, this can not be established a priori
without the knowledge of the integrating factors and the corresponding conservation
laws. It is therefore sensible, in our opinion, to do a classification of all integrating
factors with all possible corresponding potentialisations that follow, in particular for
symmetry-integrable evolution equation.

3. In the current work, we are restricting ourselves to integrating factors that do not
depend explicitly on their independent variables.

3 Potentialisations of the equations of Proposition 1

We now consider each equation listed in Proposition 1, namely Case I, Case 11, Case I1I and
Case IV, and derive all possible potentialisations of the fully-nonlinear symmetry-integrable
equations listed in this proposition and, where possible, we construct further equations by
multi-potentialisations. Diagrams are given in some cases to make the connections between
the equations more clear.

Case I: We consider equation (L)), viz.
6

s Q)

U =

where {«, [} are arbitrary constants, not simultaneously zero, and where Q(u,) satisfies

(2.

In its most general form, equation (1) admits the following integrating factor of order six:

4 3 5
12 9
N — ( Gor Taw ) Use

< 24au?, B 20us, 360%ub, > »
(aux + 5)3 Uzzz (aul‘ + /8)4 u%mm (aul‘ + /8)5 u%mm ;

B Qult gz sy < 27au’, B 28u3, > 2
(aux + 5)3 uéxz (aux + 5)4 uéxz (aux + /8)3 u%xz i
12“’?::0“?1:0 24“:{::{:“909090 300437112;1, 10804?1296

(aux + 5)3 ugzx B (aul‘ + /8)3 (aux + 5)6 u%xz (aux + /8)4
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108a%u3, 1d3Q

_ e 3.1
(g + B)° ugge 2 du? b (3.1)

Here Q(u;) should satisfy condition (L.2]), whereby « and ( are arbitrary constant that are
not simultaneously zero. Using the integrating factor (8.I]) we obtain the following conserved
current ®¢ and flux & for (L.1)):

I(I)t[u] - uix + Ul g <dQ —u d2Q> (32&)

2(Quy + B)3 gz 2u2 \duy du2
I(I)w[u] _ ualcgcuf)w _ uclc(;:u?lx uugxu4$ <£ —u d2Q>
- X
(ozux + B)GU:%mm (ozux + B)GUQmm (ozuw + 5)3u%u%mm duib du%

n ud gy _ 3oull g, _ 1502u}? 150110

(aug + B)Usy,  (aus + B) Ul Aotz + B)%uz,,  2(0usy + B) udy,
+l (dQ o d2Q> ( 3auul, N ub,

X

2 \ duy du? (auy + B)*uiu2,,  (auy + B)3uzu2,,
B buu, 1dQ T | UWlgy dQ (dQ " d’Q

(ugz + B)3uugyy 2 duy (oug + B8)3ugrr 202 du, \ duy * du2

1 dQ dqQ

- -2 . 3.2b

4, duy <um duty Q> ( )

We find that there is no zero-order potentialisation and no higher-order potentialisation

related to (3.2al) and ([B.2D) for any @ that satisfies (L.2]).

We now consider integrating factors of equation (I.I) of order less than six. Depending
on the parameters o and 8 and the form of (), we obtain the following three distinct cases:

Subcase I.1: Let w # 0 and 3 # 0. We find that equation (L)) viz.

6

(s s, A

Uy =

admits two integrating factors of order four that depend on the form of @), namely for the
case Q@ =0 and Q® = 0. There exist no integrating factors of order zero or order two.

For Q® =0, that is

Q(ux) = C1Ug + Co, (33)

where ¢y and ¢y are arbitrary constants of integration, we find that

6
Uz

(aux + B)gu%mm

U = + crug + o (3.4)
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admits the following two fourth-order integrating factors:

(aug + Bluas  3(aug + Blul,, 20Uy

Il
Ajfu] = (3.5a)
' Uy Uts Uz,
IA%[U] _ (Oé’LLm ‘Zﬁ)u4m B 4(aum -Zﬁ)u%m 4 2041;909090 ' (35b)
Integrating factor (B.5al) leads to the following conserved current and flux for (B.4)):
It fu) = St 0 (3.6a)
Uz
Ige ] = — 2ud g, _ Saud, n 10u3,
bl (qug + B)2ud,,  (oug + B)Puz,,  (quz + B8)*uzas
_alaus + ) (3.6b)
Uz
and integrating factor (3.5h]) gives the following conserved current and flux for (3.4)):
aug + 5
Iq’ﬁ,z[u] S (3.7a)
ufE"E
Ige ] = — 4u3 gy _ 9o, n 24u2,
b2 (ozuw + 5)2u%mp (ozux + 5)3u%mm (ozuw + 5)2’“%%%
12
_alaue+5) (3.7)

u2, alaug + B)

This leads to

Potentialisation I.1: The only conserved current that leads to a potentialisation of (3.4),
viz

6
Uz

(aux + B)gu%mm

U = + ciugy + ¢

is 1®t | given by . The zero-order potential equation of 1s then
1,1

T j— 61192090 9V, 3a?
vy = + — + + 10, 3.8a
t (Vg — @)% (Vgg — )30 (Vge — @)30p (Vg — )30, 1P ( )
where
aug +
=-_* "~ 3.8b
Vg U ( )

and the first-order potential equation of (37)), with w, = Dw(lfbh), 1.6 W= Uy, 1§

2

2Wapr 6wy,

YT e —a) T (wp —a)

6w, Wey 32w, — agw;c +aw. (3.80)
w

C (we —a)3w 8wy —a)
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The conserved current '®Y , given by (3.7d) does not give a potentialisation of (3.4), of any
order.

For Q®) =0, that is

Q(uy) = cau? + c1ug + co, (3.9)

where ¢g, ¢; and ¢y # 0 are arbitrary constants with ¢ # 0, we find that

6

Uyy 2
= + couy + ciug + ¢ 3.10a
(ozuw + 6)3’“:20:0:0 2o He 0 ( )

admits only one integrating factor of order four, namely (B.5a]) with the following conserved
current and flux:

Igt ] = Wat 5 (3.10b)
’ Ugy
Ige (@] = — 2ud gy _ Saud, n 10u3,
b (aug + B)*ud,,  (oug + B)3uZ,,  (qug + B)?Usgs
2
_ (2e2ta + c1)(atis + ) + 4co(au + Br), (3.10c¢)

Ugy
We find that equation (BI0a]) admits no potentialisation of any order related to the integrating
factor (3.5al) and its corresponding conserved current (310D for ¢y # 0.
Subcase 1.2: Let a = 0 and § = 1. Equation (I.I]) then takes the form
ug 3 2
Uy = % + c3u, + cou’s + cruy + oo, (3.11)
rTrxr
where ¢;, with j = 0,1,2,3 are arbitrary constants. We find two distinct cases, namely one

case where co and cg are both zero, and the case where both ¢ are c3 are non-zero.

Let ¢ = 0 and ¢3 = 0: The equation (BI1)) then takes the form

6
Tx

U
up = —— + crug + ¢o. (3.12)

rxrxr

Equation (3.12)) admits the following two fourth-order integrating factors (no zero-order or
second-order integrating factors exist):

3 2
IA2[y] = Ky <“% - “T> (3.13)
uSCCC uSCCC

42

Ugg TTL
TAZ[u] = ko <% — ?) : (3.13b)
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Integrating factor (B.13al) leads to the following conserved current and flux for (B.12):

k
Lol [u] = 2u1 (3.14a)
T
4 3
I xx UgqUds 5uwx C1
d =k (- - . 3.14b
Salul =k (- 4 20 ) (3.14)

The second integrating factor (3.13D]) leads to the following conserved current and flux for

B.12):

k

Igt 2

= _= 3.15

9.2[u] 6uz. (3.15a)

19T ] = k J2upgta MG, (3.15b)
22 ? 3u%xz Uz 6u926x A .

This leads to

Potentialisation I1.2:

a) Using the conserved current '® |, given by (3.14d)), we find that equation (F12), viz

6
u
Up = 2” + crug + co

rxrxr

admits the zero-order potentiaisation

3
vy = + 10y, (3.16)
v, VypVpg

where ky = 22/3

9-1/3

(3.17)

Vye =
Ugy

The first-order potentialisation of (Z12) with wy = Dy("®h ) i.e. w = vy, is then

2
_ Wgax w Wyg

3

b) Using the conserved current 1®% o, given by (315d), we find that equation (3.13), viz

6
up = —*= + 1y + co

Trxrxr

admits no zero-order potentialisation. However, with

wy = Dy <@%> (3.19)

6 uz,
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we find the following first-order potential equation for (312) in w:

3/2 3w/ 2002
wy = L Weze 207 Yoz 4 oy (3.20)

3 4
Wy Wy

where kg = 3 - 275/3.

Let ¢3 # 0 and ¢y # 0: The equation (B.11]), viz

U 3 2
up = —= + gy + Couy + C1ug + Co
T

admits one fouth-order integrating factor (none of zero or second-order)

2
I Ugz 3uxxx
A2fu] = Mz _ Srer (3.21)
’ U, Ug,

which leads to the following conserved current and flux for (B.11):

1
Iq)éf,[u] — 2u2 (322&)
TT

4 3 2
| Uy U4 dUL,  dcaul ol c1

— + 6c3u + 2¢co. (3.22b)

Iq)x
2,3 [z, u] =
ugx:c Uzzz 2Uzy Uz 2Ugy

Using the conserved current /®} 5 given by ([B.22a)), we find that equation IT)), with ¢z # 0
and co # 0, does not lead to any zero-order or higher-order potentialisation.

Subcase 1.3: Let @ =1 and 8 = 0. Equation () then takes the following form:

22 1 Q(uy), where u;Q®) (ug) +5Q™ = 0. (3.23)

We find that ([3:23]) admits fourth-order integrating factors only in the case where
Q(uz) = coul + c1ug + co. (3.24)

No zero-order or second-order integrating factors exist for (8:23]). Two distinct cases must be
considered here, namely the case co = 0 and co # 0.

Let co = 0: Equation (3.23]) then takes the form

6
Uu
Ut = —3 x; + c1ug + C¢g. (3.25)
Uz Uzag

Equation (3.25]) admits the following two fourth-order integrating factors:

TASu] =2 <u s _ Soligsy | 20 ) (3.26a)

4 2
Uy Uy
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IA% [u] _ UgUsg 4uxug2mx + 2Ugza (3.26b)

4 5 3
TT Uz Uz

Integrating factor (3.26al) leads to the following conserved current and flux for ([B.25):

u
I(I)gl[u]: z (3.27a)
xrx
2ut u 5u 10u3 clu.
I 4 1
Piafu] = -t - e e — (3.27b)
T rrx xYrxx T TTT T

and the integrating factor (3.26D)) gives the following conserved current and flux for (3.25)):

T Uu
Dh 5 [u] = # (3.28a)
T
23 u 442 3ut 2 clu
I _ xx Yl TT rT 1Ug
32[u] = - 3u2ul WRpey  2uBu2 uy  6u2 (3.28b)
T Yrxx T TTT xYrxx x xTxT

This leads to

Potentialisation 1.3: Using the conserved current I<I>’§,’1, giwen by (3.27d), we find that
equation (3.23), viz

6
u
Ut = ——5— + crugy + ¢o
u:l? rrxr

admits the zero-order potentiaisation

QWazr n 3(2vyy — 1)

= X 2
v (e — 19 | 20, (0 —1)2 + civ (3.29)
where
Uy

The first-order potentialisation of (3.25) with wy, = Dx(l@’é,l) i.e. w = vy, is then

QWapra 6w?2, bWy Wy 3w, (2w, — 1)

T e — 18 (we — 17 w(wy — 13 w(wy — 1)2

+ crwg. (3.31)

No zero or higher-order potentialisations can be obtained for (3.23) with the conserved current

Lot ,, given by (3.28d).

Let ¢g # 0: The equation

6
u
up = —o— + cou? + crug + ¢ (3.32)
ufE rrxr
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admits the same fourth-order integrating factor (3.26al) as equation (B.:25) and no zero or
second-order integrating factors. This leads to the following conserved current and flux for

B.32):

10 5lu) = = (3.33)
T
2ul 5u? 10u3 2
T3 ] = — et e “Haw o, <ﬁ + 2u> s (3.33D)
’ U Uggea: Uy U Uz Uz Tx Ugx

We find that (8:32)) has no zero-order or higher-order potentialisations using (3.33al).

Case II: We consider (L3, viz.

U?ém (M + )\gum)?’

2
Uzza

Uy =

Equation (L5]) admits the following four fourth-order integrating factors (no zero-order or
second-order integrating factors exist for this equation):

()\1 + 2)\2um)u§,m

II Udg 3
A1 [u] = - = (334&)
uig/f()\l + )\2umv)3/2 2 ug{nz(Al + )\2umm)5/2
2 2
IIAQ[U] _ ()\1 + 2)\2um)U4x B 2)\2()\1 + 2)\2um)uxm B 2uxxx (3.34b)

u;%x()\l + )\2uxx)2 u%x()\l + )\2uxx)3 U‘;éx()\l + )\2uxx)

1 Udg (A1 + 3hougg)u2,,
Aslu] = B 34
3[u] Upr (A1 + Aotzz)? w2, (A + Aotgg)3 (3.34c¢)

IT Uy (2)\1 + 3)\2umc)u§cmc
Al — _ _ 34d
4[U] u%x()\l + )\2Uxx) u%m()‘l + )\2ux96)2 (3 ’ )

The four listed integrating factors, (3.34al) - (3.34dl), lead four essentially different subcases,
which we now discuss in detail under Subcase 11.1 to Subcase 11.4 below.

Subcase I1.1: We consider the integrating factor //A; given by ([3.34al) for equation (L3,
viz.

uix (A + )\gum)?’

2
Uzza

Uy =

We now discuss the case A1 # 0 and A2 # 0, the case A\ = 0 and Ay = 1, and the case \; =1
and Ay = 0 below.

Let A1 # 0 and Ay # 0: The integrating factor (3.34al) then leads to the following conserved
current and flux for (L3):

2
II(I)fi,l[u] = __u1/2()\1 + )\2uxx)1/2 (335&)

2 Yz
)‘1
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x 2 Uy
Mot [u] = —p()\l + 200tz0) (A1 + Aottgg) P2 =
1

4 302
A+ Aotz )2 (A2 4 3A Aot + 3AZu2, )22
2%xx

o (3.35D)
A?

TXT

Let A\; =0 and Ay = 1: Equation (L.5)) then takes the form

ub

up = —2E (3.36)
u%fﬂ"ﬂ

and the integrating factor (3.34al) leads to the following conserved current and flux for (3.36]):

2—1/3
H(I’ﬁ,z[u] == (3.37a)
4 3
II 5z __92/3 Upr Udg 5umm
d =2 T . .
12ul < T (3.37b)
Let A1 # 0 and Ay = 0: Equation (L)) then takes the form
3

up = N}t (3.38)

Txrxr

and the integrating factor (3.34al) leads to the following conserved current and flux for (3.38]):

0 glu) = A7 (3.392)
5/2 3/2
z Upy Ulg 2ugy
o7 4u) = )\3/2< . ) (3.39b)

This leads to

Potentialisation II.1

a) Using the conserved current H<I>'i’1, given by (3.35d), we find that equation (1.3) viz.

’ngm ()\1 + )\2umm)3

2
Uz

Uy =

admits the zero-order potentialisation

v ="k <1 + A%AQU?C) <”~"f” - 3ﬁ> , (3.40)

U:%:c Uz

where

2
_F [uxx()\l + )\2umm)]1/2 .
1

Vyp =
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The first-order potentialisation for (I3) with w, = Dm(HCI)il) i.e. W= vy, is then

o — )\_i{’ (1 + X2 2w?)3 2wiw,e, B 3_)5{’ (1 + X2 xow?)3 2uww?,
T4 w3 4 wi

(3_)5{’) (1 4+ A20w?)V2(2 4 303w )ww,,

4 w?
_ 3_)‘% 2y 2\1/2 2y 2
1 (1 4+ AT Aow?) /4 (2 4+ AT Aqw”)w. (3.41)

b) Using the conserved current H<I>'i72, given by (3.37d), we find that equation (3.30) viz.

6

ul‘l‘

Ut =
2
Uz

admits the zero-order potentialisation

(o 3
v = + , 3.42
¢ ng VU ( )
where
_ 1
Uz = 91 /3uxx’

The first-order potentialisation for (3.36) with w, = Dw(H<I>'-i72) i.e. W =y, is then

2
wr — Wegy Wi,  SWey 3 (3.43)
t = — — - —. .
w3 w ww?  w?

Turning to the multi-potentialisation of (3.36), we find the zero-order potentialisation

of (343) in

~6~ ~5
- VaUzaa (0
U= —— —3—, (3.44)
wa Uz
where
1
Vg = ——,
(o

as well as the zero-order potentialisation of (3.44)) in

V2V, V. 8
V= gz T2 3.45
where
11
Ve =

_2_7@
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The first-order potentialisation of (3.42), with v, =W, gives

= Lo S 4
W w3 Wi 3WW§ w2’ (3:46)
and the first-order potentialisation of (3.44]), with v, = W, gives
= W W . WOW?2 WOW,, .
W= = 32 19— "0 154 (3.47)
W W W2
Another first-order potentialisation for (3.74) is
T T TR ve Tetve
Vi=— 73 +3 7 (3.48)
where we have applied the following integrating factor of (3.44):
- 3 Ugy
and the corresponding conserved current
11
q)t 5 — 2 .
[o] = 3 7 (3.50)

for the first-order potentialisation V, = D, (®Y), so V= 47192, Moreover, the first-
order potentialisation of (3.43]), with V; = q, gives

2 2.2
1
_ 4 Gezx 3q zz + 9z + =, (351)

qt
@ qd @2 9

Diagram 1 displays this multi-potentialisation of equation (Z.30).
Using the conserved current 1'®1 5, given by (3.39d), we find that equation (3.38) viz.

3
Uz

2
TITT

ut:)\i’

admits the zero-order potentialisation

23 3 . 2
v =—2L <& _ 3U_$> 7 (3.52)

4 v3, Vo
where

Vg = k)\l_g/zu}cg

for any non-zero constant k. We now consider \y = —1, so equation ([3.38) takes the
form
3
u
=~ (3.53)
ul‘xl‘
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Turning to the multi-potentialisation of (3.53), we find the zero-order potentialisation

of (352) in

~3~ ~2 ~4
N V20 ) ) .
U =2 x@gxm - f)—x = 26% S[o], (3.54)
xTT T xTT
where
- 9
Uy = V3 (3.55)

and S is the Schwarzian (IL.8). Furthermore (3.57)) admits the zero-order potentialisa-
tion

_ Vawr o 53 b g
V, = 7 3.2 e 2713y, (3.56)
where
Vy =273 1n(5,). (3.57)

Equation ([356) does not admit a zero-order potentialisation.

Turning to the first-order potentialisations of (3.53), we find the following:

o With v, = w, equation (3.52) takes the form

1wdwyee 3 w?’w%m 3wlwy, 3
_1 23 3 S 3.58
YTy w3 4 wk 2 w? 2 (3:58)
o With v, = W, equation (3.57) takes the form
=3~ =3 -2 -9 -
I Rl £ e Y e T (3.59)
o With V, = W, equation [3.50) take the form
Lp}xx LVQ ) Lp}x —
W, = —3—gr 3,978 18 9-1/3, 3.60
T W2 (3.60)

We find that equation (3.50) admits also a second-order potentialisation which is ob-
tained from equation (3.60) with W, = p, namely

3 2
pe= Loz _gleber | yoPr g g2slor 3 g1/3Pr (3.61)
P P P P P

Note that (361 is a spacial case of one of the integrable equations list in [6], namely
equation (4.1.34). Interestingly, equation (3.611) admits only one integrating factor,
namely A[p] = 1, which leads to the following zero-order potentialisation of (3.61)):

2
q = Qng _ 3‘%90 +3.272/3 qx_;, (3.62)
qw qw qw
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where q, = p. Diagram 2 displays this multi-potentialisation of equation (3.53).

Furthermore we find that (3.62) admits three integrating factors of order zero (none of
order two or order four), namely

Aq] =1, Aslq] = q, and Aslg] = exp (3 . 2_2/3q) , (3.63)

which give the following potentialisations for (3.63):

e For Ai[g] = 1 we obtain the following zero-order potentialisation of (3.62):

1
Ql,t _ Qléxwx _ 3. 2—2/3_’ (364)
l,zx lLaz
where
Qiz=q. (3.65)

Obviously the first order potentialisation of (3.64)) leads back to (3.62).
e For A1[g] = q we obtain the following zero-order potentialisation of (3.62):

3/2
Qs = ngzm - YL (3.66)
2,xx 2zx
where
(]2
Q22 = T (3.67)

The corresponding first-order potentialisation of (3.62) is then

53/2 A 53/2 A A2 51/3A.) O
Q _ §/2Q2,xxx . g/zQ%,x:c + § (Q2 + 2 / Q2) Q2,mm
T )4 2 02
2,x 2,x 20
3.2, (3.68)
where
Q2 = Q2. (3.69)

e For Aj[g] = exp (3 . 2_2/3q) we obtain the following zero-order potentialisation of

(3.62):

2_7 Q§7xQ3,xxx _ 2_7 Q?’,,x
4 Qg,xw 4 Qg,xw,

Q3 = (3.70)

where

Q32 = exp <3 : 2_2/3q> : (3.71)
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The corresponding first-order potentialisation of (3.62) is then

A 27 Qg@i’),xzx 81 Qg@%,xz + 27@?’,@3,1‘:{:

Qar=—F——""— = , (3.72)
, 4 3
4 Qg,x 4 Q3,x Q?),:c
where
Q32 = Q3. (3.73)
Diagram 8 displays the potentialisation of equation (3.62).
Diagram 1
6
_ uxx
Ut = u2
rxrx
zero-order l vp=2"1/3y;}
py = Jzmm 3 =W | Bq.@46) in W
b V3, VU | lst-order 9
zero-order J/ bp=—vy "
(73/277 73/277 Sy ~6~ ~5 -
= _V?’/fsz 3V3/~2Vm2m V=4-1572 5 — Ugc};mmc B })_m Tp=W Eq.(G2T) in W
Vm3 Vm4 1st-order Vs, Vpz 1st-order
zero-order l Ve=—27"15;3
V2V, V, 8 Va=q
V=22 4+ 2 —g|———|Eq.(3E]) in
¢ V3, Ve 9% | Tst-order | 1 9
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Diagram 2

zero-order l Vp=—0(uge) /2

1 2}32) 3 1)2 Vg =W .
vp = -t — =L = Eq.B@58) in w
4 02, 4 vgy | 1st-order
zero-order l Ty =02
~ {)g@xmp 6925 Vgp=w o
vy =2 — —-3-= Eq.(359) in w
Ve Vpz 1st-order

zero-order l Ve=2"131n(%)

Viee —2/3 1 -1 Ve=W Wa=p
V=22 3.0 9713y = Eq.@60) in W |————| Eq.(386]) in
! V3, Ve Ist-order | | nd-order | b
zero-order L qz=p
Eq.(362) in ¢
Diagram 3
3
Ql,t _ ng,xxx . 2_2/3
1,zx Ql,:c:c
Q1,2=¢ T zero-order
Ak et WY v o Wl ) Do v R
! q q 2 | zero-order ) 2 |1st-order ’ 2
Q3,2=exp(3-272/3q) l zero-order
27 Qg xQ?) TTT 27 Q% T Q3 z:(?fi ~
= o TP i ’ Eq. :
@s.1 4 Q% . 4 Q3. | lst-order @ B.72) in Qs
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Subcase I1.2: We consider the integrating factor (3.34D]) for equation (L3]), viz.

uim (/\1 + /\2umm)3

2
Uz e

Ut =

Let A\; # 0 and Ay # 0: The integrating factor (3.34D) then leads to the following conserved
current and flux for (LH)):

2-1/3 A
H(I%J[u] =3 In <)\2 + —1> (3.74a)
1

rxr

2,,2
.T.T(I)g2c7l[x7 u] _ _22/3 ()‘1 + )‘2uxx) U Ul 15. 2_1/3 ()‘1 + )\2Uxx)()\1 + 2)\2Uxx)uxx

u%CECE uCECECE

+2718)\2 g, (3.74b)

This leads to

Potentialisation II1.2
Using the conserved current 1'®% |, given by ([3.77d), we find that equation (L3) viz.

ul, (A1 + Aotyy)?

2
Uzza

Uy =

admits the zero-order potentialisation

1/3
62 / AUz +)\2

_ Uzzy . 9—2/3 _9—1/352
e AR o ey w e £ (3.75a)
where
2-1/3 A+ Aoty
= 1 . 3.75b
v A1 " < Uy > ( )

The first-order potentialisation of (1.3) with w, = DI(H@EJ) i.e. W= vy, is then

1/3
Werr ’lU2 2/3 (62 e * )\2> Waz
xx —
we= s =3 =32 N 2
Wy Wy (6 1 — )\2) W3
621/3)\111}

—3.223)2),

_ 9—1/332
(@ ) 270N (3.75¢)

We remark that the case Ay = 1 and Ay = 0, as well as the case Ay = 0 and Ay = 1, do not
lead to different equations than those already listed in Potentialisation II.1.
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Subcase II.3: We consider the integrating factor (3.34d)) for equation (LH), viz.

’ngm ()\1 + )\2umm)3

2
Upza

Uy =

Let A1 # 0 and Ay # 0: The integrating factor (3:34c)) then leads to the following conserved
current and flux for (LH):

1 u 1
1T xt T
@ - TT In 3.76a
3’1[U] )\% Y <)\1 + )\qux> )\1)\2 ( )

2 ()\1 )\2USCSC) U Ul < Ugy >
I xz Tx
’ [U] )\] U3 ! ( ! 2u ) )\] + )\ Zuxx

T
3 u?

— 2 e 0 4 2guas) (M + Aotuge)?In [ 22
2 (0 D)+ Nl ()

2

_)\_1’LL (AL 4 6Augs ) (A1 4 Aaugs) — Arug. (3.76b)

1 u

Let Ay = 0 and A2 = 1: In this case the integrating factor (8:34d]) is identical to the integrating
factor (B.34D)), which has already been described in Subcase I1.2.

Let A\; =1 and Ay = 0: Equation (5] then takes the form (B.38]) with \; = 1, viz.

3

u(E.’E

Uy =
2
Urzz

and the integrating factor ([3.34d) leads to the following conserved current and flux for (3:38])
with \; = 1:

Hq)g,?a[u] = Ugg I0(Ugz) — Uz (3.77a)
2 3 . 2 2 2
II(I)§,3[U] = ux;U4 ln(umc) - iuxx ln(umm) + uu:c:c — Ug. (377b)

This leads to
Potentialisation I1.3

a) Using the conserved current "1®% |, given by (376d), we find that equation (I3) viz.

ud, (A1 + )\gum)?’

2
Uz

Uy =
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admits no zero-order potentialisation. Equation (1) does however admit a first-order
potentialisation with w, = Dx(H@g’l), i.e.

Ugy Ugq 1
t) = —-1 3.78
w(% ) )\% . <)\1 + )\gum> * Ay ( )
namely
2 3 Wygy o 3 3 3 3w3w%m 3w2wm
wy = % wl (Augzw + A Agw — 1)° +uy, | 30A5w + 63 o 185 w2
2 2 WWxy ww?
+Ul, (60)\1)\210 — 18Xy — 15X w2 (3)\1)\210 - 2) + 18X w4mc ()\1)\210 — 1))
+£w—”2“()\ Aow — 1)% — 9—)\1%()\ Aow — 1)% 4 623w — 6AF
A3 wd A2 w2 DY
1 2
gy (36A%>\2w ~ 23\ + )\—jwﬁx (A Aow — 1)2
12 wyy
3w (AMAgw — 1)(BA\ Agw — 1)) , (3.79)

where uz, needs to be solved algebraically in terms of w from (3.78), which is possible
by the Lambert function.

b) Using the conserved current ' D% 5 given by (3.77d), we find that equation (3.38) with
A =1, viz.

does not admit a zero-order potentialisation but it does admit a first-order potentialisa-
tion with w, = Dy (TT®Y 3), i.e.

W = Ugg IN(Ugy) — Uge, (3.80)
namely
Waae 3 Wi, 3 oW
wy = —2 w3 (Ugy +w)° + 6 wh (Ugy + w)° — 3w—:%(um + w) (5ug, + 3w)
+6w + 13ugy,, (3.81)

where uy, needs to be solved algebraically from the relation (3.80) in terms of w by the
Lambert function.
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Subcase II1.4: We consider the integrating factor (3.34d)) for equation (L3]), viz.

u‘;x (M + )\gum)?’

2
Uzza

U =

Let A1 # 0 and Ay # 0: The integrating factor (3.34d)) then leads to the following conserved
current and flux for (L3):

2—1/3

ITxt Uz
o = —5— (A1 + Aotigy) ] +

2—1/3
A1

(3.82a)

1 w2,u u
Il 2 _ o—2/3 xx Y4r 3 Tz

rxrxr

~3. 2—1/3@%@1 + 2X0tsn) (A1 + Agtige)? In [ ——22
% Uz A1+ AUgy

1 T — —
—2_1/3—u—(5)\1 + 6Xottzg) (A1 + Aatize)® — 275N Agu, — 273032, (3.82D)

1 Uz

Let A\; = 0 and Ay = 1: The integrating factor (3.34d)) is then identical to integrating factor
(334a) described in Subcase II.1.

Let A\; =1 and Ay = 0: The integrating factor (3.34d)) then leads to the following conserved
current and flux for (B.38) with A\ = 1, viz

o
u%fﬂfﬂ ’
namely
Ifq)ig[u] _ _2—1/3 ln(um) (383&)
2 ) 1
Mo fo) = < (S S 2 (3:550)
TxT TTT

This leads to
Potentialisation 11.4

a) Using the conserved current H<I>fl’1, given by (3.82d), we find that equation (1.3) viz.

ud, (A1 + )\gum)?’

2
Uz

Uy =
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admits no zero-order potentialisation. Equation (1) does however admit a first-order
potentialisation with wy = DI(H@Z’I), i.e.

~1/3

N | Uz 2-1/3 3.84
t) = —— T .
w(z,t) A i+ Aattes) n<)\l+)\2um> A1 ( |
namely
w Wrrx (21/3)\2wux:c + 1)3 w:%:c (21/3)\2qu$ + 1)3
t = —

w3 (A2Ugz + A1)? * wh  (NoUgz + A1)?

_9)\%wmw2 (2Aouzz + A)u2, 3 22/3 N ()\gu%m — AN doUugy — 2)\%)um
w2 (A2Uzy + A1)? Aw? (A2Ugy + A1)?

3-2 AWy (4)\2Um + 11A 1 Augs + 4)\1)'&9595 _ 3-2 Waz (4)\211,1,1, + )\1)
Nw? (A2t + A1)? A

30a(2%3 — 20w) (5A3u2, + 5A Matiar + A uag

A1 (AoUgy + A1)?
+2—1/3 (16A3u2, + 11)\1)\2um2+ A%)uxx’ (3.85)
)\1 ()\qux + )\1)
where ug, needs to be solved algebraically in w from (3.84) in terms of the Lambert
function.
b) Using the conserved current H<I>f473, given by ([(3.83d), we find that equation (3.38) with
AL =1, viz.
3
uSCSCCC

admits the zero-order potentialisation

rxrx —_ 1 —_
v = S 3.9 gy, (3.86)
UZ‘Z‘ UZ‘Z‘
where
vy = =273 In(ugg). (3.87)

Equation (3.38) also admits a first-order potentialisation with wy = DI(H@Z’?)), i.e.
vr = w, namely

2
wy = wxgw . 3wm4m _3. 2—2/31'0_2m _ 2—1/37 (388)
wy w, Wy

and a second-order potentialisation with W, = Dg(”@’jﬁg), t.e. W =w,, namely

3 2
Wore _oWalWor g goopsWar | 1p)We 3 g1slVa

e T 2 e W3 (3.89)

W =
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Case III: We consider ([L6), viz.

_ (Oé’LLm + ﬁ)ll
[(aug + B)tgzs — ?)au:%x]z7

where v and 3 are arbitrary constants, not simultaneously zero. Equation (I.6]) does not ad-
mit zero-order or second-order integrating factors, but the equation does admit the following
three fourth-order integrating factors:

2 2 3 2.5
I A1 UG Udy 2Upp U e 2203, Uy g 33auy,
Ailul = + — + 3.90a
= e 1 AT T (o T (g + A2 T (o 1 5)13 (3.902)
2 2 2, 4

11 Uy Udg: Uy 16cus, Ugey 24a”uy,
A = + — + 3.90b
2] (quz +B)8  (aug +B8)%  (aug + 58)°  (au, + B)10 ( )

10 15a2u3

IIIA%[ ] _ U4g AUy Ugxa A" Uy (390(3)

(au, + B)° B (augz +B8)8  (augy +8)7

Using (3.90a)), (3.90b) and (3.90d]), we obtain the following respective conserved currents for
(L.G):

IIT gt Uy IT1 gt u3,
q)l,l[u] = (ozux _1_5)117 q>1,2[u] = (ozux _1_5)87
IIT gt uz,
and @1’3['&] = m (391)

We find that all three conserved currents ([B.91)) do not lead to a potentialisation of (L6l), of
any order.

Let o =1 and 8 = 0: Equation (L.6]) then takes the form

ull
(Uptggs — 3u%$)2

In addition to the integrating factors (3.90al), (8.90b) and ([B3.90d) with o = 1 and 8 = 0,
equation (3.92)) also admits the following fourth-order integrating factors:

2 3 2
1 g2y (Wag | Yoo 1 2uugz\ o 22uuy,  16uj,
1[U] = i + —ug Udg + _’LLQ + —’LLH Ugpr — w2 + 210 Uz zx
x T x x T T

33uud,  24ul

TT
e all (3.93a)
IIT 2 Ulgy 1 16uu?, 10Uy, uul,,  24uul,
AjJu] = — -
3[ul < w + 6 > Uy < w0 + o Ugze + s + o0
15u
ke A (3.93b)

8
Uy
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Using (B3.93a)) and (3.93h]), we obtain the following respective conserved currents for (3.92):

1 uu? 1u? 1 wu 1 u2
IIT xt T T IIT xt T T
- __zz ) = — T 3.94
2.[u] 12 wll 6 u? 2.2[u] 6 ub 2 ub ( )

We find that both conserved currents (8.94]) do not lead to a potentialisation of (8:92]), of any
order.

and

Let @ = 0 and § = 1: Equation (L6]) then takes the form

1

Ut =
2
Uz

; (3.95)

which admits the following three fourth-order integrating factors (no zero-order or second-
order exist):

HINS ) = 02 uag + 2uppu?,, (3.96a)
TS [u] = upptiag + Ulgy (3.96b)
HINA3 0] = gy (3.96¢)

Note that the integrating factors (3.96al), (3.96D) and ([3.96d) are just the integrating factors

(390a), (3.90b) and (B.90d), respectively, with &« = 0 and 8 = 1. No additional integrat-
ing factors up to order four than those listed here were obtained for equation (3.95]). The

corresponding conserved currents and fluxes are as follows:

_ 1
M, [u] =2 Ugmuix (3.97a)
11 gy [ ] 22/3 1 uixu@v + 3us2z::c 3 (3 97b)
u| = — [ ==+ 2 3 .
3.1 64 \ u3,, 7. v
IIT gt Ly
<I>372[u] = —5—4um (3.97¢)
1/ u 2u >
Il xx Ydx TT
BT [z u) = — = (Leatde | “Maw o, 3.97d
$alou] = — (Ltie 2 (3.974)
Mgl J[u) = 278342, (3.97¢)
1
HIQE  [)] = 272/3 <% + ) . (3.97¢)
’ uwxw Uz zx

This leads to

Potentialisation ITI.1

a) Using the conserved current IH<I>§’1, giwen by (3.97d)), we find that equation (3.93) viz.

1

=32
uSCSCSC

Ut
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b)

admits no zero-order potentialisation. Equation (3.95) does however admit a first-order
potentialisation with w, = Dx(ln@g,l), i.e.

_ 1
w(z,t) =2 1/351—21@:0, (3.98)
namely
B _w9/4wxa:x w9/4w%m B gw5/4wxx § 14
wy = 3 1 5 . (3.99)
w3 wy 4wz 8

Using the conserved current "' ®% ., given by ([3.97d), we find that equation (3.95) viz.

1

= —5
uSCSCSC

Ut

admits the zero-order potentialisation

2
ViUgpz 2
=T == — —x, 3.100
YT o (3100
where
1 3

Equation ([B98) also admits a first-order potentialisation with w, = Dy ("1®%,), i.e.
vr = w, namely

2 2,,2
W Wgrr _ 3w Wan +2wwm _

3 4 2
Wy Wy, Wy

(3.102)

Wt =

Neol i\

Using the conserved current IH<I>§’3, given by (3.-97€), we find that equation (3.93) viz.

1

D)
uCCCCSC

Ut

admits the zero-order potentialisation

1)3/2?)
v = -t (3.103)
UZ‘Z‘
where
vp = 278342 . (3.104)

Equation (3.98) also admits a first-order potentialisation with w, = Dm(IH(Dgg), i.e.
vy = w, namely

3/2

W Wepa w3/2w92m B §w1/2wm

we =% o w2 (3.105)
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We obtained one multipotentialisation for equation (3.95]) which is a result of the potentiali-
sation of equation (ZI00) viz.

2
_ UpUzzx g
VUt = 71)3 93:,
zT

which we now discuss in detail.

Equation (B.I00) admits the following four integrating factors (no zero-order integrating
factor exists):

2/3 2/3 o

IIT 54 Vy' U4z V' Vigw 4 Varx 2 1
Ai[v] = -3 + = + = (3.106a)
! ng ’U%m 3 'U%w’l);:,l;/g 9 ’Ui/g
v
HIpd L) — %/9; (3.106b)
(%%
v
HIpdL) 596/9; (3.106¢)
(%%
HINA L] = g, (3.106d)
The corresponding conserved currents and fluxes for (3.100) are as follows:
’U2/3
Higt [p) = % (3.107a)
’ Vzx
8/3 5/3 8/3. 2 2/3
I v V' Vap 207 Uyza Vg Vi, 2%
d = - -2 — 3.107b
WP s T, Tag, (&1070)
9
Mgt ] = ng/?’ (3.107¢)
5/3 2/3
3v v lv
11l 5z T TTT T
Pyl = —= = 3.107d
Mgt o] = 3vy/3 (3.107¢)
4/3 1/3
IIT +x Uz Uzzx 2 vy
Y 5lv] = — + = 3.107f
fal] =~ 4 (3.107)
111 gt L o
64
1 o3 1 v 5
g7 o] Yrloee = Do 4 2 (3.107h)

T 32 03, 3204, | T2
This leads to
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Potentialisation I11.2

a) Using the conserved current I”<I>fl’1, gwen by (5.107d), we find that equation (ZI100)
ViZ.

2z == =z
3
Vop 9

admits the zero-order potentialisation

2N}l,t = 'Digp{}l,mmm, (3108)
where
U2/3
D10 = —, (3.109)
UZ‘Z‘

and the first-order potentialisation with W 5 = Dm(IHCI)le), i.e. U1, = W1, namely
. 9~ ~
W1t = WW1,zxx + 3w1wl,xwl,xx- (3110)

Equation (3108) also admits the zero-order potentialisation

=2

W w
Wyp = —T g AT (3.111)
w3,x w3,x
where
. 1
W3z = —— (3.112)
U1,z
which corresponds to the integrating factor A[vi] = —20; 21}1@96 admitted by equation

(3.108).

b) Using the conserved current T11® ., given by (3.107d), we find that equation (3.100)
viZ.

2

_ UpUzgy 2
V= — §x )
UIBZE

admits the zero-order potentialisation

R
Vgt = —g—— (3.113)
U2,:c:c
where
9
Byp = va/i”, (3.114)

and the first-order potentialisation with Wy, = Dm(IHCI)sz), i.e. Uy = Wa, namely

~3/2 - ~3/2 -9 ~1/2 -

Wy W2 zxx 3’[02 W3 2 3 Wy W2z
-3 o ~4 9 =2

w2,x w2,x 2 w2,x

Woy = (3.115)
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¢) Using the conserved current "M ® 5, given by (3.107d), we find that equation (Z.I00)
viZ.

admits the zero-order potentialisation

U3,zxxx

U3y = —222, (3.116)
U3,xx
where
3.0 = 303 (3.117)

and the first-order potentialisation with W3 , = Dx(lllq)ig), i.e. U3, = w3, namely

. -9

~ _ W3azz 3w3,xx

w3t = e or
3,z 3,z

which is equivalent to (3111). Equation [3I00) also admits the second-order poten-
tialisation with Wy, = D2("1®} 5), i.e. w3, = W3, namely

W3t o W3,xwx N 9W3,xW3,mm +12 W?i:c

= . 3.118
T W Wy (3.118)

d) Using the conserved current "11®Y , given by (FI074), we find that equation (3100)
ViZ.

2
_ ViUzay 2
VU = 3 — §£13 s
UZEZE

admits no zero-order potentialisation. Instead (3.100) admits the first-order potentiali-
sation with Wy, = DI(IH@ZA), i.e.

- 1 5
Wy = Uy (3.119)
namely
-5/2 - 5/2 -9 -3/2 -
- Wy' "Wy, wy' Wy 5wy "Wy, 5 1/2
Dy = ——— =+ 3 = - 5= -~ gwi (3.120)
4,x 4,x 4,x

A graphical description of the above is given in Diagram 4.
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zero-order

1st-order
L -oLorder

Diagram 4

B.I18) W3

1st-order

BI1T) ws

- -3 ~
V1t = V1 zV1,z2x

zero-order
<

Ut

1

2
ufE"E"E

zero—orderl

2
Uy Uzzx
U = 3
Vza

——| (3.120)) w04

2
—T
9

zero-order

l 1st-order

B.I15) e

Case I'V: We consider (L), viz.

4ud

U =

(2bu2 — 2upyyy + 3u2,)?’

zero-order

~ U3 zxx
U3t = -3
3,xx
1st—orderl

B.I1T) w3

2nd—orderl

B.118) W3

where b is an arbitrary constant. Equation (7)) is Mobius-invariant [3] and can therefore

conveniently be expressed in terms of the Schwarzian derivative S, namely

Ut =

Uy

s

(3.121)

where S is given by (LJ]). Equation (B.I2I]) admits the following fourth-order integrating
factors for arbitrary constant b (no zero-order or second-order integrating factors exist):

IVAl[u] — Yz

Sz

Uy

(3.122a)
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2.2 2u 4bu 2b%u
IVA[];(% —>S :(::(:52_ xxS T
2lu + + + (3.122b)
up o oud) T ud u u
For the case where b = 0, equation
up = % (3.123)

admits, in addition to V' A[u]p—g and TV Asfulp—o given ([BI12Zal) and ([BI122H) respectively,
also the integrating factor

uufm 2Ugy 22Ul gy 2
TV As[u] :( v >Sx+< . —u—w> 52, (3.124)

Corresponding to (3:122al) and (B.122hl), the respective conserved current and flux for (B.121))
are as follows:

IVt [y] = i% (3.125a)
el = 375 %%2 i 1280
IVl ] bﬁm 1_12% _ Z_i (3.125¢)
Mgl = _1_12 u‘;g(gfzj b)? + gui?%xfxb)3 + uig’((zs—_b;b) + ugl()gxi‘sg)w)?’

N fé - bg;. (3.125d)

For the case b = 0 corresponding to the integrating factor (8:124]), we obtain an additional
conserved current and flux for equation ([3.123]), namely

4 3
i Ul gy 1 Uza

IVt 1 _
®5[u] = 2w 3w (3.126a)
IV siy) = 1 uuixi lu_?;x 2uS; +ugS 2u2, uy Sy — uS? CAugy 1
3 12 ud S?2 ' 3 ul S3 ud S3 u; S
4
. (3.126b)
Uy

This leads to

Potentialisation IV Using the conserved current 'V ®!, given by (3125d), we find that
equation (3.121) viz.

Uy

(b—5)?]

Ut =
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admits, for arbitrary constant b, the zero-order potentialisation

1

" <_U:v:v + % 4 11;92/2)3 [202/2%“ a gvx((jvx +O)vze
—i—%(sz +b)(2v, + b)Y/ 2} : (3.127)
where
v, = %% (3.128)

and the first-order potentialisation with w, = Dx(lv@’i), i.e. vy = w, namely

1
wy = 1 [_2w3/2wmwxwx + 2w2(2’w + b)lemm + 6103/21092696

(—wy + bw'/2 + 2w3/2)

3
_3w1/2w§wmc _ 3w(10w + b)wmwmm + 5(1210 + b)wi + 4u)3/2(6’w — b)wi
_w2(2w +b) (6w — b)w, ] . (3.129)

No further potentialisations of any order are possible for equation (F121) or equation (3.123)
using the conserved currents IV ®4 and V@4 given by (3125d) and (3126d), respectively.

4 Concluding remarks

In this article we are reporting all potentialisations of the class of fully-nonlinear symmetry-
integrable equatons listed in Proposition 1 using their integrating factors up to order four,
whereby the integrating factors do not depend explicitly on their independent variables.
Several mappings to equations using the multi-potentialisations process are also given where
possible, although we do not claim to have obtained here a complete list of all possible
multi-potentialisations connected to the equations in Proposition 1.

Our results show that the class of equations in Proposition 1 have a rich structure and
the systematic use of the zero and higher-order potentialisations, as introduced here, leads
to interesting quasi-linear equations, some of which certainly deserve further attention.

We should point out that in all our previous classifications of evolution equations of order
three and order five where we have introduced potentialisations were based only on zero-order
potentialisations. However, in the current work we have shown that there are many cases
where an equation does not admit a zero-order potentialisation but that it can instead admit
first and higher-order potentialisations. This means that some of those earlier classifications
could possibly be extended by considering higher-order potentialisations. We will address
this in the near future.
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