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Abstract

The lattice Boussinesq (lBSQ) equation is a member of the lattice Gel’fand-Dikii
(lGD) hierarchy, introduced in [17], which is an infinite family of integrable systems
of partial difference equations labelled by an integer N , where N = 2 represents the
lattice Korteweg-de Vries (KdV) system, and N = 3 the Boussinesq system. In [6] it
was shown that, written as three-component system, the lBSQ system allows for extra
parameters which essentially amounts to building the lattice KdV inside the lBSQ. In
this paper we show that, on the level of the Lagrangian structure, this boils down to
a linear combination of Lagrangians from the members of the lGD hierarchy as was
established in [10]. The corresponding Lagrangian multiform structure is shown to
exhibit a ‘double zero’ structure.

Dedicated to the memory of Decio Levi

1 Introduction

The extended lattice Boussinesq (lBSQ) system is given by the coupled system of partial
difference equations (P∆Es)

α1(p− q)− α2(p
2 − q2) + α3(p

3 − q3)

p− q + û− ũ
= α1 − α2(p+ q + u− ̂̃u)

+ α3

[
̂̃v − w + (p+ q + u)(p + q − ̂̃u)− pq

]
, (1.1a)

v̂ − ṽ = (p − q + û− ũ)̂̃u+ qũ− pû , (1.1b)

ŵ − w̃ = −(p− q + û− ũ)u+ pũ− qû , (1.1c)
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for the dependent variable fields u = u(n,m), v = v(n,m) and w(n,m) depending on
discrete independent variables n,m , where the ˜ and ̂ denote elementary shifts on the
lattice, i.e.

ũ = u(n + 1,m), û = u(n,m+ 1), ̂̃u = u(n+ 1,m+ 1) ,

and similarly for the fields v and w. In (1.1), p and q are lattice parameters associated
with the variables n, m respectively, whereas the αi, i = 1, 2, 3 are fixed parameters.
While the ‘pure’ lattice BSQ equation (i.e., the case that α1 = α2 = 0) was introduced in
[17], Hietarinta in [6] by a systematic search of integrable cases found the extension of the
lBSQ system with the additional parameters. These extra parameters were subsequently
understood from the point of view of the ‘direct linearization method’ in [24] and extended
to the entire lattice Gel’fand-Dikii (lGD) hierarchy. In fact, the extra parameters arise
from an unfolding of the underlying dispersion curve, which is singular in the pure lBSQ
case. Consequently, the soliton solutions associated with the extended lBSQ system exhibit
a physically more regular (forsooth non-singular) behaviour as was demonstrated in e.g.
[8].

In a separate development, the notion of Lagrangian multiforms was introduced in
[9] in order to provide a variational framework for the phenomenon of multidimensional
consistency (MDC), (as exhibited for instance by the system (1.1)): the key aspect of in-
tegrability that multiple equations, in terms of a multitude of independent variables, can
be imposed on one and the same dependent variable such that they allow for nontrivial
common solutions (i.e. implying that those equations are mutually compatible). In the
Lagrangian multiform framework, the Lagrangians are components of a differential- or dif-
ference d-form L (d corresponding to the dimensionality of the equations, i.e. the necessary
minimal set of independent variables appearing in each of the equations of the MDC sys-
tem) and they are integrated over arbitrary d-dimensional hypersurfaces in an embedding
space of arbitrary dimensionality to give the relevant action functional S[u;σ] which is a
functional of both the field variables u = u(x) (where x denotes the set of independent
variables) as well as of the hypersurfaces σ in the space of independent variables. The key
new feature is that the least action principle is to find the critical point for simultaneously
varying the dependent veriables as well as under deformations of the surfaces σ. This
means that at the critical value of the field variables the action is invariant under local
deformations of the surfaces of integration, which implies that they must obey a set of
(extended) Euler-Lagrange (EL) equations that possess the MDC property, as they must
obey simultaneously compatible EL equations on all choices of surfaces (subject to fixed
boundary conditions). Since its inception, this theory has been elaborated for many ex-
amples, in particular to the case of the lGD hierarchy, [10], where a Lagrangian multiform
structure was presented for the entire hierarchy in terms of a single Lagrangian for each
N . In the present paper we focus on the case N = 3 but show that the Lagrangians for
the hierarchy up to this level can be ‘summed up’, in the sense of a linear combination of
Lagrangians, where the parameters αi of the extended case emerge naturally. We further
demonstrate, going beyond the results of [10], that this Lagrangian multiform possesses a
‘double-zero structure’ in the sense of [21], (cf. also [22, 13, 5, 4]) where it was shown that
the exterior derivative of the Lagrangian multiform for continuous MDC systems breaks
down into sums of products of factors which vanish on solutions of the EL equations1.

1Similar double-zero structures were recently exhibited by Vermeeren in the discrete case, cf. [23].
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2 The extended lattice Boussinesq Lagrangians

A Lagrangian for the pure lattice Boussinesq equation in scalar form, which is a 9-point
equation for the field u, obtained by eliminating v and w from the system (1.1), was given
in [17]. Associated 9-point lattice systems are the lattice modified Boussinesq (lMBSQ)
equation, derived in the same paper, and lattice Schwarzian Boussinesq (lSBSQ) equation,
[15], while the parameter extension (coined NQC (Nijhoff-Quispel-Capel) type BSQ equa-
tion, as it can be thought of as the rank 3 version of the primary lattice equation found in
[18]) was found in [24], cf. also [19]. From these higher-order equations which go beyond
the well-studied case of quad equations, only for the lMBSQ a Lagrangian structure has so
far been found, [2], while for the Schwarzian variants of the lBSQ no Lagrangian structure
so far exists.

The Lagrangian for the lBSQ we will consider here, reads

L(3)
pq = (p3 − q3) ln(p− q + û− ũ) + (p2 + pq + q2)(û− ũ)

−(p+ q + u)(p + q − ̂̃u)(p− q + û− ũ) + ̂̃u(qũ− pû) , (2.2)

which differs from the Lagrangian given in [17] through the presence of some linear dif-
ference terms, which are unimportant for the conventional EL equations, leading to a the
9-point scalar equation which is the lBSQ. However, these total difference terms are im-
portant for the so-called corner equations and for the ‘double-zero’ structure of the lBSQ
system (in analogy to the double-zero phenomenon that appeared in the continuous La-
grangian multiform structures, cf. [21]). We supplement the lBSQ Lagrangian (2.2) with
the Lagrangian for the lattice (potential) Korteweg-de Vries (lKdV) in the following form

L(2)
pq = (q2 − p2) ln(p− q + û− ũ) + u(û− ũ) + (p− q)(u− ̂̃u) . (2.3)

Here also we include linear terms, which do not contribute to the usual discrete EL equa-
tions, in comparison to the original lKdV Lagrangian that was first found in [3], again for
reasons mentioned above. Furthermore, we also add the ‘trivial’ Lagrangian

L(1)
pq = (p− q) ln(p− q + û− ũ) , (2.4)

the EL equation of which leads to the linear P∆E: û
˜
+ ũ
̂
− 2u = 0, with the under-accents

denoting the backward shifts.
It turns out that the linear combination of these Lagrangians

Lpq = α1L
(1)
pq + α2L

(2)
pq + α3L

(3)
pq (2.5)

forms the Lagrangian for the extended lBSQ system, whose conventional EL equation
leads to the 9-point equation that is obtained from the system (1.1) by eliminating the
fields v and w:

P −Q

p− q + u− ũ
̂
−

P −Q

p− q + û
˜
− u

= (α3(p + q)− α2)

(
û+ u

̂
− ũ− u

˜

)

+α3

[
u
˜
û− u

̂
ũ+ p(û+ u

̂
)− q(ũ+ u

˜
)

−(p− q + û− ũ)̂̃u− (p− q + u
˜
−u
̂
)u
̂̃

]
, (2.6)
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in which P = α1p − α2p
2 + α3p

3, Q = α1q − α2q
2 + α3q

3. So far this establishes the
conventional Lagrangian structure for the extended lBSQ system. We now proceed to
establishing the multiform structure.

3 The extended lattice Boussinesq Lagrangian multiform

structure

For 2-dimensional integrable lattice equations we expect a discrete Lagrangian 2-form
structure which can be written as

L =
∑

i<j

Lpipjδpi ∧ δpj , (3.7)

where the Lpipj are the Lagrangian components for any two directions indicated by the
lattice parmeters pi, pj of multidimensional regular lattice of, in principle, arbitrary di-
mension. The parameters p and q of the previous section are just two possible choices for
the parameters pi, among many additional parameters, and with each parameter there is
a discrete lattice variable npi playing the role of coordinates for the ith direction in that
multidimensional lattice. In (3.7) the δp denotes a discrete differential2, i.e. a formal
symbol indicating that in the action functional

S[u(n);σ] =
∑

σ

L =
∑

σij∈σ

Lpipjδpi ∧ δpj , (3.8)

the Lagrangian contributions from all elementary quads σij = (n,n + ei,n + ej) (with
elementary displacement vectors ei along the edges in the lattice associated with the lattice
parameter pi) are simply summed up according to their base point n and their orientation.

According to the derivation proposed in [11], the set of multiform EL equations is
obtained by considering the smallest closed quad-surface, which is simply an elementary
cube, and the action of which is given by

S[u(n); cube] =: (�L)pqr = ∆pLqr +∆qLrp +∆rLpq , (3.9)

where ∆p = Tp − id is the forward difference operator in the direction labeled by p, and
where Tp denotes the elementary forward shift operator in that direction, i.e.

Tpu(· · · , np, · · · ) = u(· · · , np + 1, · · · ) = u(n+ ep) .

The fundamental EL equations of the multiform are obtained by taking partial derivatives
w.r.t. all the internal vertices, i.e. the variables u, ũ, û, u, which represent the shifts in all
three directions np, nq, nr, and w.r.t. the variable with the combined shifts ̂̃u, û, ũ, as well
as w.r.t. the triply shifted ̂̃u. With the cube action for the lBSQ (N = 3) contribution to
the multiform calculated as

(�L(3))pqr = (p3 − q3) ln

(
p− q + û− ũ

p− q + û− ũ

)
− ̂̃u(qũ− pû) + cycl.

− (p2 + pq + q2)(û− ũ)− (p − q + û− ũ)(p+ q + u)(p + q −
̂̃
u) + cycl.

+ (p2 + pq + q2)(û− ũ) + (p − q + û− ũ)(p+ q + u)(p + q − ̂̃u) + cycl. ,

2The notation is similar to the one introduced in [12].



]ocnmp[ Lagrangian multiform structure, extended lattice Boussinesq system 5

where +cycl. means adding two similar terms after cyclic permutations of p, q, r and the
respective shifts ˜,̂, . The contribution to the action from the lKdV components reads:

(�L(2))pqr = (q2 − p2) ln

(
p− q + û− ũ

p− q + û− ũ

)
+ u(û− ũ) + (p− q)(u+ ̂̃u) + cycl..

Varying independently w.r.t. the variables u at all the internal vertices of the closed
surface of the cube leads to the corner equations. Let us, for simplicity, treat the corner
equations for the lKdV and lBSQ separately. First, for the lKdV component (setting here
α1 = α3 = 0, α2 = 1) we have as only nontrivial contributions

∂(�L(2))pqr
∂u

=

(
û− q +

q2 − r2

q − r + u− û

)
−

(
ũ− p+

p2 − r2

p− r + u− ũ

)
= 0 , (3.10a)

∂(�L(2))pqr

∂̂̃u
=

(
−ũ− q +

q2 − r2

q − r + ũ− ̂̃u

)
−

(
−û− p+

p2 − r2

p− r + û− ̂̃u

)
= 0 .

(3.10b)

Since (3.10a) and (3.10b) must hold for every p, q (and corresponding lattice shifts) while
fixing r, it is evident that we deduce the two conditions

û− q +
q2 − r2

q − r + u− û
= fr, −ũ− q +

q2 − r2

q − r + ũ− ̂̃u
= ̂̃gr,

where fr and gr are independent of p, q and their corresponding lattice shifts, the only
consistent choice being fr = r0+u, gr = r0−u (where r0 is an arbitrary constant which may
only depend on the parameter r), and which leads to the lattice potential KdV equation
as a quad-lattice equation.

Let us next consider the corner equations for the lBSQ components L(3) of the multi-
form. In what follows we will use the abbreviations

Γpq := p− q + Tqu− Tpu, Γqr := q − r + Tru− Tqu, Γrp := r − p+ Tpu− Tru,

with Tpu = ũ, Tqu = û, Tru = u and denote

Γpqr = Γpq(r + TpTqu) + Γqr(p+ TqTru) + Γrp(q + TrTpu)

= (TrΓpq)(Tru− r) + (TpΓqr)(Tpu− p) + (TqΓrp)(Tqu− q) ,

where we note that Γpqr = 0 is actually the lattice Kadomtsev-Petviashvili (lKP) equation
[16], which holds for the lBSQ solutions as a consequence of (1.1b) and (1.1c). From the
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elementary cube action (�L(3))pqr we obtain the following corner relations:

∂(�L(3))pqr
∂u

= −Γpqr = 0, (3.11a)

∂(�L(3))pqr

∂
̂̃
u

= Γpqr = 0, (3.11b)

∂(�L(3))pqr
∂u

=
r3 − p3

r − p+ ũ− u
−

q3 − r3

q − r + u− û
− pũ+ qû

+ (p − q + û− ũ)(p+ q −
̂̃
u) + (r2 + rp+ p2)− (q2 + rq + r2)

+ (q + r + u)(q + r − û)− (r + p+ u)(r + p− ũ) = 0 , (3.11c)

∂(�L(3))pqr

∂̂̃u
=

r3 − p3

r − p+ ̂̃u− û
−

q3 − r3

q − r + ũ− ̂̃u
+ pû− qũ

− (p − q + û− ũ)(p+ q + u) + (r2 + rp+ p2)− (q2 + rq + r2)

+ (q + r + ũ)(q + r −
̂̃
u)− (r + p+ û)(r + p−

̂̃
u) = 0 , (3.11d)

(and similar equations to (3.11c) and (3.11d) upon cyclic permutations) which form essen-
tially the system of EL equations for the multiform action. We note that using the lKP
equation Γpqr = 0 we can rewrite (3.11c) as

[
r2 + rp+ p2 − pũ+

p3 − r3

p− r + u− ũ
− (r + p+ u)(r + p− ũ)− (r + p− ũ)(p − r + u− ũ)

]

−

[
r2 + rq + q2 − qû+

q3 − r3

q − r + u− û
− (r + q + u)(r + q − û)− (r + q − û)(q − r + u− û)

]
= 0

and (3.11d) as

[
r2 + rp+ p2 + pû+

p3 − r3

p− r + û− ̂̃u
− (r + p+ û)(r + p−

̂̃
u) + (r + p+ û)(r − p+ ̂̃u− û)

]

−

[
r2 + rq + q2 + qũ+

q3 − r3

q − r + ũ− ̂̃u
− (r + q + ũ)(r + q −

̂̃
u) + (r + q + ũ)(r − q + ̂̃u− ũ)

]
= 0 ,

which hold for all p, q and their corresponding shifts, while fixing r. Thus we conclude
that the following relations hold:

r2 + rq + q2 − qû+
q3 − r3

q − r + u− û
− (r + q + u)(r + q − û)− (r + q − û)(q − r + u− û) = Fr

r2 + rq + q2 + qũ+
q3 − r3

q − r + ũ− ̂̃u
− (r + q + ũ)(r + q −

̂̃
u) + (r + q + ũ)(r − q + ̂̃u− ũ) =

˜̂
Gr

for all lattice parameters q and corresponding lattice shifts ̂ , where Fr and Gr are
independent of q and the associated shifts and only depends on r and may only involve
(single or multiple) shifts acting on u. In fact, using (1.1) we have the identifications

Fr = 2r2 + v − w − ru , Gr = 2r2 + v − w + ru ,
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but since the quantities v and w are not present in the Lagrangians, in these formulas the
quantity v−w can be considered as a potential field. Eliminating this potential field, the
ensuing relation Gr − ru = F r + ru leads to the 9-point lBSQ equation (2.6) (for the
choice made here, α1 = α2 = 0, α3 = 1).

We will now elucidate the double-zero structure of the lBSQ multiform.3 The double-
zero structure for the extended lBSQ multiform is based on the following identities:

(�L(3))pqr =− (p+ q + r + u−
̂̃
u)Γpqr

+ p3 ln

(
Γpq

Γpq

·
Γrp

Γ̂rp

)
+ q3 ln

(
Γ̃qr

Γqr

·
Γpq

Γpq

)
+ r3 ln

(
Γ̂rp

Γrp

·
Γqr

Γ̃qr

)
(3.12a)

for the lBSQ components and

(�L(2))pqr =Γpqr − p2 ln

(
Γpq

Γpq

·
Γrp

Γ̂rp

)
− q2 ln

(
Γ̃qr

Γqr

·
Γpq

Γpq

)
− r2 ln

(
Γ̂rp

Γrp

·
Γqr

Γ̃qr

)

(3.12b)

for the lKdV components, while for the linear components we have

(�L(1))pqr = p ln

(
Γpq

Γpq

·
Γrp

Γ̂rp

)
+ q ln

(
Γ̃qr

Γqr

·
Γpq

Γpq

)
+ r ln

(
Γ̂rp

Γrp

·
Γqr

Γ̃qr

)
. (3.12c)

In eqs. (3.12) the shifted functions Γpq are expressed as

Γpq = p− q + û− ũ , Γ̃qr = q − r + ũ− ̂̃u , Γ̂rp = r − p+ ̂̃u− û ,

where û = TqTru, ̂̃u = TqTpu, ũ = TpTru.

Now it is noted that both Γpqr and the factors within the logarithms, have a zero, resp.
a logarithmic zero (i.e. where the factors equal unity) on solutions of the lKP equation.
In fact, due to the identities:

Γpqr = ΓpqΓqr − ΓpqΓ̃qr = Γ̃qrΓrp − ΓqrΓ̂rp = Γ̂rpΓpq − ΓrpΓpq ,

we can factorise the exterior derivative of the extended Lagrangian multiform components
(2.5) as follows

(�L)pqr = Γpqr ×

[
α2 − α3(p+ q + r + u−

̂̃
u) +

1

Γpqr

(
P ln

(
1−

Γpqr

ΓpqΓ̂rp

)
+ cycl.

)]
,

3Similar double-zero structures have been recently established in [20] for the Lagrangian multiforms for
the well-known Adler-Bobenko-Suris (ABS, cf. [1]) list of integrable quad-equations. Lagrangians for those
equations are based on 3-leg formulae for those quad equations, but these may not be universal for higher
rank systems like the lBSQ system, and the latter does not share the same symmetries of the square. We
note that the specific log structure in the Lagrangians, exploited here, holds for Lagrangians of the entire
lGD hierarchy, and indeed also for the Lagrangians 3-forms for the lattice and semi-discrete versions of the
KP equation, cf. [14].
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where the terms from the logarithms in the second factor have a zero for Γpqr = 0. Thus,
the multiform variational equations from δ(�L)pqr = 0, yield two equations

i) Γpqr = 0 , (3.13a)

ii) α2 + α3
̂̃
u = α3(p+ q + r + u) +

Γrp

Γ̂rp

(
P

ΓpqΓrp

+
Q

ΓqrΓpq

+
R

ΓrpΓqr

)
, (3.13b)

(in which in addition to P , Q, introduced earlier, we have R = α1r − α2r
2 + α3r

3) where
we have used in the expansions of the logarithms in the factor above that the higher order
terms do not contribute on solutions of the lKP equation, Γpqr = 0, and that the prefactor
in the second term on the r.h.s. of (3.13b) is invariant under cyclic permutations of the
indices (again on solutions of the lKP equation). We can perhaps consider the second
equation, (3.13b), as in some sense a BSQ ‘dual’ to the first equation.

From eqs. (3.13) a non-potential extended lBSQ system can be deduced in the following
way. Fix r and the shift u, and introduce the quantities Γp := Γpr and Γq := Γqr. Then
in terms of Γp,Γq we have the following coupled two-dimensional lattice system:

Γ̂p

Γp

=
Γ̃q

Γq

, (3.14a)

α3

(̂̃̂
Γp −

̂̃̃
Γq − Γp + Γq

)
=

Γ̂q

̂̃
Γq

(
P

Γ̂p(Γ̂q − Γ̂p)
+

Q

Γ̂q(Γ̂p − Γ̂q)
−

R

Γ̂pΓ̂q

)

−
Γ̃p

̂̃
Γp

(
P

Γ̃p(Γ̃q − Γ̃p)
+

Q

Γ̃q(Γ̃p − Γ̃q)
−

R

Γ̃pΓ̃q

)
, (3.14b)

which may play the same role as the non-potential KdV equation, cf. [7], relative to the
potential KdV quad-equation.

4 Discussion

It is almost evident that the Lagrangian multiform structure for the whole extended lGD
hierarchy can be obtained by taking the earlier results from [10], and use the collection of
Lagrangians for any N to construct the linear combination

Lpq =

M∑

N=1

αNL(N)
pq ,

and do a resummation of the p,q-dependent factors therein. The resulting Lagrangian
structure will necessarily have closure, as a consequence of the closure relation that was
proven in the 2010 paper [10]. A technical difficulty is that as we climb in the lGD hierarchy
the number of component fields will increase, while the Lagrangian components L(N) for
N = 1, 2, 3 as presented here are in terms of one scalar field. Furthermore, in [10] the
notion of corner equations was not yet established, so some additional linear terms in the
Lagrangians will need to be computed. We will postpone that work to a future publication.
Furthermore, we speculate that in the limit that M → ∞, i.e. the infinite-component case
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of the lGD hierarchy, we may expect essentially that a Lagrangian multiform structure for
the lKP system itself will appear. Even though, the equation Γpqr = 0 that appears at
all levels in the lGD Lagrange structure, which is already the lKP equation, one should
note that in this context it is constrained by the additional equations, which renders the
solutions as essentially that of a 2-dimensional lattice field theory. However, in the limit
M → ∞ we expect to regain the unconstrained lKP system, which can be considered as
a true 3-dimensional lattice field theory4.
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