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601-74 Norrköping, Sweden
krzma@itn.liu.se

Received January 12, 2024; Accepted February 28, 2024

Abstract

In this paper we systematically consider various ways of generating integrable and
separable Hamiltonian systems in canonical and in non-canonical representations from
algebraic curves on the plane. In particular, we consider Stäckel transform between two
pairs of Stäckel systems, generated by 2n-parameter algebraic curves on the plane, as
well as Miura maps between Stäckel systems generated by (n+N)-parameter algebraic
curves, leading to multi-Hamiltonian representation of these systems.

1 Introduction

This paper is devoted to a systematic (in the sense explained below) construction of various
types of Liouville integrable and separable Hamiltonian systems from algebraic curves.

In [16] Sklyanin noted that any Liouville integrable system (that is a set of n Hamil-
tonians in involution on a 2n-dimensional manifold M) separates in a given canonical
coordinate system (λ,µ) ≡ (λ1, . . . , λn, µ1, . . . , µn) if and only if there exists n separation
relations of the form

ϕi(λi, µi, h1, ..., hn) = 0, i = 1, . . . , n (1)
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(see also [11]). Alternatively, one can treat the relations (1) as an algebraic definition of
n commuting, by construction, Hamiltonians hi on M . The canonical variables (λ,µ) are
then by construction separation variables for all the Hamilton-Jacobi equations associated
with the Hamiltonians hi. This shift of view yields a powerful way of generating many (in
fact, all known in literature) separable Hamiltonian systems from scratch. This approach
has been initiated in [3] and then fruitfully developed in many papers, see for example
[4, 7, 8] as well as the review of the subject in [9].

In this paper we restrict ourselves to the important subclass of separations relations
(1) where all ϕi are the same, ϕi = ϕ for all i. In such a case the relations (1) can be
interpreted as n copies of the algebraic curve on the λ-µ plane

ϕ(λ, µ, h1, ..., hn) = 0, (2)

when (λ, µ) are consecutively substituted by the pair of variables (λi, µi). One reason
for restricting our attention to separation curves (2) rather than the general separation
relations (1) is that in the general setting there arise problems with finding the multi-
Hamiltonian formulation of the generated separable systems. Another reason for this
restriction is that it allows us to skip the assumption that the corresponding coordinates
(λ,µ) on M are canonical. Using this approach, in this article we systematize and de-
velop the idea of constructing various types of finite-dimensional integrable and separable
Hamiltonian systems from parameter-dependent planar algebraic curves. To our knowl-
edge this is the first systematic (albeit certainly not complete) investigation of separation
curves depending on more than n parameters. Relations between integrable systems and
n-parameter hyperelliptic curves were extensively investigated for example in [17] (see also
references there).

Below we present the structure of the article and highlight all the new results.
In Section 2 we establish a number of facts for Poisson structures in 2 dimensions

and of monomial type. We first establish Lemma 2 where we find all Darboux coordinates
associated with the Poisson tensor (4) on the plane with c of the monomial form c = λαµβ

and then we prove Lemma 3 where we establish canonical maps between arbitrary pair
of Darboux coordinates for π. These results will be necessary for establishing results of
Section 3.

In the first subsection of Section 3 we prove (Theorem 4) that the Hamiltonians hi
obtained by algebraically solving n copies of (2) constitute a Liouville integrable system
not only if the corresponding coordinates (λ,µ) on M are canonical, but in a more general
case when the Poisson operator π has in the variables (λ,µ) the form (21). This is a simple
generalization of the previously known result (see for example [9]). The second subsection
of Section 3 contains basic information on separable Hamiltonian systems, in particular of
Stäckel type. This subsection is necessary for the self-consistency of the article.

In Section 4 we use the results of Section 2 to show that each Liouville integrable
Hamiltonian system generated by an algebraic curve (2) and by the non-canonical Poisson
tensor (4) can also be generated by a one-parameter family of algebraic curves and the
corresponding Poisson tensors in canonical form. Each class represents thus the same
dynamical system written in different Darboux coordinates, related with each other by
appropriate canonical transformations. We further specify these results for the case of
monomial Poisson structures (with c(λi, µi) = λαi µ

β
i ), see formulas (37) yielding explicit

transformation to Darboux coordinates in this case.
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In Section 5 we consider separable systems generated by algebraic curves depending
on a set of n + n rather than n parameters. Each such curve leads then to two distinct
integrable Hamiltonian systems. Using the known theory ([15, 8]) we prove that these
systems are related by a Stäckel transform and we also show how solutions of these two
systems are related by a reciprocal (multi-time) transformations. We also specify these
results to the case of Stäckel systems. These results are new.

In the final Section 6 we investigate yet another possibility of generating integrable and
separable Hamiltonian systems from algebraic curves. We consider algebraic curves (70)
with the block-type structure given by (71) and (72), leading to families of integrable and
separable Hamiltonian systems that can be related (due to Theorem 11) with each other by
a finite-dimensional analogue of Miura maps. These finite-dimensional Miura maps yield
in turn multi-Hamiltonian formulation of the obtained integrable systems, as presented in
Theorem 12. These are new results that generalize the particular results obtained earlier
in [6] and in [14]. The section is concluded by some examples. Theorem 11 is proven in
Appendix, due to a rather technical nature of the proof.

2 Poisson tensors on 2-dimensional phase space

In this section we consider Poisson structures in 2 dimensions (on a λ-µ plane) of a
monomial type and find all their Darboux coordinates that can be obtained from the
coordinates (λ, µ) by monomial transformations. We also find a general map between
arbitrary Darboux coordinate systems of monomial type.

Let us thus consider a (λ, µ) plane P . A Poisson tensor π on P is a bi-vector with
vanishing Schouten-Nijenhuis bracket. The Poisson tensor π must be of co-rank zero since
dimP = 2 . It defines a Poisson bracket on the plane:

{f, g}π := π(df, dg), f, g ∈ C∞(P ). (3)

Lemma 1. The most general Poisson tensor π on P is of the form

π = c(λ, µ)
∂

∂λ
∧
∂

∂µ
, with matrix representation π =

(
0 c(λ, µ)

−c(λ, µ) 0

)
, c ∈ C2(P ).

(4)

Proof. The necessary and sufficient condition for being Poisson tensor is a Jacobi identity

{f, {g, h}π}π + {g, {h, f}π}π + {h, {f, g}π}π = 0. (5)

By a direct computation one can verify the identity (5) for tensor (4), where

{f, g}π =

(
∂f

∂λ

∂g

∂µ
−
∂f

∂µ

∂g

∂λ

)
c. (6)

�

Now, let us change the parametrization of the plane (λ, µ) −→ (λ̄, µ̄) given by

λ̄ = a(λ, µ), µ̄ = b(λ, µ) (7)
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and such that new coordinates are Darboux (canonical) coordinates for π, i.e. c(λ̄, µ̄) = 1.
It means that following condition

(
∂a

∂λ

∂b

∂µ
−
∂a

∂µ

∂b

∂λ

)
c = 1 (8)

has to be fulfilled for a pair of unknown functions a and b.
Consider a particular but relevant subclass of Poisson tensors (6) defined by functions

c in the monomial form c = λαµβ for fixed α,β ∈ R. Let us now search for transformations
to Darboux coordinates of (4) within the following ansatz

λ̄ = λᾱ1µᾱ2 , µ̄ = λβ̄1µβ̄2 , (9)

where ᾱ1, ᾱ2, β̄1, β̄2 ∈ R. This ansatz has the following inverse

λ = λ̄
β̄2

ᾱ1β̄2−ᾱ2β̄1 µ̄
−

ᾱ2
ᾱ1β̄2−ᾱ2β̄1 , µ = λ̄

−
β̄1

ᾱ1β̄2−ᾱ2β̄1 µ̄
ᾱ1

ᾱ1β̄2−ᾱ2β̄1 . (10)

A direct calculation using the condition (8) shows that the transformation (9) turns π into
canonical form if and only if

ᾱ1 + β̄1 + α = 1, ᾱ2 + β̄2 + β = 1, ᾱ1β̄2 − ᾱ2β̄1 = 1, (11)

which leads to the following lemma.

Lemma 2. The coordinates
(
λ̄, µ̄

)
given by (9) are Darboux (canonical) coordinates for

π if and only if the parameters ᾱ1, ᾱ2, β̄1, β̄2 are given by, for α 6= 1

ᾱ1 = ᾱ1, ᾱ2 =
ᾱ1(1 − β) − 1

1 − α
, β̄1 = 1−α−ᾱ1, β̄2 =

(1 − β)(1 − α− ᾱ1) + 1

1 − α
, (12)

and for β 6= 1

ᾱ1 =
(1 − α)(1 − β − β̄2) + 1

1 − β
, ᾱ2 = 1−β− β̄2, β̄1 =

β̄2(1 − α) − 1

1 − β
, β̄2 = β̄2. (13)

For α = β = 1 there is no transformations to Darboux coordinates of (4) within the
ansatz (9). An example of transformation that leads to Darboux coordinates in this case
is λ̄ = ln |λ| , µ̄ = ln |µ| .

Notice that the solutions (12) are one-parameter, parametrized by ᾱ1; similarly, the
solutions (13) are one-parameter, and parametrized by β̄2. Note also that the last equation
in (11) means that not only the map (9) but also its inverse (10) are in this case polynomial
maps.

In the special case that α = β = 0, (that is if the original variables (λ, µ) are already
canonical for π) the transformation (9) given by (12) represents a one-parameter family
of canonical transformations

λ̄ = λᾱ1µᾱ1−1, µ̄ = λ1−ᾱ1µ2−ᾱ1 , (14)

(parametrized by ᾱ1) with the inverse

λ = λ̄2−ᾱ1 µ̄1−ᾱ1 , µ = λ̄ᾱ1−1µ̄ᾱ1 . (15)

Applying Lemma 2 to two different sets of Darboux coordinates:
(
λ̄, µ̄

)
and (λ̃, µ̃), given

by (12) with ᾱ1and α̃1 respectively, we arrive at the following lemma.
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Lemma 3. Assume, that (λ̄, µ̄) and (λ̃, µ̃) are two different sets of Darboux coordinates
for the same Poisson tensor (4) with c = λαµβ related to (λ, µ) by two different solutions
(12) given by ᾱ1 and by α̃1 respectively. Then the map (λ̄, µ̄) −→ (λ̃, µ̃) is canonical and
takes the form

λ̄ = λ̃α1 µ̃α1−1, µ̄ = λ̃1−α1 µ̃2−α1 , α1 = 1 +
ᾱ1 − α̃1

1 − α
, α 6= 1, (16)

λ̄ = λ̃α2 µ̃α2−1, µ̄ = λ̃1−α2 µ̃2−α2 , α2 = 1 +
ᾱ2 − α̃2

1 − β
, β 6= 1. (17)

The proof is again obtained by direct calculations. The inverse of (16) is of the form

λ̃ = λ̄2−α1 µ̄1−α1 , µ̄ = λ̄α1−1µ̄α1 , (18)

while the inverse of (17) is

λ̃ = λ̄2−α2 µ̄1−α2 , µ̄ = λ̄α2−1µ̄α2 .

3 From algebraic curves to Liouville integrable and separa-

ble Hamiltonian systems

3.1 Liouville integrability

Here we show how to construct n-dimensional Liouville integrable Hamiltonian systems
starting from a single n-parameter algebraic curve on a (λ, µ)-plane of the form

ϕ(λ, µ, a1, ..., an) = 0. (19)

Taking n copies of (19) with (λ, µ) consecutively substituted by the pair of variables (λi, µi)
we obtain the system of n equations

ϕ(λi, µi, a1, ..., an) = 0, i = 1, . . . , n (20)

that is assumed to be solvable with respect to the parameters ak (at least in some open
domain). In result, we obtain n functions (Hamiltonians) ak = hk(λ,µ) on 2n-dimensional
manifold M , parametrized by coordinates λ = (λ1, ..., λn), µ = (µ1, ..., µn).

In order to turn manifold M into Poisson manifold we take n copies of the Poisson
operator (4) on the plane and construct the Poisson tensor π on M as follows:

π =

n∑

i=1

c(λi, µi)
∂

∂λi
∧

∂

∂µi
, (21)

so that its matrix representation is

π =

(
0n×n c(λ,µ)

−c(λ,µ) 0n×n

)
, c(λ,µ) = diag(c(λ1, µ1), ..., c(λn, µn)). (22)

Below we prove hi generated by (2.2) commute with respect to π given by (21), which is
a natural generalization of the result with c = 1 that can be found for example in [9].
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Theorem 4. Hamiltonian functions hi are in involution with respect to Poisson tensors
(21)

{hi, hj}π = 0, i, j = 1, ..., n. (23)

Proof. The Hamiltonian functions hi(λ,µ) Poisson commute as a consequence of relations
(20). Indeed, differentiating equations (20) with respect to (λ,µ) coordinates we get

∂ϕk

∂λi
+

n∑

r=1

∂ϕk

∂ar

∂hr
∂λi

= 0,
∂ϕk

∂µi
+

n∑

r=1

∂ϕk

∂ar

∂hr
∂µi

= 0,

so

∂hr
∂λi

= −

n∑

s=1

Ar
s

∂ϕk

∂λi
,

∂hr
∂µi

= −

n∑

s=1

Ar
s

∂ϕk

∂µi
,

where (Ar
s) is a matrix being the inverse of the matrix (∂ϕs/∂ar). In consequence

{hr, hs} =

n∑

k=1

(
∂hr
∂λk

∂hs
∂µk

−
∂hr
∂µk

∂hs
∂λk

)
ck

=

n∑

k=1




n∑

i,j=1

Ar
i

∂ϕi

∂λk
As

j

∂ϕj

∂µk
−

n∑

i,j=1

Ar
i

∂ϕi

∂µk
As

j

∂ϕj

∂λk


 ck

=
n∑

i,j=1

Ar
iA

s
j

n∑

k=1

(
∂ϕi

∂λk

∂ϕj

∂µk
−
∂ϕi

∂µk

∂ϕj

∂λk

)
ck

=

n∑

i,j=1

Ar
iA

s
j{ϕi, ϕj}π = 0,

where ck = c(λk, µk). �

In result, the system of n evolution equations on M

ξti = πdhi = Xi, i = 1, ..., n, (24)

where ξ = (λ,µ)T , is Liouville integrable.

3.2 Separability

Liouville integrable systems generated by algebraic curves (19) and the Poisson tensor (4)
with c = 1 are separable in the sense of Hamilton-Jacobi theory, (λ,µ) are then their
separation coordinates and equations (20) are called separation relations. Indeed, the
Hamiltonian system (24) is in this case linearized through a canonical transformation

(λ,µ) −→ (β,α), (25)

generated by a generating function W (λ,α), such that it satisfies all the Hamilton-Jacobi
equations hi = αi of the system. Then, the transformation (25) is given implicitly by

βi =
∂W

∂αi
, µi =

∂W

∂λi
, i = 1, ..., n. (26)
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In the variables (β,α) the n evolution equations (24) linearize

(βj)ti =
∂hi
∂αj

= δij , (αj)ti = −
∂hi
∂βj

= 0, i, j = 1, ..., n, (27)

so that

βj(λ,α) =
∂W

∂λj
= tj + cj , cj ∈ R. (28)

The existence of separation relations (20) means that there always exists an additively
separable solution

W (λ,α) =

n∑

i=1

Wi(λi,α), (29)

for the generating function W (λ,α), where functions Wi(λi,α) are solutions of the system
of n decoupled ordinary differential equations

ϕi

(
λi,

dWi(λi,α)

dλi
,α

)
= 0, i = 1, ..., n. (30)

In literature, Liouville integrable systems, linearizable according to Hamilton-Jacobi
theory by additively separable generating function (29) are known as (generalized) Stäckel
systems. A particularly interesting case of such systems (a proper Stäckel system) is
generated by ϕ being of hyperelliptic type

ϕ(λ, µ) ≡ σ(λ) +

n∑

k=1

hkλ
γk −

1

2
f(λ)µ2 = 0, (31)

where σ(λ) and f(λ) are Laurent polynomials in λ, γk ∈ N and are such that γ1 > ... >
γn = 0. Then,

hk =
1

2
µAkGfµ

T + V
(σ)
k , k = 1, . . . , n (32)

and some additional geometric structure can be related with the dynamical systems (24).
The Hamiltonians hk are considered as functions on the phase space M = T ∗Q, where
λ are local coordinates on a n-dimensional configuration space Q and µ are the (fibre)
momentum coordinates, Gf is treated as a contravariant metric on Q, defined by the first
Hamiltonian h1, Ak (A1 = I) are (1, 1)- Killing tensors for the metric Gf (for any f) and

V
(σ)
k are respective potentials on Q. The quadratic in momenta µ Hamiltonians (32) are

in involution with respect to the Poisson operator π =
∑n

i=1
∂

∂λi
∧ ∂

∂µi
, in accordance with

the general Theorem 4 in the subsection above. By construction, the variables (λ,µ) are
separation variables for all the Stäckel Hamiltonians hk in (32).

If we further assume that γk = n − k then the Hamiltonians hk in (32) become the
so-called Stäckel Hamiltonians of Benenti type [1, 2, 5] and in this case

Gf = diag

(
f(λ1)

∆1
, . . . ,

f(λn)

∆n

)
, ∆i =

∏

j 6=i

(λi − λj).
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Further, Ak are given by

Ak = (−1)k+1diag

(
∂sk
∂λ1

, . . . ,
∂sk
∂λn

)
k = 1, . . . , n.

They all are (1, 1)-Killing tensors for all the metrics Gf . The function sk is the elementary

symmetric polynomial in λi of degree k. The potential functions V
(σ)
k are given by

Vk = (−1)k+1
n∑

i=1

∂sk
∂λi

σ(λi)

∆i
k = 1, 2, . . . (33)

and for σ(λ) =
∑

i aiλ
i take the form Vk =

∑
i aiV

(i)
k , where the so-called elementary

separable potentials V
(i)
k can be explicitly constructed from the recursion formula [7]

V(i) = RiV(0), V(i) =
(
V
(i)
1 , . . . ,V(i)

n

)T
, V(0) = (0, . . . , 0,−1)T , (34)

where

R =




−q1 1 0 0
... 0

. . . 0
... 0 0 1

−qn 0 0 0



, R−1 =




0 0 0 − 1
qn

1 0 0
...

0
. . . 0

...
0 0 1 − qn−1

qn



, qi ≡ (−1)isi. (35)

4 Equivalence classes of algebraic curves

From results of Section 2 it follows that without loss of generality we can restrict our
construction to Poisson tensors for which coordinates (λ,µ) are canonical coordinates, i.e.
when c(λ,µ) = I, where I is n-dimensional identity matrix. It follows from the fact that
for fixed c(λ,µ) we have the whole family of transformations

λ̄i = a(λi, µi), µ̄i = b(λi, µi), i = 1, ..., n, (36)

where (λ̄, µ̄) are canonical coordinates for Poisson tensor (21), i.e. they fulfil the condition
(8) for each pair (λi, µi) of coordinates. Thus, each Liouville integrable Hamiltonian
system (24), generated by an algebraic curve (19) and by the Poisson tensor (21) with a
given c(λ, µ), can in fact be generated by a whole family (equivalence class) of algebraic
curves ϕ(λ̄, µ̄, h̄1, ..., h̄n) = 0 and the corresponding Poisson tensors with c(λ̄, µ̄) = 1. Each
class represents thus the same dynamical system written in different Darboux coordinates,
related by appropriate canonical transformations.

Let us specify these considerations to the monomial case, following the case considered
in Section 2. Consider thus the 2n-dimensional Hamiltonian system (24) generated by the

algebraic curve (19) and by the Poisson tensor (21) with c(λi, µ) = λαi µ
β
i , with fixed real

α and β. Then, the transformation to its canonical (Darboux) coordinates on M and its
inverse are of the form (cf. (14) and (15))

λ̄i = λᾱ1
i µᾱ2

i , µ̄i = λβ̄1
i µ

β̄2
i , λi = λ̄β̄2

i µ̄
−ᾱ2
i , µi = λ̄−β̄1

i µ̄ᾱ1
i i = 1, ..., n, (37)
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where ᾱ1, ᾱ2, β̄1, β̄2 are given either by (12) (for α 6= 1, parameterized by ᾱ1) or by (13)
(for β 6= 1, parametrized by β̄2). As a result, our system can be equivalently obtained by
either one of the equivalent curves

ϕ(λ̄, µ̄, h̄1, ..., h̄n) = 0 (38)

expressed in coordinates (λ̄, µ̄) parametrized by ᾱ1 (in case α 6= 1) or by β̄2 (in case
β 6= 1). A canonical transformation and its inverse between coordinates (λ̄, µ̄) and (λ̃, µ̃)
associated with two curves from the class (38) parametrized by ᾱ1 and by α̃1 respectively,
is given by (cf. (16) and (18))

λ̄i = λ̃α1
i µ̃α1−1

i , µ̄i = λ̃1−α1
i µ̃2−α1 , λ̃i = λ̄2−α1

i µ̄1−α1
i , µ̄i = λ̄α1−1

i µ̄α1
i , i = 1, ..., n,

(39)

where

α1 = 1 +
ᾱ1 − α̃1

1 − α
.

Example 5. Let us consider dynamical system (24), generated by the algebraic curve
(31) but in the more general case when the Poisson tensor (4) is given by the monomial
c(λ, µ) = λm, m ∈ Z (so that α = m and β = 0) on the (λ, µ)-plane. Such system
has one-parameter family of canonical representations in new coordinates, induced by the
transformation

λ̄ = λaµ
a−1
1−m , µ̄ = λ1−m−aµ

2−m−a
1−m , a ∈ R, (40)

with the inverse

λ = λ̄
2−m−a
1−m µ̄

1−a
1−m , µ = λ̄a+m−1µ̄a

(where we now denote ᾱ1by a). Notice that for the distinguished choice a = 1 we have
λ̄ = λ, µ̄ = λ−mµ (so that λ = λ̄, µ = λ̄mµ̄) and the algebraic curve (31) in the new
variables (λ̄, µ̄) is still of hyperelliptic type

σ(λ̄) +

n∑

k=1

h̄kλ̄
γk =

1

2
f̄(λ̄)µ̄2, (41)

where f̄(λ̄) = f(λ̄)λ̄2m, with the canonical Poisson tensor as c(λ̄, µ̄) = 1 and thus generates
a Stäckel system with all Hamiltonians that are again quadratic in momenta

h̄k =
1

2
µ̄TAkGf̄ µ̄ + V

(σ)
k (λ̄), k = 1, . . . , n. (42)

For the choice a = 0

λ̄ = µ
1

m−1 , µ̄ = λ1−mµ
2−m
1−m , λ = λ̄

2−m
1−m µ̄

1
1−m , µ = λ̄m−1, (43)

so for the particular case m = 2

λ̄ = µ, µ̄ = λ−1, λ = µ̄−1, µ = λ̄, (44)
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we again obtained the hyperelliptic type curve, this time with interchanged roles of position
and momenta variables:

σ̄(µ̄) +
n∑

k=1

h̄kµ̄
γ̄k =

1

2
f̄(µ̄)λ̄2,

where

σ̄(µ̄) = σ(µ̄−1) µ̄γ1 , f̄(µ̄) = f(µ̄−1) µ̄γ1 , γ̄k = γ1 − γk, k = 1, ..., n (45)

and with the normalization 0 = γ̄1 < ... < γ̄n.

5 Stäckel transform and reciprocal link

In this section we will assume that the algebraic curve defining Hamiltonian system de-
pends on a set of n+n, instead of just n, parameters. We show that solving this curve with
respect to either the first set of n parameters or the second set of n parameters leads to
two integrable systems that can be related by a Stäckel transform. We further show that
solutions of these two systems are related by a reciprocal (multi-time) transformation. We
further specify our results to Stäckel systems.

Consider thus a 2n-parameter algebraic curve

ϕ(λ, µ, a1, ..., an, b1, ..., bn) = 0 (46)

and the corresponding separation relations

ϕ(λi, µi, a1, ..., an, b1, ..., bn) = 0, i = 1, . . . , n. (47)

Solving these relations with respect to ak (we assume it is possible at least in some open
domain) we obtain n functions (Hamiltonians)

ak = hk(ξ, b1, ..., bn), k = 1, ..., n, (48)

considered on a 2n-dimensional manifold M (parametrized by coordinates ξ = (λ,µ)) and
depending on n parameters b1, ..., bn. These Hamiltonians define n Hamiltonians systems
on M of the form

ξti = πdhi ≡ Xi, i = 1, ..., n, (49)

where π is the canonical Poisson tensor of co-rank zero given by

π =

n∑

i=1

∂

∂λi
∧

∂

∂µi

and where t1, . . . , tn are respective evolution parameters. The system (47) (or equivalently
(48)) is assumed to be also solvable (at least in some open domain) with respect to the
parameters bk yielding

bk = h̄k(ξ, a1, ..., an), k = 1, ..., n, (50)
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i.e. new Hamiltonian functions h̄k depending on n parameters a1, ..., an. The related
Hamiltonian systems take the form

ξt̄i = πdh̄i ≡ X̄i, i = 1, ..., n, (51)

where t̄1, ..., t̄n are respective evolution parameters.
Note that inserting the Hamiltonians hk into the separation curve (46) yields the fol-

lowing identity with respect to all ξ ∈M and all bk

ϕ(λ, µ, h1(ξ, b1, ..., bn), ..., hn(ξ, b1, ..., bn), b1, ..., bn) ≡ 0. (52)

Similarly, inserting the Hamiltonians h̄k into the separation curve (46) yields the following
identity with respect to all ξ ∈M and all ak

ϕ(λ, µ, a1, ..., an, h̄1(ξ, a1, ..., an), ..., h̄n(ξ, a1, ..., an)) ≡ 0. (53)

Definition 6. The n Stäckel Hamiltonians h̄k and the n Stäckel Hamiltonians hk are
called Stäckel conjugate Hamiltonians and the procedure of mapping n Hamiltonians hk
to n Hamiltonians h̄k is called Stäckel transform.

Below we remind a theorem explaining the mutual geometric relations between the
Stäckel conjugate Hamiltonians.

Theorem 7. [8] For a given 2n-tuple (a, b) = (a1, ..., an, b1, . . . , bn) of real constants, on
the n-dimensional submanifold

Ma,b = {ξ ∈M : ϕ(λk, µk, a, b) = 0, k = 1, ..., n} (54)

the following relations hold

dh = Adh̄, X = AX̄, Aij = −
∂hi
∂bj

, i, j = 1, . . . , n, (55)

where dh = (dh1, ..., dhn)T , dh̄ = (dh̄1, ..., dh̄n)T , X = (X1, ...,Xn)T , X̄ = (X̄1, ..., X̄n)T .

Note that Ma,b can equivalently be defined as

Ma,b = {ξ ∈M : hk(ξ, b1, ..., bn) = ak, k = 1, ..., n}

= {ξ ∈M : h̄k(ξ, a1, ..., an) = bk, k = 1, ..., n}

and that through each point of M there pass infinitely many manifolds Ma,b. In fact,
fixing all the parameters bk in Ma,b and letting ak vary we obtain a particular foliation
of M and, likewise, fixing all the parameters ak in Ma,b and letting bk vary we obtain
another particular foliation of M . Note also that each of the manifolds Ma,b is invariant
with respect to all n systems (49) and all n systems (51) which also means that all the
vector fields Xi and all the vector fields X̄i are tangent to each manifold Ma,b. Note that
no relation exists between the vector fields X and X̄ on the whole manifold M . Let us
also remark that the transformations (55) on Ma,b can be inverted, yielding

dh̄ = A−1dh, X̄ = A−1X, with
(
A−1

)
ij

= −
∂h̄i
∂aj

, i, j = 1, . . . , n. (56)
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The second relation in (55) can be reformulated in the dual language, that of the reciprocal
multi-time transformations. The reciprocal transformation

t̄i = t̄i(t1, ..., tn, ξ0), i = 1, ..., n,

given on Mb,a by

dt̄ = ATdt, (57)

where dt = (dt1, ..., dtn) and dt̄ = (dt̄1, ..., dt̄n), transforms the n-parameter solutions
ξ(t1, ..., tn, ξ0) of the system (49) (where ξ0 is the initial condition) to the n-parameter
solutions ξ̄(t̄1, ..., t̄n, ξ0) of the system (51). Transformation (57) is well defined as its r.h.s
is an exact differential.

Definition 8. The transformation (57) between dynamical systems (49) and (51) on Ma,b

is called a n-parameter reciprocal transform.

In the remaining part of this section, we will restrict ourselves to the case of curves
(46) that are affine in all the parameters ai and bi. In this case the relations (48) take the
form

ak = hk(ξ, b1, ..., bn) ≡ Hk +

n∑

j=1

H
(j)
k bj, k = 1, ..., n, (58)

while the relations (50) attain the form

bk = h̄k(ξ, a1, ..., an) = H̄k +

n∑

j=1

H̄
(j)
k aj, k = 1, ..., n. (59)

The Stäckel transform between the Hamiltonians hk and h̄k takes the explicit matrix form

h = A(H̄ − b) or h̄ = A−1(H − a), (60)

where h = (h1, ..., hn)T , b = (b1, ..., bn)T , H = (H1, ...,Hn)T , h̄ = (h̄1, . . . , h̄n)T , a =

(a1, ..., an)T and Aij = −∂hi

∂bj
= −H

(j)
i . Note that after setting all the ai and bi equal to

zero we obtain the following matrix formula relating Hamiltonians Hk and H̄k

H = AH̄, (61)

where H̄ = (H̄1, ..., H̄n)T , valid on the wholeM . Formula (61) is the parameter-independent
part of the Stäckel transform between hk and h̄k.

Consider now a specification of the above affine case when the separation curve (46)
attains the following hyperelliptic-type form

σ(λ) +

n∑

j=1

bjλ
γj +

n∑

k=1

akλ
n−k =

1

2
f(λ)µ2, (62)

where σ(λ) and f(λ) are Laurent polynomials in λ, γ1 > ... > γn are natural numbers.
Solving the corresponding separation relations with respect to ak yields the separable
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systems belonging to the Benenti subclass of Stäckel systems. Explicitly, we obtain n
quadratic in momenta Stäckel Hamiltonians

hk = Hk +
n∑

j=1

bjV
(γj)
k =

1

2
µTAkGfµ+ V

(σ)
k +

n∑

j=1

bjV
(γj )
k , k = 1, . . . , n. (63)

The structure and geometric meaning of the Hamiltonians hk is as those described in
subsection 3.2.

Performing the Stäckel transform on the set of n Hamiltonians (63) we obtain the set
of n Hamiltonians h̄k of the form

h̄k = H̄k +
n∑

j=1

aj V̄
(n−j)
k =

1

2
µT ĀkḠfµ+ V̄

(σ)
k +

n∑

j=1

aj V̄
(n−j)
k , k = 1, . . . , n, (64)

(where Ḡf is defined by H̄1 with Ā1 = I) generated by the separation curve

σ(λ) +
n∑

j=1

ajλ
n−j +

n∑

k=1

h̄kλ
γk =

1

2
f(λ)µ2. (65)

The Hamiltonians h̄k define the Hamiltonian evolution equations (51). Then, on n-
dimensional submanifold (54) the relations (55) hold with

Akj = −
∂hk
∂bj

= −V
(γj)
k (66)

and the relations (56) hold with

(A−1)kj = −
∂h̄k
∂aj

= −V̄
(n−j)
k .

Remark 9. From the above considerations it follows that systems generated by algebraic
curves (65) can always be transformed, by an appropriate reciprocal transformation, to
systems from Benenti class, generated by algebraic curves (62).

The Stäckel systems generated by curves of the type (65) have been thoroughly studied
in [4].

Example 10. Consider the algebraic curve (62) of the form

b1λ
2 + a1λ+ b2 + a2 =

1

2
λµ2 + λ4. (67)

Solving the corresponding separation relations with respect to ak we obtain Hamiltonians
h1 and h2 as in (58). In Viéte coordinates (q, p), associated with separable coordinates
(λ, µ) through the point transformation

q1 = −λ1 − λ2, q2 = λ1λ2,

p1 =
1

λ2 − λ1
(λ1µ1 − λ2µ2), p2 =

1

λ2 − λ1
(µ1 − µ2),
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the Hamiltonians hk attain the form

h1 =
1

2
p21 −

1

2
q2p

2
2 − q31 + 2q1q2 + b1q1,

h2 = −q2p1p2 −
1

2
q1q2p

2
2 − q21q2 + q22 + b1q2 − b2.

Passing to flat coordinates [5] (x, y) defined through the point transformation

q1 = −x1, q2 = −
1

4
x22, p1 = −y1, p2 = −

2

x2
y2, (68)

we obtain hk in the form

h1 =
1

2
y21 +

1

2
y22 + x31 +

1

2
x1x

2
2 − b1x1, (69)

h2 =
1

2
x2y1y2 −

1

2
x1y

2
2 +

1

4
x21x

2
2 +

1

16
x42 −

1

4
b1x

2
2 − b2.

Note that for b1 = b2 = 0 the Hamiltonians h1 and h2 represent one of the integrable
cases of Hénon-Heiles systems [12]. The matrix A in (66) and its inverse attain in the
(x, y)-variables the form

A =

(
x1 0
1
4x

2
2 1

)
, A−1 =

( 1
x1

0

− 1
4x1

x22 1

)
.

Solving the separation relations corresponding to (67) with respect to bk yields the Hamil-
tonians h̄1, h̄2 that in the flat coordinates (68) attain the form

h̄1 =
1

2x1
y21 +

1

2x1
y22 + x21 +

1

2
x22 −

a1
x1
,

h̄2 = −
x22
8x1

y21 +

(
−

1

2
x1 −

1

8

x22
x1

)
y22 +

1

2
x2y1y2 −

1

16
x42 +

1

4
a1
x22
x1

− a2.

The Hamiltonians h̄1, h̄2 and the Hamiltonians h1, h2 are Stäckel conjugate. Note that the
variables (68) are only conformally flat for the Hamiltonians h̄1, h̄2. The manifolds Ma,b

are given by

Ma,b = {(x, y) : h1(x, y, b1, b2) = a1, h2(x, y, b1, b2) = a2}

or by

Ma,b =
{

(x, y) : h̄1(x, y, a1, a2) = b1, h̄2(x, y, a1, a2) = b2
}

and one can verify by a direct computation that on Ma,b we have X = AX̄ as well as X̄ =
A−1X. The corresponding reciprocal transformation (57) between the evolution parameters
takes the form

dt̄1 = x1dt1 +
1

4
x22dt2, dt̄2 = dt2.

Stäckel transform was first described by J. Hietarinta et al in [13] (where it was called
the coupling-constant metamorphosis) and in [10]. In this early approach this transform
was only one-parameter. In its most general form Stäckel transform has been introduced
in [15] and then intensively studied in [8, 9].
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6 Miura maps

In this section we investigate yet another possibility of generating integrable and separable
Hamiltonian systems from algebraic curves. We will consider algebraic curves depending
on n + N parameters having a certain block-type structure. These curves generate inte-
grable and separable Hamiltonian systems that can be connected by a finite-dimensional
analogue of Miura maps, known from soliton theory (Theorem 11, see also its proof in the
Appendix). These finite-dimensional Miura maps yield in turn multi-Hamiltonian formu-
lation of the obtained integrable systems (Theorem 12). Results of this section generalize
the results for the one-block case, obtained earlier in [14] as well as the results obtained
in [6].

Consider thus the (n+N)-parameter algebraic curve

ϕ(λ, µ, a1, ..., an, c1, ..., cN ) = 0, (70)

with 1 ≤ N ≤ n, in the following form

ϕ0(λ, µ)+
m∑

k=1

ϕk(λ, µ)ψk(λ, a
(k)
1 , ..., a(k)nk

, c
(k)
1 , ..., c(k)α ) = 0, n1+ ...+nm = n, αm = N,

(71)

where 1 ≤ α ≤ min(nk) and where

ψk(λ, a
(k)
1 , ..., a(k)nk

, c
(k)
1 , ..., c(k)α ) = c(k)α λnk−1+α + ...+ c

(k)
1 λnk +

nk∑

i=1

a
(k)
i λnk−i (72)

with the normalization ϕm(λ, µ) = 1. The curve (71) consists thus of m blocks of Benenti

type. Solving the related separation relations with respect to a
(k)
i we obtain n Hamiltonian

functions

a
(k)
i = h

(k)
i (ξ, c

(1)
1 , ..., c(m)

α ), i = 1, ..., nk, k = 1, ...,m (73)

on a 2n-dimensional open submanifold M⊂R2n parametrized by ξ = (λ,µ). Assume now

that c =
(
c
(1)
1 , . . . , c

(1)
α , . . . , c

(m)
1 , . . . , c

(m)
α

)
are additional coordinates on the (2n + N)-

dimensional open submanifold M ⊂R2n+αm, parametrized by (λ,µ, c). The Hamiltonians

h
(k)
i in (73) generate n dynamical Hamiltonian systems (a Stäckel system) on M, given

by

ξ
t
(k)
i

= π0dh
(k)
i (λ,µ, c) ≡ X

(k)
i , i = 1, ..., nk, k = 1, ...,m, (74)

where ξ ∈ M, π0 is the canonical Poisson tensor

π0 =
n∑

i=1

∂

∂λi
∧

∂

∂µi

of co-rank αm = N on M and c
(1)
1 , ..., c

(m)
α are its Casimir functions.
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The goal of this section is to construct a Miura map between the Stäckel system (74),
generated by the curve (71), (72), and the Stäckel system

ξ
t
(k)
i

= π̄dh̄(k)r (λ̄, µ̄, c̄) ≡ X̄
(k)
i , i = 1, ..., nk, k = 1, ...,m, (75)

where

π̄ =
∑n

i=1

∂

∂λ̄i
∧

∂

∂µ̄i
, (76)

generated by the curve

ϕ0(λ̄, λ̄sµ̄)λ̄−s +

m∑

k=1

ϕk(λ̄, µ̄λ̄s)ψk(λ̄, h̄
(k)
1 , ..., h̄(k)nk

, c̄
(k)
1 , ..., c̄(k)α ) = 0, (77)

with n1 + ...+ nm = n, α ·m = N , where

ψk(λ̄, h̄
(k)
1 , ..., h̄(k)nk

, c̄
(k)
1 , ..., c̄(k)α ) (78)

= c̄(k)α λ̄nk+α−s−1 + . . .+ c̄
(k)
s+1λ̄

nk +

nk∑

i=1

h̄
(k)
i λ̄nk−i + c̄(k)s λ̄−1 + . . .+ c̄

(k)
1 λ̄−s,

s is an integer such that 1 ≤ s ≤ α and where the coordinates (λ̄, µ̄, c̄) = (λ̄i, µ̄i, c̄
(1)
1 , . . . , c̄

(1)
α ,

. . . , c̄
(m)
1 , . . . , c̄

(m)
α )i=1,...,n on M are some functions of coordinates (λ,µ, c).

Consider the following map in R2:

λ̄ = λ, µ̄ = λ−sµ. (79)

This map transforms (algebraically) the curve (71) into the curve (77), provided that for
all k = 1, ...,m

c̄
(k)
i = h

(k)
nk−i+1, i = 1, . . . , s

c̄
(k)
i = c

(k)
i , i = s+ 1, . . . , α

h̄
(k)
i = c

(k)
s−i+1, i = 1, . . . , s

h̄
(k)
i = h

(k)
i−s, i = s+ 1, . . . , nk,

(80)

The relations (80) can be inverted to

c
(k)
i = c̄

(k)
i , i = s+ 1, . . . , α

c
(k)
i = h̄

(k)
s−i+1, i = 1, . . . , s

h
(k)
i = h̄

(k)
s+i, i = 1, . . . , nk − s

h
(k)
i = c̄

(k)
n−i+1, i = nk − s+ 1, . . . , nk.

(81)

The maps (79) and (80) induce the following Miura maps M : M → M

λ̄i = λi, i = 1, . . . , n
µ̄i = λ−s

i µi, i = 1, . . . , n

c̄
(k)
i = h

(k)
nk−i+1(λ, µ, c), i = 1, . . . , s

c̄
(k)
i = c

(k)
i , i = s+ 1, . . . , α,

(82)
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with the inverse M
−1 : M → M

λi = λ̄i, i = 1, . . . , n
µi = λ̄si µ̄i, i = 1, . . . , n

c
(k)
i = h̄

(k)
s−i+1(λ̄, µ̄, c̄), i = 1, . . . , s

c
(k)
i = c̄

(k)
i , i = s+ 1, . . . , α.

(83)

Let us now present the main theorem of this section.

Theorem 11. For any s ∈ {1, . . . , α} the n Hamiltonian vector fields X
(k)
i in (74) and the

n Hamiltonian vector fields X̄
(k)
i in (75) pairwise coincide, provided that the coordinates

(λ̄, µ̄, c̄) and (λ,µ, c) are connected by the Miura map (82):

X
(k)
i = X̄

(k)
i , i = 1, . . . , nk, k = 1, . . . ,m.

The proof of this theorem can be found in Appendix. This theorem means that all the
Stäckel systems (75), generated by the curves (77) (one for each value of s between 1 and α),
represent on the extended phase space M the same Stäckel system as the Stäckel system
(74), (the one generated by the curve (71)), written in different coordinates, connected by
the corresponding invertible Miura maps (82). We can thus call the Stäckel system (75) an
s-representation of the Stäckel system (74), with s = 0, . . . , α (where s = 0-representation
means simply the original Stäckel system (74)). Since all the Miura maps (82) are invertible
it also means that there exists direct Miura maps (appropriate compositions of (82) and
(83)) between different s-representations of our Stäckel system, see [14].

An important consequence of the above construction is the following theorem, that
generalizes the corresponding one-block theorem from [14].

Theorem 12. The Stäckel system (74) is (α + 1)-Hamiltonian, i.e. for all s = 0, . . . , α
(and for all k = 1, . . . ,m)

X
(k)
i = π0dh

(k)
i = πsd

(k)cs−i+1, i = 1, . . . s, (84)

X
(k)
i = π0dh

(k)
i = πsdh

(k)
i−s, i = s+ 1, . . . nk,

where

πs =

n∑

i=1

λsi
∂

∂λi
∧

∂

∂µi
+

m∑

k=1

s∑

j=1

X
(k)
j ∧

∂

∂c
(k)
s−j+1

, s = 0, ..., α. (85)

Thus, the matrix representation of πs in the variables (λ,µ, c) is given by the following
(n+ αm) × (n+ αm) matrix:

πs(λ,µ, c) =




0 Λs

−Λs 0
X

(1)
s . . . X

(1)
1

α−s︷︸︸︷
0...0 · · · X

(m)
s . . . X

(m)
1

α−s︷︸︸︷
0...0

∗


 , (86)

where Λ = diag(λ1, . . . , λn), X
(k)
i denote here the columns consisting of components of

the vector field X
(k)
i in the coordinates (λ,µ, c) and where ∗ denotes transpositions of the
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corresponding X
(k)
i . The proof of this theorem is obtained by a direct computation of the

Poisson operator π̄ =
∑n

i=1∂λ̄i
∧ ∂µ̄i

, for each and every case s = 1, . . . , α, in the variables
(λ,µ, c) associated with the s = 0 representation (for the proof of the one-block version
of this theorem, see [14]).

Using the notation

h
(k)
j ≡ c

(k)
1−j for j = 0,−1, . . . ,−α+ 1,

we can write the formulas (84) in the more compact form

X
(k)
i = πsdh

(k)
i−s, s = 0, . . . , α. (87)

Using this notation, we can formulate the following corollary.

Corollary 13. The multi-Hamiltonian representations (87) generate, for each
k ∈ {1, . . . ,m},

(
α+1
2

)
bi-Hamiltonian chains

πidh
(k)
−i = 0

πidh
(k)
−i+1 = X

(k)
1 = πjdh

(k)
−j+1

...

πidh
(k)
−i+r = X

(k)
r = πjdh

(k)
−j+r

...

πidh
(k)
−i+nk

= X
(k)
nk

= πjdh
(k)
−j+nk

0 = πjdh
(k)
−j+nk+1

(88)

for 0 ≤ i < j ≤ α.

There are two limit cases of the above construction. The first one is the case when
m = n (so that all blocks have length one: nk = 1 for all k = 1, . . . ,m). Then, the vector

fields X
(k)
i in (74) on M are only bi-Hamiltonian, forming n one-field chains

π0dc
(k)
1 = 0

π0dh
(k)
1 = X

(k)
1 = π1dc

(k)
1

0 = π1dh
(k)
1

, k = 1, ..., n,

where

π0 =
n∑

i=1

∂

∂λi
∧

∂

∂µi
, π1 =

n∑

i=1

λi
∂

∂λi
∧

∂

∂µi
+

n∑

k=1

X
(k)
1 ∧

∂

∂c
(k)
1

.

This particular situation was considered in [6]. The opposite limit case takes place when
m = 1 (i.e. when there is only one block in the curve (71)). Then, the considered Stäckel
system is (n+ 1)-Hamiltonian

Xi = πsdhi−s, s = 0, . . . , n,
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with

π0 =

n∑

i=1

∂

∂λi
∧

∂

∂µi
, πs =

n∑

i=1

λsi
∂

∂λi
∧

∂

∂µi
+

s∑

j=1

Xj ∧
∂

∂cs−j+1
, s = 0, ..., n

(and with the notation X
(1)
i ≡ Xi, i = 1, ..., n). In this case there is in total

(
N+1
2

)
bi-

Hamiltonian chains of the form (88), where 1 ≤ N ≤ n. This situation was considered in
[14].

Example 14. Consider the special case of curve (67) from Example 10 with b1 = b2 = 0
but in the space extended by the coordinates c1 and c2:

c2λ
3 + c1λ

2 + h1λ1 + h2 =
1

2
λµ2 + λ4. (89)

This curve has a form of (71)-(72) with n = 2,m = 1 (so it is a one-block case), α = 2 (so
that N = 2), ϕ0 = −1

2λµ
2 − λ4, ϕ1 = 1. The Miura map (82) for s = 1 attains the form

λ̄1 = λ1, λ̄2 = λ2, µ̄1 = λ−1
1 µ1, µ̄2 = λ−1

2 µ2, c̄1 = h2(λ, µ, c), c̄2 = c2

and it transforms the Stäckel system generated by the curve (89) to the Stäckel system
generated by the curve

c̄2λ̄
2 + h̄1λ̄+ h̄2 + c̄1λ̄

−1 =
1

2
λ̄2µ̄2 + λ̄3. (90)

Further, for s = 2 the Miura map (82) attains the form

λ̃1 = λ1, λ̃2 = λ2, µ̃1 = λ−2
1 µ1, µ̃2 = λ−2

2 µ2, c̃1 = h2(λ, µ, c), c̃2 = h1(λ, µ, c)

(in this example we have to distinguish between the two set of ”bar” variables, one for

s = 1 and for s = 2 so in the latter case we use the variables
(
λ̃, µ̃, c̃

)
) and it transforms

the Stäckel system generated by the curve (89) to the Stäckel system generated by the curve

h̃1λ̃+ h̃2 + c̃2λ̃
−1 + c̃1λ̃

−2 =
1

2
λ̃3µ̃2 + λ̃. (91)

All these three Stäckel systems are three different s-representations (with s = 0, 1 and 2)
of the same three-Hamiltonian Stäckel system, with its three Poisson tensors (86) having
in the (λ, µ, c)-variables the form

π0(λ,µ, c) =




0 I
−I 0

0 0

∗


 ,

π1(λ,µ, c) =




0 Λ
−Λ 0

X1 0

∗


 ,

π2(λ,µ, c) =




0 Λ2

−Λ2 0
X2 X1

∗


 ,
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where I = diag(1, 1), Λ = diag(λ1, λ2). Let us write these objects explicitly in the flat
coordinates (68). The two Stäckel Hamiltonians h1 and h2 have in these coordinates the
form

h1 =
1

2
y21 +

1

2
y22 + x31 +

1

2
x1x

2
2 − c2

(
x21 +

1

4
x22

)
− c1x1,

h2 =
1

2
x2y1y2 −

1

2
x1y

2
2 +

1

4
x21x

2
2 +

1

16
x42 −

1

4
c2x1x

2
2 −

1

4
c1x

2
2

while the matrix representations of the Poisson operators π0, π1 and π2 attain the explicit
form

π0(x,y, c) =




0 I
−I 0

0 0

∗


 ,

π1(x,y, c) =




0 0 x1
1
2x2

0 0 1
2x2 0

−x1 −1
2x2 0 1

2y2
−1

2x2 0 −1
2y2 0

X1 0

∗



,

π2(x,y, c) =




0 0 x21 + 1
4x

2
2

1
2x1x2

0 0 1
2x1x2

1
4x

2
2

−x21 −
1
4x

2
2 −1

2x1x2 0 1
2x1y2

−1
2x1x2 −1

4x
2
2 −1

2x1y2 0

X2 X1

∗



,

where the components of the vector fields X1 and X2 are given by

X1 =

(
y1, y2,−3x21 −

1

2
x22 + 2c2x1 + c1,−x1x2 +

1

2
c2x2, 0, 0

)T

,

X2 =

(
1

2
x2y2,

1

2
x2y1 − x1y2,

1

2
y22 −

1

2
x1x

2
2 +

1

4
c2x

2
2,

−
1

2
y1y2 −

1

2
x21x2 −

1

8
x32 +

1

2
c2x1x2 +

1

2
c1x2, 0, 0

)T

,

while the corresponding bi-Hamiltonian chains are

π0dc1 = 0
π0dh1 = X1 = π1dc1
π0dh2 = X2 = π1dh1

0 = π1dh2

π0dc1 = 0
π0dh1 = X1 = π2dc2
π0dh2 = X2 = π2dc1

0 = π2dh1

π1dc2 = 0
π1dc1 = X1 = π2dc2
π1dh1 = X2 = π2dc1

0 = π2dh1

.

Example 15. Consider now another specification of the curve (67) from Example 10, this
time with a1 = a2 = 0 and in the space extended by the coordinates c(1) and c(2). More
specifically, we consider the curve

λ2
(
c
(2)
1 λ+ h

(2)
1

)
+ c

(1)
1 λ+ h

(1)
1 =

1

2
λµ2 + λ4.
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This curve has the form of (71)-(72) with n = 2,m = 2. Thus, it is a two-block case, with
n1 = n2 = 1, α = 1 (so that N = 2), ϕ0 = −1

2λµ
2− λ4, ϕ1 = 1 and ϕ2 = λ2. To simplify

the notation, let us denote h1 = h
(2)
1 ,h2 = h

(1)
1 , c1 = c

(2)
1 , c2 = c

(1)
1 so that the curve is

λ2 (c1λ+ h1) + c2λ+ h2 =
1

2
λµ2 + λ4. (92)

The Miura map (82) for s = 1 attains the form

λ̄1 = λ1, λ̄2 = λ2, µ̄1 = λ−1
1 µ1, µ̄2 = λ−1

2 µ2, c̄1 = h1(λ, µ, c), c̄2 = h2(λ, µ, c)

and it transforms the Stäckel system generated by the curve (92) to the Stäckel system
generated by the curve

λ̄2
(
h̄1 + c̄1λ̄

−1
)

+ h̄2 + c̄2λ̄
−1 =

1

2
λ̄2µ̄2 + λ̄3. (93)

Both Stäckel systems are two different s-representations (with s = 0,1) of the same bi-
Hamiltonian Stäckel system. Two Poisson tensors (86) have in the (λ,µ, c)-variables the
form

π0(x,y, c) =




0 I
−I 0

0 0

∗


 ,

π1(λ,µ, c) =




0 Λ
−Λ 0

X1 X2

∗


 ,

where Xi denote here the components of the vector fields π0dhi. Let us write down these
objects explicitly in the conformally flat coordinates (68). The Stäckel Hamiltonians h1
and h2 are

h1 =
1

2x1
y21 +

1

2x1
y22 + x21 +

1

2
x22 − c1

(
x1 +

x22
4x1

)
−
c2
x1
,

h2 = −
x22
8x1

y21 +

(
−

1

2
x1 −

1

8

x22
x1

)
y22 +

1

2
x2y1y2 −

1

16
x42 +

1

16
c1
x42
x1

+
1

4
c2
x22
x1
,

while the matrix representations of the Poisson operators π0 and π1 attain the explicit
form

π0(x,y, c) =




0 I
−I 0

0 0

∗


 ,

π1(x,y, c) =




0 0 x1
1
2x2

0 0 1
2x2 0

−x1 −1
2x2 0 1

2y2
−1

2x2 0 −1
2y2 0

X1 X2

∗



,
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where

X1 =

(
y1
x1
,
y2
x1
,

1

2x21
y21 +

1

2x21
y22 − 2x1 + c1

(
1 −

x22
4x21

)
,−x2 +

1

2
c1
x2
x1
, 0, 0

)T

,

X2 =

(
−

1

4

x22
x1
y1 +

1

2
x2y2,−

(
x1 +

1

4

x22
x21

)
y2 +

1

2
x2y1,

−
1

8

x22
x21
y21 −

(
−

1

2
+

1

8

x22
x21

)
y22 +

1

16
c1
x42
x21

+
1

4
c2
x22
x21
,

1

4

x2
x1

(y21 + y22) −
1

2
y1y2 +

1

4
x32 −

1

4
c1
x32
x1

−
1

2
c2
x2
x1
, 0, 0

)T

.

The two corresponding bi-Hamiltonian chains are

π0dc2 = 0
π0dh2 = X2 = π1dc2

0 = π1dh2

,
π0dc1 = 0
π0dh1 = X1 = π1dc1

0 = π1dh1.

Appendix

We prove here Theorem 11. Let us fix k ∈ {1, . . . ,m} and then r ∈ {1, . . . , nk}. We

want to show that the vector fields X
(k)
r and X̄

(k)
r on M coincide. Obviously, X̄

(k)
r =

π̄dh̄
(k)
r =

n∑
i=1

(
∂h̄

(k)
r

∂µ̄i

∂
∂λ̄i

− ∂h̄
(k)
r

∂λ̄i

∂
∂µ̄i

)
. Let us write this vector field in the coordinates

(λi, µi, c
(1)
1 , . . . , c

(1)
α , . . . , c

(m)
1 , . . . , c

(m)
α )i=1,...,n connected with the coordinates

(λ̄iµ̄i, c̄
(1)
1 . . . , c̄

(1)
α , . . . , c̄

(m)
1 , . . . , c̄

(m)
α )i=1,...,n through the Miura map (83). Components of

X̄
(k)
r in the non-bar coordinates will be given by

J




∂h̄
(k)
r

∂µ̄

−∂h̄
(k)
r

∂λ̄

0N×1


 , (A.1)

where

∂h̄
(k)
r

∂µ̄
=

(
∂h̄

(k)
r

∂µ̄1
, . . . ,

∂h̄
(k)
r

∂µ̄n

)T

,
∂h̄

(k)
r

∂λ̄
=

(
∂h̄

(k)
r

∂λ̄1
, . . . ,

∂h̄
(k)
r

∂λ̄n

)T

and where J is the Jacobian of the map (83), given explicitly by

J =




In 0n×n

sΛs−1U Λs

02n×N

B1
...
Bm

∗




,
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with Λ =diag(λ̄1, . . . , λ̄n), U =diag(µ̄1, . . . , µ̄n), and with Bl, l = 1, . . . ,m being the α×2n
matrix given by

Bl =




[
∂h̄

(l)
s−i+1

∂λ̄j

]

i=1...s
j=1,...n

[
∂h̄

(l)
s−i+1

∂µ̄j

]

i=1...s
j=1,...n

0(α−s)×n 0(α−s)×n




while ∗ represent some N ×N matrix. Thus, (A.1) has the form

J




∂h̄
(k)
r

∂µ̄

−∂h̄
(k)
r

∂λ̄

0N×1


 =




∂h̄
(k)
r

∂µ̄

sΛs−1U ∂h̄
(k)
r

∂µ̄
− Λs ∂h̄

(k)
r

∂λ̄

Z1
...
Zm




where

Zl =




{
h̄
(l)
s , h̄

(k)
r

}
π̄

...{
h̄
(l)
1 , h̄

(k)
r

}
π̄

0(α−s)×1




= 0α×1,

since all the Hamiltonians h̄
(k)
r mutually Poisson commute with respect to π̄. So, (A.1) is

given by

J




∂h̄
(k)
r

∂µ̄

−∂h̄
(k)
r

∂λ̄

0N×1


 =




∂h̄
(k)
r

∂µ̄

sΛs−1U ∂h̄
(k)
r

∂µ̄
− Λs ∂h̄

(k)
r

∂λ̄

0N×1


 .

Therefore, X
(k)
r = X̄

(k)
r provided that

∂h̄
(k)
r

∂µ̄p
=
∂h

(k)
r

∂µp
, p = 1, . . . , n (A.2)

and provided that

sλ̄s−1
p µ̄p

∂h̄
(k)
r

∂µ̄p
− λ̄sp

∂h̄
(k)
r

∂λ̄p
= −

∂h
(k)
r

∂λp
, p = 1, . . . , n.

Using (A.2) and the fact that λ̄p = λp, µ̄p = λ−p
i µi,, this last condition is equivalent to

∂h̄
(k)
r

∂λ̄p
= λ−s

p

∂h
(k)
r

∂λp
+ sλ−s−1

p µp
∂h

(k)
r

∂µp
, p = 1, . . . , n. (A.3)
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We will now prove first (A.2) and then (A.3). The separation relations following from the
curve (71) yield the following n identities on M ⊂R2n+αm:

ϕ0(λi, µi) +
m∑

k=1

ϕk(λi, µi)ψk(λi, h
(k)
1 , ..., h(k)nk

, c
(k)
1 , ..., c(k)α ) ≡ 0, i = 1, . . . , n, (A.4)

where now

ψk(λi, h
(k)
1 , ..., h(k)nk

, c
(k)
1 , ..., c(k)α ) = c(k)α λnk−1+α

i + ...+ c
(k)
1 λnk

i +

nk∑

j=1

h
(k)
j λnk−j

i . (A.5)

Differentiating each of these identities with respect to µp yields (no summation over i) we
obtain

ϕ′
0,2(λi, µi)δip+

m∑

k=1

ϕ′
k,2(λi, µi)ψk(. . .)δip+

m∑

k=1

ϕk(λi, µi)

nk∑

j=1

∂h
(k)
j

∂µp
λnk−j
i ≡ 0, i = 1, . . . , n.

(A.6)

Let us note, for later purposes, that for i 6= p the above identities attain the form

m∑

k=1

ϕk(λi, µi)

nk∑

j=1

∂h
(k)
j

∂µp
λnk−j
i ≡ 0, i 6= p. (A.7)

Analogously, the separation relations following from the curve (77) yield the following n
identities on M:

ϕ0(λ̄i, λ̄
s
i µ̄i)λ̄

−s
i +

m∑

k=1

ϕk(λ̄i, µ̄iλ̄
s
i )ψk(λ̄i, h̄

(k)
1 , ..., h̄(k)nk

, c̄
(k)
1 , ..., c̄(k)α ) ≡ 0, i = 1, . . . , n, (A.8)

where now

ψk(λ̄i, h̄
(k)
1 , ..., h̄(k)nk

, c̄
(k)
1 , ..., c̄(k)α ) =c̄(k)α λ̄nk+α−s−1

i + . . .+ c̄
(k)
s+1λ̄

nk

i

+

nk∑

j=1

h̄
(k)
j λ̄nk−j

i + c̄(k)s λ̄−1
i + . . .+ c̄

(k)
1 λ̄−s

i . (A.9)

Differentiating each of these identities with respect to µ̄p yields (again, no summation over
i)

ϕ′
0,2(λ̄i, λ̄

s
i µ̄i)δip+

m∑

k=1

ϕ′
k,2(λ̄i, λ̄

s
i µ̄i)λ̄

s
iψk( ¯. . . )δip+

m∑

k=1

ϕk(λ̄i, λ̄
s
i µ̄)

nk∑

j=1

∂h̄
(k)
j

∂µ̄p
λnk−j
i ≡ 0,

(A.10)

i = 1, . . . , n, where ψk( ¯. . . ) is the short-hand notation for (A.9). A simple identification
through (81) shows that ψk(...) in (A.5) and ψk( ¯. . . ) in (A.9) coincide as functions on M.
Thus, the Miura map (83) maps the identities (A.10) exactly onto the corresponding (i.e.
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with the same i) identities (A.6). That means that
∂h

(k)
j

∂µp
and

∂h̄
(k)
j

∂µ̄p
satisfy the same set

of n linear equations, with the same non-degenerated system matrix, and thus they must
pairwise coincide. Thus, (A.2) is proven.

Let us now prove (A.3). Differentiating all the identities (A.4) with respect to λp we
obtain, for i = p

ϕ′
0,1(λp, µp) +

m∑

k=1

ϕ′
k,1(λp, µp)ψk(λp, . . .)

+

m∑

k=1

ϕk(λp, µp)




α∑

j=1

(nk + j − 1)c
(k)
j λnk+j−2

p +

nk∑

j=1

(nk − j)λnk−j−1
p h

(k)
j

+

nk∑

j=1

λnk−j
p

∂h
(k)
j

∂λp


 = 0 (A.11)

and for i 6= p

m∑

k=1

ϕk(λi, µi)

nk∑

j=1

λnk−j
i

∂h
(k)
j

∂λp
≡ 0. (A.12)

Analogously, multiplying all the identities (A.8) by λ̄si and differentiating with respect to
λ̄p we obtain, for i = p

ϕ′
0,1(λ̄p, µ̄pλ̄

s
p) + ϕ′

0,2(λ̄p, µ̄pλ̄
s
p)sµ̄pλ̄

s−1
p +

m∑

k=1

ϕ′
k,1(λ̄p, µ̄pλ̄

s
p)ψk(λ̄p, ¯. . . ) (A.13)

+

m∑

k=1

ϕ′
k,2(λ̄p, µ̄pλ̄

s
p)sµ̄pλ̄

s−1
p ψk(λ̄p, ¯. . . )

+

m∑

k=1

ϕk(λ̄p, µ̄pλ̄
s
p)




α∑

j=1

(nk + j − 1)c̄
(k)
j λ̄nk+j−2

p +

s∑

j=1

(j − 1)c̄
(k)
j λ̄j−2

p

+

nk∑

j=1

(nk + s− j)λ̄nk+s−j−1
p h̄

(k)
j +

nk∑

j=1

λ̄nk+s−j
p

∂h̄
(k)
j

∂λ̄p


 ≡ 0

and for i 6= p

m∑

k=1

ϕk(λ̄i, µ̄iλ̄
s
i )

nk∑

j=1

λ̄
nk+s−j

i

∂h̄
(k)
j

∂λ̄p
= 0. (A.14)

It is immediate to see that the Miura map (83) transforms all the relations (A.14) to the
corresponding (i.e. with the same i) relations (A.12). Further, careful comparison of all
terms in (A.11) and (A.13) using (A.7) shows that the Miura map (83) transforms (A.13)
onto (A.11) if and only if the condition (A.3) holds. Thus, (A.3) is proved.
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