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Abstract

In this article we present the results obtained applying the multiple scale expansion
up to the order €% to a dispersive multilinear class of equations on a square lattice
depending on 13 parameters. We show that the integrability conditions given by the
multiple scale expansion give rise to 4 nonlinear equations, 3 of which seem to be new,
depending at most on 2 parameters.

1 Introduction

Discrete—or difference—equations play an important role in Mathematical Physics for their
double role. First, discrete space-time seems to be basic in the description of fundamental
phenomena of nature, as suggested by quantum gravity. On the other hand, discrete
equations are related to differential difference and differential equations through continuous
limits. A well-known classification of integrable partial difference equations was given by
Adler, Bobenko and Suris [2] in the particular case of equations defined on four lattice
points. They used the “consistency around the cube” condition with some symmetry
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constrains to be able to get definite results. Due to the constraints introduced, this
classification is partial and already new equations with respect to those contained in the
ABS classification have been found [19, 17, 13, 10, 8, 1].

In this paper we provide necessary conditions for the integrability of a class of real,
autonomous difference equations in the variable u : Z2 — R defined on a Z? square-lattice

Q(un,maun-i—l,’mvun,m+17un+1,m+1;/817ﬁ27 ) = 07 n,me Za (1)

where the §;’s are real, independent parameters. Integrability conditions will be determined
through a multiscale perturbative development, continuing with the theory explained
in references such as [4, 6, 7, 5, 11] applicable in differential and difference equations.
This approach has the distinctive advantage of providing criteria in a manner completely
independent from other current approaches. Multiscale developments can be used to
reinforce, enhance or augment our previous knowledge of discrete integrable systems given
by other techniques.

We will assume, as in [2], that (1) is linear-affine in every variable, implying that the
equation is invariant under the Md&bius transformation 1T°

T . Aun’m + B
Unm FF Up gy = Cu. <D D
n,m

(2)

In this case, (1) reduces to a polynomial equation in its variables with an at most fourth
order nonlinearity

Q = fo+agouoo + ao1 uo1 + aio uio + a1 ui + (1 —a2)ugo uio (3)
+(B1—P2)u00 o1 + diugo w11 + da up1 uro + (B1+B2) uio uir + (a1+az) uor uin
+(71—73)ugo uo1 w10 + (T14+73)ueo w10 w11 + (T2+HT4)U00 U0 U1
+(T2—74) w10 uo1 w11 + f1 Uoo Uo1 u1o U1 = 0,

where all coefficients are taken to be real and independent of n and m. We consider a
multiple scale expansion around the dispersive solution

Up,m = K"Q™, (4)

of the linearized equation of (3). Rewriting the constants K and Q as K = e* and
) = e, and introducing the solution (4) into the linear part of Eq. (3) we get a
dispersion relation w = w (k)

(aooan — a10a01) sin(k)

w = arctan
apoao1 + aioar1 + (aooair + apraio) cos(k)

()

if fo = 0. The solution (4) of (3) with fo = 0 is dispersive if w(k) is a real nonlinear
function of the wave number k. This leads to the constraint

ady — a2y + a2y — aly + 2(agoaro — aprary) cos(k) = 0. (6)

The constraint (6) implies that one of the following two conditions must be satisfied to
obtain a non-trivial dispersion relation:

1. agp = a11 = a1, ap1 = ayp = ag,
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2. apo = —ai1 = a1, ap1 = —ayp = az.
Then the dispersion relation (5) reduces to:

(a? — a3) sin(k)
2a1a2 + (a3 + a) cos(k)

wy (k) = arctan |+ (7)
We denote the family of equations (3) satisfying condition (1) with dispersion relation
w4 (k) as QT and the one with dispersion relation w_(k) as Q™. In all the cases a; and
as cannot be zero and their ratio cannot be equal to +1 in order to have a nontrivial
dispersion relation.

We will consider integrability conditions for the class of equations QF. The study of the
class Q7 is left to a future work. The result of this work are a series of integrability theorems
and a table of equations, invariant under a restricted Mobius transformations, passing the
very stringent integrability conditions obtained with the multiple scale expansion up to &5
order.

In Section 2 we present the main result on the discrete multiscale integrability test,
the conditions up to order £5. In Section 3 we apply it to the classification of dispersive
multilinear equations defined on a square lattice Q7. Section 4 is devoted to some conclusive
remarks.

2 The discrete multiscale integrability test

Consider a dispersive discrete equation of the form QT i.e. a completely discrete multilinear
dispersive equation defined on a lattice of four points. In such a situation the discrete
multiscale integrability test may be summarized as follows.

i. One considers a small amplitude solution of Eq. (3) given by uy m = ewp m, 0 <
le] < 1. Then (3) splits into linear and nonlinear terms:

N
Qt=> g =0, (8)

i=1

where NV € N is the nonlinearity order. A multilinear equation defined on a square can
be at most quartic, i.e. N < 4. In the formal expansion (8) each term Q; contains only
homogeneous polynomials of degree i in wy, ,,. If the discrete equation is dispersive
then the linear part Q; admits a solution wy, y, = expli(kn —wm)] = K"Q™, where
w = w(k) = w4 (k), the dispersion relation, is a real function of x given by Eq. (7).

ii. The multiscale expansion of the basic field variable wy, ,, around the harmonic K™Q™

reads
0 {41
Wym = et Z Ka”Qamuéi)l, (9)
=0 a=—(-1
where uéa) = uéa) (n1,{m;}) is a bounded slowly varying function of its arguments
and u{™® = ﬂéa), 1y being the complex conjugate of uy, because we look only for real



4

]ocnmp[ R Hernandez Heredero, D Levi and C Scimiterna

solutions. Here ny = en, m; = e/m j =1,2,... are the slow-varying lattice variables.

i. The nearest-neighbors fields are expanded according to the following formulas:

[e's) /41 J4

Whitm = ! Z Kontl) poam Z Aﬁ—jugi)la (10)
=0 a=—(-1 j=max(0,|a|-1)
9] 41 14
Wil = ! Z FonQe(m=1) Z Bé*jug'i)p (11)
(=0 a=—(-1 j=max(0,|a|—1)
00 £+1 L
WL msl = Z o Z Kent1)ga(m—1) Z Cf—juﬁ)l- (12)
(=0 a=—(-1 j=max(0,|a|—1)

The operators A;, B;, C;, are equal to 1 when ¢ = 0, and for some lower values of i
are:

L lli=t] i=2 | i=3 l i=4 |

152 163 1 ¢4
Ai || Oy 500, 50m, 5100,

Bi 67n1 %63’11 + 6m2 %5'?711 + 67n1 5'm2 + 6”13 iéfnl + %612711 67n2 + %572712 + 67n1 5'm3 + 57n4

Ci|l V | 3V +6my | VP4 Vimy + 6my V4 IV, + 162, + Vims + 6my

where J; are the formal derivatives with respect to the index k, d; = J; and
V =, + 0n,. The operator J; can always be expressed in terms of powers of the
difference operators by the well known identity

© (_1yi—-1
5,?:2& o

. 1
=1

where Ay, is the discrete first right difference operator with respect to the variable k,
ie. Agug == g1 — Ug.

A function fi is a slow-varying function of order L if Aﬁ“fk = 0. The Jj-operators,
which in principle are formal infinite series in powers of Ay, when acting on slow-
varying functions of finite order L reduce to polynomials in Ay at most of order L.
We shall assume that we are dealing with functions of an infinite slow-varying order,
i.e. L = 00, so the dx-operators may be taken as differential operators acting on the

(2)

indices of the harmonics u;

iv. Substituting the expansions (9-12) into (8), we get an equation of the following form:

S S Wi engam = g, (13)
J «
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i.e. we must have Wj(a) = 0 for all @ and j. Notice that the equations W;a) =0 are

equations for the slowly varying functions uéi)l with £ < j.

The multiscale expansion of the QT equation for functions of infinite order thus gives
rise to a system of continuous partial differential equations. At the lowest order (slow-time

ma) one gets a Nonlinear Schrodinger equation (NLS) for the first harmonic ugl). We will
use orders beyond that to define the values of the constants appearing in Q* for which
the equation is integrable. The first attempt to go beyond the NLS order in the case
of partial differential equations was presented by Santini, Degasperis and Manakov in
[6] and by Kodama and Mikhailov using normal forms [12]. In [6] the authors, starting
from S-integrable models, through a combination of an asymptotic functional analysis and
spectral methods, succeeded in removing all the secular terms from the reduced equations,
order by order. Their results could be summarized in the following statements:

1. The number of slow-time variables required for the amplitudes ug-a) coincides with

the number of non-vanishing coefficients w; (k) = %djgzgk);

2. The amplitude ugl) evolves at the slow-times t, := m,, 0 > 3 according to the c—th

equation of the NLS hierarchy;
3. The amplitudes of the higher perturbations of the first harmonic ug.l), j > 2 evolve
at the slow-times t,, 0 > 2 according to certain linear, nonhomogeneous equations

when taking into account some asymptotic boundary conditions.

From these statements one can conclude that the cancellation at each stage of the pertur-
bation process of all the secular terms is a sufficient condition to uniquely fix the evolution
equations followed by every ug-l), j > 1 for each slow-time t,. Conversely, the results in [7]
imply that this expansion is secularity-free. Thus, this procedure provides necessary and
sufficient conditions to get secularity-free reduced equations. Following [7] we can state

the following proposition:

Proposition 1. If a nonlinear dispersive partial difference equation is integrable, then

under a multiscale expansion the functions ul(l), [ > 1 satisfy the equations

o, iV = K, [ugn] , (14a)

Mgugl) = fcr(j)7 M, = ato' - Kc/f [ugl)} ) (14b)

vV 3, 0 > 2, where K, [ugl)] is the o—th flow in the nonlinear Schrodinger hierarchy. All

the other ugn), Kk > 2 are expressed in terms of differential monomials of u,(}), p<7.

In (14b) f,(j) is a nonhomogeneous nonlinear forcing term depending on all the u,g),
1 < k < j — 1, their complex conjugates and their {-derivatives, where £ is a variable
representing the group velocity and expressed through a linear combination of the slow-
space and the first slow-time ¢1, while K [u] v is the Frechet derivative of the nonlinear term
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K,[u] along the direction v defined by K/ [u]v := &£ K;[u + sv] |s=0, i.e. the linearization of
the expression K,[u] along the direction v near the function w.

(1)

In order to characterize the flows K, [ul } and the nonlinear forcing terms f,(j),
following [5], we introduce the finite dimensional vector spaces Py, £ > 2, as being the set

of all homogeneous, fully-nonlinear, differential polynomials in the functions ugl), j>1,
their complex conjugates and their &-derivatives of homogeneity order £ in € and 1 in the
accompanying exponential e = ellsn—wm) where

order, (8gu§1)) = order; (8?&&”) =Kk+7 k=0
We introduce the subspaces Py(j) of Py, 7 > 1, £ > 2, whose elements are homogeneous,
fully-nonlinear, differential polynomials in the functions u,(:), their complex conjugates
and their &-derivatives with 1 < k£ < 5. Firstly from these definitions it follows that
Py = Py (£ —2), that is 3 < £ — 2. In fact the terms ugl) and ﬂgl), as well as Ogugi)l and

855291, are not included in P, as any monomial should enter nonlinearly and terms like
uél_)l and aél_)l cannot be combined with any other of the monomials ugl) or ﬁgl) to give the
(1) grgd
l—k> Y& -k
0<k</l—1and 8guél_)ﬁ_1, 8gﬂgl_)ﬁ_1, 0 < k < /¢ —2 cannot appear. So the space Py(y) is
defined as that functional space generated by the base of monomials of the following types

right homogeneity degree in €. For the same reasons, terms of the types 8gu

(c.8) o(:0)
11 <3?“(51))p (62u5") L p@B) 20, Va8, o(1,8)20, V.4,
a,B,7,0

where the product is extended for 1 < 5,0 < 1< /(-2,0< a </l—pF—-2and 0 <~ </l—-§-2,
so that

Yo atBplaB)+(r+8)o(18) =4 Y pla,f)—o(y,6) =1

a’ﬁ”y76 a’B?’Y?(s

For n > 3 the subspaces Py(7), can be generated recursively starting from the lowest one,
corresponding to ¢ = 2 by the following relation

Pi(s) = 0Pra () 0§ TT (u)" (@) 1

)

where p (8) > 0 Vg, o (§) > 0 Vd and the product is extended for 1 < 3,6 <3< ¢ —2, so
that

S Bp(B)+0 ()=, S p(B)—o(6) =1
B,0 8,0

It is then clear that in general K, {ugl)} € {6§u§1)}u77@+1(1) and that f(j) € Potj(j—1),
Vo, j > 2.
Eqgs. (14) are a necessary condition for integrability and represent a hierarchy of

compatible evolutions for the same function ugl) at different slow-times. The compatibility
of Egs. (14b) implies some commutativity conditions among their r.h.s. terms f,(j). If
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they are satisfied the operators M,, defined in Eq. (14b) commute with each other. Once
we fix the index j > 2 in the set of Egs. (14b), this commutativity condition implies the
following compatibility conditions

M, for (j):Mcr’fU(j)a VU70/227 (15)

where, as f, (7) and f,/ (j) are functions of the different perturbations of the fundamental

harmonic up to degree j — 1, the time derivatives d;,, 9;_, of those harmonics appearing

respectively in M, and M, have to be eliminated using the evolution equations (14) up to

the index j — 1. The commutativity conditions (15) turn out to be an integrability test.
We finally define the degree of integrability of a given equation:

Definition. If the relations (15) are satisfied up to the index j, j > 2, we say that our
equation is asymptotically integrable of degree j or Aj; integrable.

Conjecturing that an A, degree of asymptotic integrability actually implies integrability,
we have that under this assumption the relations (14, 15) are a sufficient condition for the
S-integrability or that integrability is a necessary condition to have a multiscale expansion
where all the Egs. (14) are satisfied. So the multiscale integrability test tell us that QF
will be integrable if its multiscale expansion will follow all the infinite relations (14, 15).
The higher the degree of asymptotic integrability, the nearer the equation will be to an
integrable one. However, as we can test the conditions (14, 15) only up to a finite order
(currently Ay), from them we can only derive necessary conditions for integrability, so we
will not be able to state with certainty that the discrete equation is integrable. The results
obtained at a finite but sufficiently high order will have a good probability to correspond
to an integrable equation, but we need to use other techniques to prove it with certainty.

Let us present for completeness the lowest order conditions for asymptotic S-integrability
of order k or Ag-integrability conditions. To simplify the notation, we will use for ug-l) the
concise form u(j), j > 1. Moreover, for the convenience of the reader, we list the fluxes
K, [u] of the NLS hierarchy for v up to o = 5:

Ki[u] == Aug, (16a)
Kofu = =i |uge + 2 JuP]. (16)
3
Kalu] = B e + 2 JufPuc. (160)
. p2 |3p2, 4 2 2 2 2
Kylu] :== —iC § uggee + o g]u\ u + 4lul uge + 3ugt + 2lug[u + uSuge | o, (16d)
1 1
5ps [3 L
Ks[u] = D{Us&&e + ﬁ [QZ [l ug + |ugPug + (utig+2aue) uge (16e)

+ uuglige + IUI2U§55] }

and the corresponding K, [u]v up to o = 4:

Ki[uJv = Avg, (17a)
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Ki[ulv = —ip; {vfg + % (4 + 2|ul?v] } , (17b)
1
K/ _ 3p2 2 — —
slulv = B { vege + " [|ul?ve + Gugv + uued] ¢, (17¢)
1
Kfl [u} v=—1C {U&gg + Pz [UZE& + 4|u|2v5§ + 2uu5175 + 2uﬂ§U§ + 6ﬁu§1}5+ (17d)
P1
- 9 3P2, 12 9 - - 902, 14 2
+ duuged + 3ugt + p—]u\ U0 + duugev + 2uiigev + §|u\ v+ 2|ug] v} ,
1 1
where A, p1, p2, B, C and D are real non null arbitrary constants.

2.1 The A;-integrability condition.

The Aj-integrability condition is given by the reality of the coefficient ps of the non-
linear term in the NLS. It is obtained commuting the NLS flux Ks[u] with the flux
B [u&g + T]u\2u5 + uu2ﬂ§] with 7 and p constants. This commutativity condition gives, if
P2 7é Oa

Im [po] =Im [B] =Im([p1] =0, 7=3p2/p1, p=0. (18)

We remark that, when py # 0, by the same method it is possible to determine all the
coefficients of all the higher NLS-symmetries (16) together with the reality conditions of
the coefficients A, C and D.

2.2 The As-integrability conditions.

The As-integrability conditions are obtained choosing j = 2 in the compatibility
conditions (15) with o = 2 and ¢’ = 3 or alternatively ¢’ = 4, respectively

M f3(2) = M3 f2(2), (19a)
M fy(2) = Myf2(2). (19Db)

In this case f2(2), f3(2) and f4(2) will be identified by respectively two, (a,b), five,
(o, B,7,0,€), and eight, (61, -- ,60s), complex constants

f2(2) = aug(1)[u(1)]? + bize (1)u(1)?, (20a)

£3(2) = alu(D)[*u(1) + Blue(1)[Pu(1) + yue (1)*a(1) + e (1)u(1)? (20D)
+ elu(1)Puge (1),

F1(2) = O] (1) [ug (1) + O2]u (1) Pu (1)® G¢ (1) + Osfue (1) [ue (1) (20c)

+ 04u (1) g (1) uge (1) + 052 (1) ug (1) uge (1) + O (1) ue (1) ee (1)
+ 07w (1) Pugge (1) + Osu (1) Gee (1)
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As pg # 0, eliminating from Eq. (19a) the derivatives of u(1) with respect to the slow-times
to and t3, using the evolutions (14a) with 0 = 2 and ¢’ = 3 and equating term by term, we
obtain the following two As-integrability conditions

a=a, b=bh. (21)

So we have two conditions obtained requiring the reality of the coefficients a and b. The
expressions of «, (3, v, d, € in terms of a and b are:

3iB 3iBb 3iB
-2 a2,027 8= - , Y= - a’ 0=0, e€=n. (22)
4p7 p1 2m

The same integrability conditions (21) can be derived using Eq. (19b). As in our analysis
we will need them, here follows the explicit expressions of the coefficients of the forcing

term fy (2)

6Capo 3Cbpo (a+3b)C (a+4b) C
91 = 2 ) 92 = 2 ) 03 = D 94 = )
P1 P1 P1 P1 (23)
2b 2 b
g0, _latW)C e, Cb
P1 P1 P1 P1
2.3 The As-integrability conditions.
The As-integrability conditions are derived in a similar way setting j = 3 in the

compatibility conditions (15) with 0 = 2 and ¢’ = 3, so that Msf3(3) = Msfs (3). In this
case f2(3) and f3(3) will be respectively identified by 12 and 26 complex constants

f2(3) = i |u(1)| (1) + Tolue (1) Pu(1) 4 73|u(1)Puge (1) + Tatiee (1)u(1)? (24a)
+ e (2)u(1)? + msu(2)?a(1) + 7olu(2)*u(1) + mou(2)ug(1)a(1)
+ i (2)ite (1)u(1) + mat(2)ue (1)u(1) + m5ue(1)*4(1) 4 6ue (2) [u(1)[,
£3(3) = mlu(1) [ ug (1) + yalu(1)Pu(1)*ae (1) + valu(1)Pueee (1) (24D)
+ sl ug (1) Pug (1) + yotige (1ue (1)u(l) + y7uge (1)ug(1)u(l)
+ o u(1)[*u(2) 4+ y10lu(1)Pu(1)?6(2) + Y11t (1)u(2)? + yi2ue(1)|u(2)]
(2) + y1alu(2)]*u(2) + 15ue(1)*@(2) + y6]u(1) Puge (2)
2) + m1su(2)tge (1)u(l) + yrou(2)uge(1)u(l)

’ 2

@ 2
)

+ yr7u(1) tge

+ Y21u(2)ug (2)u(1) + v22u(2)ug (2)u(l) + yazue (2)ue(1)u(l)
+ Yasiie (2)ue (1)u(1) + Yasite (2)u(2)u(1) + yau(1)*teee (1)

+ ysuge ()ug(1)a(1) + y20u(2)uge (1)u(l) + vaaue (2) e (1)u(l).

Eliminate from Eq. (19a) with 7 = 3 the derivatives of u(1) with respect to the slow-times
to and t3 using the evolutions (14a) respectively with o = 2 and ¢’ = 3 and the derivatives
of u(2) using the evolutions (14b) with ¢ = 2 and ¢’ = 3. Equating the remaining terms
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term by term, with ps # 0 and, indicating with R; and I; the real and imaginary parts of
T, ©=1,...,12, we obtain the following 15 As-integrability conditions

1 b—a)l I R —b)I, I
Ry=-o ol ale oy R (=Dl ol
4p1 2p2 2p2 2 4p2 4p2
R a—b)l, 2b—a)l al a—b)I
R5=i+( )6+( )12, Re = ——, R7=R12+7( >8,
2 42 4p2 P2 P2
a— 2b)1,
Ry = Ryg =0, Ryjo=Ri2, Ri1=Rpp+ (m)ga (25)
b+ a)R I I,—13—-2]I 2b(a — b) + a?] I
1.4:( )12+P11+2 3 5+[ ( )2 ]8’ =0
4p2 P2 4 4p3
Iy =2Ig, Iip= I, I11=1Is+ I12.
The expressions of the ~;, j = 1,...,26 as functions of the 7;, i = 1,...,12 are:
3B 2021, .
Y1 = 8p [ 20R12 — 8p111 + 2(]2 — 213 — 2]5)p2 + l(b 5a)I6 + P 8 _ ialio]| ,
1 2
3Ba (a —2b)Ig 3iBT3 3iB1y 3iB1y
Y2 = g+ ——"—+4+72|, 3=—F—5 11=0, 1= ;Y6 = :
4p3 p2 2p1 2p1 p1
3iBTy 3B(p2[6 + 3aifg) 3iBp2 Rg
YT =% Y8=73+ s Vo= < 3 ;o Moo= —F5— M1=0,
pP1 4py 2p1
?)iBTg 313’7’11 0 3iB7'12 3iBT6 (26)
12 = y o M3 = ;o e =0, 5= y 16 = )
! 20 2p1 K " 2p1 2p1
3137‘10 3iBT8
Mmr=ms=0, y9= 5, 0 20=M5 21 = s Y22 = M2,
P1 P1
3iBT;

Y23 = Y16 + Y19, Y24 = V13, V25 = o , 726 = 0.

2.4 The A,-integrability conditions.

The Ay-integrability conditions are derived similarly from (15) with j = 4, that is
Msf3(4) = M3 fz(4). Now f2(4) and f3(4) are respectively defined by 34 and 77 complex
constants

(1)7ue(1 1)[Pugge(1) (27a)
+775!U§( )\ Uf( ) + metiee (1)ug (1)u(l) + nruge(1)ue (1)u(l)
+ o u(1)|*u(2) + molu(1)Pu(1) 5(2)+7lnug(1)u( )? +7712u§(1)|u(2)|2
+ muslue (1) "u( (2)["u(2)
+ mru(l
+ n21u(2

(
(

)
)

+ Ma5te
+ Mguge
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1
1

g (1)u(3) + nost(1)ue(1)u(3) + nou(1)ug(1)u(3)
(2)u(3) + nz1a(1)u(2)u(3) + nz2u(l)u(2)u(3)
+ n33lu(1)Pug(3) + n3au(1)’ug(3)
f3(4) = rru(D)]u(1)[® + rolu(1)*a(1)ug(1)® + ralu(1)*u(1)|ue (1) (27b)
+ rau(1)* e (1)% + rslu(1)[*uge (1) + r6lu(1)*u(1)?aee (1)
+ rrlug (1) Puge(1) + rgue(1)*aee (1) + rou(1)|uge(1)|* + miou(1)uge(1)?
+ rnt(L)ug(Dugee(1) + mrau(l)te(Dugee (1) + rizu(l)ug(1)teee (1)

+ m27u(1)
+ nzou(1)u

)

+ Rralu(D)Puceee (1) + misu(1)*Geeee (1) + riglu(1)*a(1)u(2)?
+ rarlu(D)Pu(D)u2) P + rigu(1)*6@(2)* + siolu(1)[*a(1)ue (1)u(2)
+ rgolu(1) Pu(1)ig (1)u(2) + a1 u(1)Pu(1)ue(1)u(2) + rogu(1) e (1)a(2)
+ roatie(1)uge ()u(2) + raaue (1)age (1)u(2) + rasue(1)uge (1)(2)
+ rget(1)lege (1)u(2) + rorti(1)ugee (1)u(2) + rasu(1)ueee (1)u(2)
+ raglige (1)u(2)? + raouge (1)[w(2)[? + rar|u(1)| ug (2)
+ rgalu(1) Pu(1)? e (2) + raslug(1)[Pue(2) + raaue(1)*ag(2)
+ kasU(1)uee (1)ue(2) + masu(1)tee (1)ue(2) + raru(l)uge (1)ug(2)
+ rzgu(1)ie (1)uge (2) + raou(1)ue (L)uge (2) + raou(1)ue (1)uge (2)
)

+ ranu(1) Pugee (2) + ragu(1)*Ugee (2) + ragtie(1)u(2)ug(2)

+ Ragug (1)a(2)ug(2) + rasue(1)u(2)ae(2) + ragu(1) lug(2)° + rari(1)ug(2)?
+ ragt(L)u(2)uge (2) + Kagu(1)u(2)uge (2) + rzou(l)u(2)tee (2)

+ ks |u(2)Pue(2) + rs2u(2)*e(2) + rsslu(1)[*u(3) + rsalu(1)]*u(1)*a(3)
+ rsst(1)u(3)? + rseu(1)[u(3)[* + rsrlu(2)u(3) + rssu(2)u(3)

+ rsglue (1)[*u(3) + rooue (1)?a(3) + reru(1)uge (1)u(3) + reati(1)uge (1)u(3)
+ gz (1)uee(1)a(3) + reau(1)te(1)ug(3) + rest(1)ue (1)ue(3)
+ rosu(1)ue(1)ie(3) + rer|u(1)*uge (3) + rosu(1) e (3) + rogue (1)1(2)u(3)
+ Kot (L)u(2)u(3d) + rriug(1)u(2 Jug(2)u

+ rrau(1)de (2)u(3) + krau(l)u )

+ rret(1)u(2)ue (3) + rrru(l)u

) 33
U(3) + rrau(1)ug(2)u(3)
u(3) + rrsu(1)u(2)ue(3)
2)ug(3).

U

¢
(

If we indicate with S; and T} respectively the real and imaginary parts of n;, j =1, ...,
34, when py # 0, the A4-integrability conditions are represented by 48 real relations whose
expressions we leave for a specific Appendix.

Other integrability conditions corresponding to My fa (3) = Mafy (3) (As-integrability
conditions) and to Myfa (5) = Mafs(5) (As-integrability conditions) in the subspaces
with w (2n) = 0, n > 1 for purely imaginary coefficients can be found in [16]. They are
respectively given by 1 and 14 real relations, the first of which can be deduced from (25)
and corresponds to Iy = p111/p2 + (Io — I3 — 215) /4.

The results presented in this Section will be used in the following Sections to classify
integrable nonlinear equation on the square lattice.
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3 Dispersive affine-linear equations on the square lattice

The aim of this Section is to derive necessary conditions for the S-integrability of the
simplest class of Z2-lattice equations, that of dispersive and multilinear equations (3)
defined on the square lattice, satisfying the condition (1) with dispersion relation w4 (k),
ie.
Q" = a1 (Unm + Unt1,m+1) + a2(Unt1.m + Unm+1) (28)

+(0q — @2) UnmUnt1,m + (@1 + @2) Up m1Un+1,m+1

+ (81 — B2) UnmUnm+1 + (B1 + B2) Unt1,mUnt1,m+1

+ V1UnmUn+1,m+1 T V2Unt1,mUnmt1

+ (&1 = £3) UnmUn+1,mUnmi1 + (€1 4 £3) UnmUn+1,mUn1,m+1

+ (&2 — &) Unt1,mUnmt 1Unt 1,mt1 + (§2 + &4) UnymUn,m4 1Un41,m+1

+ CUnmUnt+1,mUn,m+1Unt1,m+1 = 0,
where a1, a2 € R\ {0}, |a1| # |az|, are the coefficients appearing in the linear part while
a1, a9, B, B2, 1,72, &1, &2,&3, &4, C are some real parameters which enter in the nonlinear

part of the system. Here we will look, by using the multiscale procedure described in
Section 2, into the values of these coefficients for the class Q7 to be A; integrable.

Un,m+1 a1 + a9 Un+1,m+1
Y2 a!
B1 — B2 b1+ B2
Un,m a1 — Q9 Un+1,m

Figure 1. Representation of the quadratic nonlinearities of Q.

To perform a classification of the equations QF, we need to find the set of transformations
that leave it invariant, i.e. the equivalence transformation. As mentioned before, a generic
multilinear equation of the form (1) is invariant under a Mébius transformation (2). The
constant term fy and the differences agg — a11, agr — a1g transform according to

fo o fo= D" fo+ B'C+2B°D (& + &) + B*D’ [y1 + 72 + 2 (a1 + 1)) (29)
+2BD? (ago + a11 + ao1 + axo)
ago — an v apy — ahy = (AD—BC) [D? (ago — a11) + B (&1 — & — &3+ &) — 2BD (as + f2)]
ap1 — Q1o 'I) a61 — a’lo = (AD*BO) [D2 (a01 - alo) - B2 (51 - 52 + 53 - €4) + 2BD (O[Q - Bg)]
These formulas allow to determine when a given linear-affine equation (1) can be trans-
formed into one belonging to class QT. For this to happen all three terms must be null, so
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setting the Lh.s. of (29) to zero we get three polynomial equations over B/D or D/B. If
simultaneously solvable (over the reals), we have an equation of the class Q. One could
try to write the conditions over the coefficients of a general linear-affine equation (1) by
using resultant calculations on the three polynomial conditions, but they turn out to be
too complicated to merit further attention. Thus (29) tells that the class QT is invariant
under restricted simultaneous Mobius transformations R of the form

Up,m —> u%m = Un,m/(Cnm + D), (30)

which will be our equivalence transformation. Under (30) the coefficients of Eq. (28)
undergo the following transformations:

alriallzDg’al, agigaézDgag, allgallzDz[m%—C(al—i—ag)],
az 75 oy = D2as,  f1 5 B = D*[B1+C (a1 +a)], Bars By = Do,
Bt = D2 (11 +2Ca1), 2% 7y = D* (92 +2Cay),

&6+ & =D& +1CD 3
€2£§§=D§2+%0D3 (a1 +a2) +v1+72 +2(0q + a2+ f1)],
€555 € = D + 1CD [Clar — az) +m — 72+ 252],

&4 & = D&y + 10D [Clar — az) + 71 — 72 — 262]

¢B =+ CP2C (ar +a) + 71 + 72 + 2 (a1 + B1)] +2C (&1 + &)

BC (a1 +a2) +71 +72 +2 (a1 — a2 + £1)], (31)
[3C
[
[

We will indicate by N the number of free parameters (although not all of them essential
under R) appearing in each subcase of (28). Its maximum number is N' = 13, the number
of free coefficients in (28).

3.1 Classification at order &3.

By performing the multiscale expansion of Eq. (28), the following statement holds
regarding Aj-asymptotic integrability

Proposition 2. The lowest order necessary conditions for the S-integrability of equations
o7 read:

e Case 1 (N =09):

{glg_gza (32)
o Case2 (N =7):
az = B2, a1 =p,
i )

ar(&1 —&2) = —a1(&3 — &) = —2a972.
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e Case 3 (N =7):
ag = —f2, a1 =pu,
ag = 2a1,
34
Y2 = 271, (34

ar(§1 — &) = a1(&3 — &) = —az1.

Case 4 (N =38):

agon = agfy = (a1 + az)va,
a27v1 = ai1vy2,

35
ai(& — &) = —aam, (35)
a1(&3 — &) = o

Case 5 (N =38):

(a2 —a1)B2 = (az + ar)ag,

2a1az(a1 — az)on = (a1 + ag)(y2a] — na3),

2a1a231 = Y103 + Y2ai, (36)
(a2 —a1)(&1 — &) = (11 — 12)ae,

(ag — a1)*(& — &) = [y2(a2 — 3a1) — v1(a1 — 3az)] aa.

Case 6 (N = 38):

(a2 + a1)Ba = (ag — a1)az,

2a1a9001 = ’}’1&% + '72a%7

2a1a2(a1 — az)f1 = (a1 + az)(y2a] — 11a3), (37)
(a3 — a})(&1 — &) = (a1 — 3a2) — y2(az — 3a1)] o,

(a1 + a2)(&s — &1) = (72 — 1) ae.

The obtained six subclasses of equation (28) are invariant under the restricted Mobius
transformation (30).

Proof: Following the procedure described in Section 2 we expand the fields appearing in
equation QT according to formulas (9-12). The lowest order necessary conditions for the
S-integrability of Q1 are obtained by considering the equation Ws (see Eq. (13)), namely
the order €3 of the multiscale expansion. At this order we get the ma-evolution equation
for the harmonic uél), that is a NLS equation of the form

(1) 2, (1)

. dw
Om,uy” + p1ogug ” + p2u§1)|ugl)|2 =0, Ei=n1 — —my, (38)

drk
where the coefficients p; and ps will depend on the parameters of the equation Q% and on
the wave parameters £ and w = w,, with w, expressed in terms of s through the dispersion
relation (7). According to our multiscale test the lowest order necessary condition for QO
to be an S-integrable lattice equation is that Eq. (38) be integrable itself, namely p; and
p2 have to be real coefficients.

Let us outline the construction of Eq. (38). At O(¢e) we get:
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e for @ =1 a linear equation which is identically satisfied by the dispersion relation (7).

e for o = 0 a linear equation whose solution is w9 = 0.

At O(g?), taking into account the dispersion relation (7), we get:

e for o = 2 an algebraic relation between ug2) and ugl).

e for o = 1 a linear wave equation for ugl), whose solution is given by ugl)(nl, my,ma) =

Ugl)(ﬁ,mz), where § = n; — (dw/dk)m;.

e for a = 0 an algebraic relation between ugo) and ugl).
Notice that from the O(e?) we find that the dependence of all the harmonics on the
slow-variables n; and m; is given by &.

At O(g3), for a = 1, by using the results obtained at the previous orders, one gets the
NLS equation (38) with

araz(a? — a3)sin K

pL= p2 = R1 +iRa,

2 2 ;
(a3 + a3 + 2ajas cos k)?
where

sin K Rgo) =+ Rgl) COs K + Rgz) cos? k + Rgs) cos® k + RYL) cos? n}

R1 = 39
! (a1 + a2)(a? + a3 + 2a1a2 cos k)2 [(a1 — az)? + 2a1as cos k(1 + cos k)]’ (39)
_ Rgo) + Rgl) cos k + ’Rg) cos? K + R;S) cos® K + Rgl) cost K + Rg)) cos® Kk
(a1 +a2)(a? + a3 + 2a1as cos k)2 [(a1 — as)? + 2ayaz cos k(1 + cos k)]

Ro (40)

Here the coefficients Rgi), 0<i<4, and Rg), 0 <4 <5, are polynomials depending on
the coefficients ay, as, a1, as, 51, B2, 1,72, &1, .-, &4 and their expressions are cumbersome,
so that we omit them.

Note that p; is a real coefficient depending only on the parameters of the linear part
of QF, while py is a complex one. Hence the integrability of the NLS equation (38) is
equivalent to the request Ry = 0 V k, that is

R =0, 0<i<s. (41)

Eq. (41) is a nonlinear algebraic system of six equations in twelve unknowns. By solving it
one gets the six solutions contained in Proposition 1. These solutions are computed taking
into account that a1, as € R\ {0} with |ai| # |az|. One can solve two of the six equations
(41) for & and &3, thus expressing them in terms of the remaining ten coefficients. The
resulting system of four equations turns out to be & and &4-independent and linear in the
four variables oy, 81, 71 and 7. Therefore we may write the remaining four equations as a
matrix equation with coefficients nonlinearly depending on as, (B2, a1 and as. The rank
of the matrix is three. The six solutions are obtained by requiring that the matrix be of
rank 3, 2, 1 and 0, and correspond to six classes of equations (28) that pass integrability
conditions up to order O(g3). A direct calculation proves the invariance of the six classes
with respect to the restricted Mobius transformation R.
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g

Corollary 1. If the coefficients a1, as, a1, s, 81, B2, 71, V2, &1, ..., €4 of equation QT do not
satisfy one of the conditions given in Eqs. (32-37) then Q% is not integrable.

Quadratic difference equations are a subclass of QT which have attracted a deal of
attention. These equations are not Mobius invariant, but we can spot those that belong to
the class Q1 and pass our integrability conditions, just by inspection of (32-35).

3.2 Classification at order &*.

For what concerns the As-asymptotically integrable cases satisfying the integrability
conditions (21), the following statement holds

Proposition 3. At order €%, the necessary conditions for the S-integrability of equations
Ot read:

e Case 1 (N =9):

Qg = 62 — 07
{ =6 & =6 (42)

e Case 4 (N =8):

ap =1 = %7
Yo = 2H,
ai
a1 (&1 — &2) = —aom, (43)
a1(&3 — &) = Bam,

(g, B2) # (0,0).

The corresponding two subclasses of equations are non overlapping and invariant under
the restricted Mdbius transformation (30).

Notice that of the six Aj-asymptotically integrable cases listed in Proposition 2, Case 1
and Case 4 automatically satisfy the As-integrability conditions (21), while the remaining
four cases 2, 3, 5 and 6 specify to some subcases of theirs. Notice that only two out the
previous four quadratic cases in Remark 1 survive, the Cases Q1 and Q4: the first one is
a subcase of Case 1, while the second is a subcase of Case 4.

3.3 Classification at order &°.

It is possible to find all the cases satisfying the As-integrability conditions (25). They
are given by the following proposition
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Proposition 4. The necessary and sufficient conditions for €5 asymptotic integrability
are:

Case (a): (N =4)

ay=02=0, m=a1+0 —7, a2=2a1, (201 —37, 261 —3m)#(0, 0),

b o (=) (B—m)
51762* 2(117 63*@1* 20,1 ,
(= [37% = 371 (a1 + B1) + 401 f]

B 40% !

Case (b): (N =4)

ay=02=0, M=o+ —7, a =2a, (201 —37, 261 —37)F# (0, 0)
. b . (=) (B1— )
S1=86=—F— &=8=

2a0 ’ 2az

¢ = 2[38 =3+ ) +donf]

2
4a3

)

Case (¢): (N =5)

a1+ a a
041:/81:(120112)717 OCQZBQ: ) Y2 = 2?17 €1:€27
(ag —a1)vf  (ag —ay) [ 8aiéy 2]
= = — 5 = - 3 07
S8 = 4a? (ag + al)52 (a1 +az) N (a1 + az)? 7
Case (d): (M =5)
a1 +a a
QIZ/BIZ(IQCLf)%v 042262: y 2= 2?17 512527
PP C . i G ) P [86% - 372] L0
2a? (a1 +az)™” (a1 + as) ! (a1 + a2) 7
Case (e): (N =4)
+ a a 1
051:/61:71272a OQ:B?:Ov ’727& 2?17 ;j#gv 2a
€ =&y — 3 (11 +72)° o= €y — 9 (a1 — ag) (a2 —agn)” @173 — ayf
8(a1 +az)’ 8ajaz (a1 + a2)2 Saiaz
c= nt 12)* | (a1 —az) (a172 — asm)®
4 (ay + ag)? a3a3 (a1 + az)? 7

Notes: In all of the cases as/a; # (0, £1); the values as/a; = (2, 1) are excluded in
Case (e) because we would obtain respectively a subcase of Case (a) or of Case (b). All
of the Cases (a)—(e) are subcases of Case 1. So nothing survives out of Case 4 at order
5. Cases Qu-Qs are subcases both of the Case Q1 and Case (a); the Cases Q,-Qn are

subcases both of the Case Q1 and Case (b).
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3.3.1 Canonical forms for £° S-asymptotically integrable cases. Comparison
with the ABS list.

We will use now the Mo6bius transformation to reduce the equation to normal form, i.e. to
eliminate the maximum number of free parameters appearing in the nonlinear difference
equation and reduce the coefficients of the linear part in vy, ,, and vy41 m+1 to 1.

In the Case (a) of Proposition 4, performing the Mobius transformation

w _ QUpm + B
n,m ~Onm s
with
116
520, 7:_7’ O‘:aléa 57507

we obtain the canonical form:
Case (d): (N =2)

Un,m + Unt1im+1 + 2 (Un-‘,-l,m + Un,m—i—l) + Un+1,mVn,m+1 (Tl + 7-2)
+ (Un+1,mvn+1,m+1 + Un,mvn,m-i-l) T2 + ('Un,m—i-lvn—&-l,m—i-l + Un,mvn+1,m) T1

FUn+1,mVn,m+1 (vn,m + 'Un—l—l,m—l—l) 7172 = 0, (44)

where (71, 72) = <a1 — 3%, p1 — 3%) # (0,0). Performing a further rescaling on (44), we
can fix, in all generality, the coefficients to either 71 = 0 and 79 = 1 or 71 = 1 and we
obtain the following two canonical forms respectively

Unm + Unt1im+1 + 2 (UnJrl,m + 'Un,erl) + (453)
+Un+1,mUnm+1 + Un+1mVn+1,m+1 + UnmUnm+1 = 0,
Unm + Unt1m+1 + 2 (anrl,m + Un,erl) + Un+1,mVn,m+1 (1 + 7_2) + (45b)
+ (Un+1,mvn+1,m+1 + Un,mvn,erl) T2 + Unm+1Un+1,m+1 T UnmUnt1,m
FUp+1,mVn,m-+1 (Un,m + Un—i—l,m-l—l) T2 =0,
representing the two non overlapping subclasses of Case (a) defined respectively by the
additional conditions oy = 5% and o # ?’% As under a restricted Mobious transformation

T9 is invariant, we see that two canonical forms (45b), specified by two invariants 79, and
Top, form two disconnected components of the same conjugacy subclass unless 1o, = T9p.

In the Case (b) of Proposition 4, performing the M&bius transformation

u _ QUpm + B
n,m — ’}/Urhm + 65
with
1)
5:07 7:_%7 a:a25, 57&07

we obtain the canonical form:

Case (V'): (N =2)
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2 (Un,m + UnJrl,erl) + Unt1,m + Unm+1 + UnmUn+t1,m+1 (Tl + 7-2)
+ (Un+1,mvn+1,m+1 + Un,mvn,m+1) T2 + (Un,m+lvn+1,m+1 + Un,mvn+1,m) T1

+ UnmUn+1,m+1 (UnJrl,m + Un,erl) 7172 = 0, (46)

where (71, 72) == (al — 3%, 1— 3%) # (0,0). Performing a further rescaling on (46) we

can fix, in all generality, the parameters either to 7 =0 and 75 =1 or to 71 = 1 and we
obtain respectively the two canonical forms

2 (Un,m + Un—l—l,m—l—l) + Unt1,m + Unm+1 + (473«)
FUnmUn+1,m+1 T UntlmUntl,m+1 T UnmUnm+1 = 0,
2 (Un,m + UnJrl,erl) + Un+1,m + Un,m+1 + Un,mUn+1,m+1 (1 + 7_2) + (47b)
+ (Un+1,mvn+1,m+1 + Un,m'Un,erl) 72 + Upm+1Vn+1,m+1 + UnmUn+1,m
+Un,mUn+1,m-+1 (anrl,m + Un,erl) T2 =0,
representing the two non overlapping subclasses of Case (b) defined respectively by the
additional conditions o = 3% and o1 # 3% As 75 is invariant under a restricted Mobious

transformation, we see that two canonical forms (47b), specified by two invariants 79, and
Top, form two disconnected components of the same conjugacy subclass unless 1o, = Top;

In the Cases (c) and (d) of Proposition 4, performing the M&bius transformation

u _ QUpm + B
T YU + 6
with
2(115 71(5
a=—-—"+— f=0, y=——"—"—, 0#0,
(a1 +az2) v/Ipl (a1 +az2) v/Ipl
we obtain the canonical forms:
Case (d): (N =2)
Un,m + Untlm+1 T € (Un—l—l,m + Un,m—i—l) + (48)

—+sgn (P) [Evn-l-l,mvn,m—l—l (Un,m + vn—i—l,m—i—l) + Un,mUn+1,m+1 (Un-‘,-l,m + vn,m—i—l)]
+C/Un,mvn+1,mvn,m+lvn+1,m+1 = 0;
and
Case (d'): (N =2)
Un,m + Unt+1,m+1 T € (UnJrl,m + Un,erl) + (49)
+sgn (p) [Un+1,mvn,m+1 ('Un,m + 'Un+1,m+1) + €UnmUn+1,m+1 (UnJrl,m + 'Un,m+1)]

/
+¢ Un,mUn+1,mUnm+1Un+1,m+1 = 0,

1
where € := as/a; # 0,%+1, ' == 8s /(e T o= [C — 206 + %] / (a1+az)

and s := +1. As under a restricted Mobius transformation p — p («/8)? and 7 — 7 (o/8)?,
we see that the absolute value of ¢’ and sgn (p) are invariant under such a transformation.
With another rescaling we can always fix ¢’ > 0 and the two canonical forms, specified

2
03
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by the two set of invariants (e, sgn (pa), ;) and (e, sgn (ps), (;), form two disconnected
components of the conjugacy class unless the two sets are the same;
In the Case (e) of Proposition 4, performing the M&bius transformation

" QU+ I5}
n,m ~Onm 15
with
(71 +72) (agy1 — a172) &
B =0, =", 0= ., a#0,
! 2 (a1 + az) a1 (a1 + az) 7

we obtain the canonical form:

Case (¢): (N =1)
Un,m + Un+1,m+1 + € (Un—l-l,m + 'Un,m—l—l) + UnmUn+1,m+1 — Un+1,mUn,m+1 + (50)

+ (1 ; E) [UnJrl,mUn,erl (Un,m + Un+17m+1) ~ UnmUn+1,m+1 (,U"Jrl’m + U"’m+1)]

1
+ (1 - ? Un,mUn+1,mUnm+1Un+1,m+1 = 0,

where € := as/a; # 0,£1,2,1/2. As € is invariant under a restricted Mébius transformation,
we see that two canonical forms, specified by the two invariants ¢, and ¢, form two
disconnected components of the conjugacy class unless ¢, = €p;

As our allowed transformations are subcases of the full M6bius transformations allowed
in the ABS approach [2], any conjugacy class of ours is either completely contained into
one of the ABS classification or is totally disjointed from them. Considering that no one
out of the (left hand members of the) canonical forms (a’)-(e’) possesses the invariance
(up to an overall sign) under vy, m > Untim, Unm+1 <> Unti,m+1, we can conclude that
no intersection can exist between our classes and those generated by the ABS list. Even
more, no equation in our list is of Klein-type or, that is the same [14], a subcase of the Qv
equation.

We can enlarge our class of transformations by including also an exchange n < m
between the two independent variables. The subclass (45a) can be discarded because under
this exchange we would get it from subclass (45b) with 75 = 0; similarly the subclass (47a)
can be discarded because under this exchange we would get it from subclass (47b) with
79 = 0; finally the subclasses (48-50) are invariant under this transformation.

Let us include also the inversion n — —n. Setting ¥ = vV—_n m, we have that, if v,
satisfies (45b), then vy, ,, satisfies (47b); if vy, ,, satisfies (48) with parameters € and ¢/,
then ¥y, ,, = sgn (€) v_y ., satisfies (48) with parameters 1/e and ¢’/ |e¢| and similarly for
Eq. (49); if vy, satisfies (50) with parameter €, then vy, = —v_p /€ satisfies (50) with
parameter 1/¢ (this implies that, if v, ,, satisfies one of the four canonical forms (47b),
(48-50), then also U = vV_p,—m does). As a consequence under this enlarged class of
transformations the Eq. (47b) can be discarded and in the case of the Eqgs. (48-50) we can
limit the parameter € to the range —1 < € < 1, € # 0 as the equation with parameters 1/e
and ¢’ can be obtained from the corresponding with parameters e and ¢’ |e|.

Notes: In the Cases (c¢) and (d) of Proposition 4, when 7 = 0, corresponding to ¢’ =0
in the cases (¢/) and (d’), they reduce to the S-integrable cases analyzed in Levi-Yamilov
and Ramani-Grammaticos [17].
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3.4 Classification at order 5.

Now we perform a multiscale reduction at order €5 on the four canonical forms (47b),
(48-50) and we find that all the so far obtained equations satisfy the Aj-integrability
conditions (60). Hence we can state the following proposition

Proposition 5. Up to a restricted Mobius transformations Oy, m = Unm/ (QUnm + B),
exchanges n <+ m and inversions n — —n, all the A4-asymptotically S-integrable cases in
the class Q. are given by

Unm + Untlm+1 + 2 ('Un+1,m + Un,m+l) + Unt1,mVn,m+1 (1 + T) + (513)
+ (Un—i—l,mvn—i—l,m—i-l + Un,m”n,m—&—l) T+ Unm+1Vn+1,m+1 T UnmUn+1,m

+Up+1,mUn,m+1 (Un,m + Un+1,m+1) T =0;

Vngm + VUntLmt1 + € (Ung1m + Unma1) + (51b)
+0 [evn+1,mvn,m+1 (Un,m + Un—i-l,m-l—l) + Un,mUn41,m+1 (Vn+1,m + Un,m-&-l)]
+TUnmUn+1mUnm+1Untimt1 =0, —1<e<l, €#0, 0:==x1, 72>0;

Unom + Unt1mt1 + € (Untim + Unm1) + (51c)

+4 [Un+1,mvn,m+1 (Un,m + Un+1,m+1) + €U mUn+1,m+1 (Un+1,m + Un,m+1)]
+TUnmUn+1,mUnm+1Vn+1,m+1 =0, —1<e<1l, €#0, 0:==%1, 72>0;
Un,m + Untlmtl T € (UnJrl,m + Un,erl) + UnmUn+1,m+1 — Un+1,mUnm+1 + (51(1)

+ (1 - %) [UnJrl,mUn,erl (Un,m + Un+1,m+1) — Un,mUn+1,m+1 (U"Jrlvm + U"vm+1)]
1
+ (1 — e%) Un,mVUn+1,mYn,m+1Un+1,m+1 = 0, —-l<e<l, e 7é 0, 5

Egs. (5la, 51d) depend on N = 1 free parameter, while (51b, 51c) depend on N = 2
free parameters (without considering the additional discrete parameter §).

If in (51a), when 7 = 0, we apply the (not allowed) transformation vy, = V3w m — 1,
we obtain

Whn,mWnt1,m + WntlmWnm+1 + Wnm+1Wnt1,m+1 — 1=0, (52)

which in the direction n satisfies two first order necessary integrability conditions given
in [14] but doesn’t admit the corresponding three-point generalized symmetry either
autonomous or not, while in the direction m the first order integrability conditions are
not satisfied. Following [8] we were able to prove the integrability of (52) constructing
two five-point symmetries, one in the n direction depending on the points (n + 2, m),
(n+1,m), (n,m), (n —1,m) and (n — 2, m) and the other one in the m direction. In [18§]
its integrability was finally proven providing a 3 x 3 Lax pair. Moreover this equation has
the singularity confinement property, can be bilinearized, possesses multisoliton solutions
and has a continuous limit into the mKdV equation, [9].

In (51a), with 7 = 1, applying the (not allowed) transformation vy, ;, = — (2%wn,m+1)
yields

Wn+1,mWn,m+1 (wn,m + wn+1,m+1) +1=0, (53)
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an integrable system introduced in [15], where it was proved to satisfy the second order,
but not the first order, integrability conditions, to posses a 3 x 3 Lax pair and to be
a degeneration of the discrete integrable Tzitzeica equation proposed by Adler in [1].
Moreover this equation has the singularity confinement property, can be trilinearized and
possesses multisoliton solutions, [9].

Finally, if in (51a), when 7 # 0, 1 we apply the (not allowed) transformation vy, ,, =
1-7

“—FWn,m — 1, we obtain

Wn,mWn41,m + Wn,m+1Wn+1,m+1 + Wn41,mWn,m+1 (1 + Wn,m + wn—l—l,m-‘,—l) + X = 07 (54)

a2
((le); , which doesn’t satisfy the first order integrability conditions for three-

point generalized symmetries either autonomous or not, either in direction n or m. In [18]
we showed the integrability of the subcase xy = 0 constructing two five-point generalized
symmetries, one in the n direction and the other one in the m direction, and a 3 x 3
Lax pair. An indication of the integrability of the general case (54) for arbitrary x was
provided showing its algebraic entropy vanishes. Other strong indications of integrability
for arbitrary y, such as the singularity confinement property, bilinear form, multisoliton
solutions and a continuous limit into the mKdV equation when xy = —1, were established in
[9]. In the case x = —1 we can provide the following five-point symmetry in the n direction
depending on the points (n + 2,m), (n+ 1,m), (n,m), (n —1,m) and (n — 2, m):

where x =

wn,m (wn,m + 1) (wn,mwn—l,m - 1) (wn+1,mwn,m - 1)
(wn,mwn—l,mwn—Zm + 1) (wn—i—l,mwn,mwn—l,m + 1)
Wn42 mWn+1,m — Wn—1,mWn—2m

Wn,mt = )

_.I_

>
Wn+1,mWn+1,mWn,m + 1

where t is a group parameter. The last generalized symmetry is invariant under w,, ,, :=
1/wp, m and under the following Miura transformation

Wn+1,mWn,m — 1

Z = 55
i Wn+1,mWn,mWn—1,m + 1 ( )
it can be transformed into a Bogoyavlenskyi lattice
Znm,t = Zn,m (Zn,m + 1) (Zn+2,mzn+1,m - Zn—l,mzn—2,m) .
Proposition 6. If (54) with y = —1 is satisfied, given (55), then
Znm + 1
Wpt1m = — == ; (56a)

(mewn—l,m - ]—) Wn,m

(Zn m+1 +t Znm + 1) (wn—l m + 1) W m
— ) ) ) ) , 56b
nmtt G+ 1) (0 + 1) (o00)

(Zn m T 1) (wn mWn—1,m — 1)
Wn—1, 1= ’ ’ ’ y 96¢
nohmy Zn,m+1 (wnfl,m + 1) Wn,m ( )

and 2, ,, satisfies

Zn,m (Zn+1,m + 1) + Zn+1,m+1 (Zn,erl + Zn,m + 1) =0. (57)
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To prove (56a), just solve (55) with respect to wy41,m; to obtain (56b), substitute (56a)
and its shifted once along direction m into the equation (54) with x = —1, solve with
respect t0 Wy—1,m+1, substitute this result into the equation (54) with xy = —1 shifted back
once along direction n and solve with respect to wy m+1; (56¢) follows inserting (56b) into
the previous result for wy,—1 1. The three relations (56) provide a Miura transformation
between equation (54) with x = —1 and (57): the compatibility between the z—variables
implies (54) with x = —1, while the compatibility between the w—variables implies (57).

Equation (57) is an integrable lattice possessing a 3 x 3 Lax representation, [18]. When
Zn,m # 0, under the inversion Wy, y, == 1/2y m the equation (57) is mapped into the equation
(54) with x = 0, so (55) provides also a Miura mapping from wy, ,, solving (54) with x = —1
to Wy, m solving the same equation but with xy = 0. This Miura transformation induces,
through the mapping vy, m, = k%wn,m — 1, a corresponding Miura transformation from a
solution vy, 4, of (51la) with 7 = 1/3 to a solution ¥y, , of (51a) with 7 = 3. Another set of
Miura transformations between the equations (52), (53) and (54) was derived in [9].

Summing up, we have very strong indications of integrability for the master equation
(51a) which, when 7 = 3, 1/3, has a continuous limit into the mKdV equation, [9].

If in (51b), (51c) we apply the (not allowed) transformations wy, m, = 0sgn (€) /Upnm
and Wy, = /v m respectively, we obtain

T 1
H + Wn,m + Wn41,m+1 + E (wn—l—l,m + wn,m+1) (583)
1
+4 Ewn-l—l,mwn,m—‘rl (wn,m + wn+1,m+1) + WnmWn+1,m+1 (wn+1,m + wn,m—i—l) =0,
T+ wn,m + wn—&-l,m—‘rl + € (wn—l—l,m + wn,m—&-l) (58b)

+5 [ﬁ}n-l—l,mwn,m—‘rl (wn,m + ﬁjn—i—l,m—‘rl) + 6UN}TL,?TL'UNJTL-‘,-I,WL—&-I (wn—l—l,m + wn,m—&—l)] =0.

Egs. (58a, 58b) are just an almost trivial looking modification of the two integrable systems
discussed in [17], which are recovered when 7 = 0. In that paper it was shown that, when
7 =0, Egs. (58b, 58a) are mapped through a M&bius transformation respectively to the
Hirota discrete sine-Gordon equation and to its potential form. After in (58a) we replace
€ — 1/e and in (58b) § — sd, with s := sgn (¢), the precise form of the potentiation induced
between them is

ﬁ)n+1,m + wn,erl
1+ Séwn—l—l,mwn,m—l—l

Wn,m = [e]'/?

These equations satisfy the first order integrability conditions for three-point generalized
symmetries either autonomous or not if and only if 7 = 0, which in this limit, in the n
direction, are respectively given by

(5w%7m — 6) (56w,217m — 1) (Wnt1,m — Wn—1,m)
(1 + 5wn,mwn+1,m) (1 + 6wn,mwn—1,m)
(6w2 ;= 1) (Wng1,m — Wn—1,m)

57Dn+1,mu~)n— 1m — 1

Wpm,t = )

Dy = +(=D" k4 (1) 0] 6wy, — 1),
where t and ¢ are two group parameters, and, in the m direction, by similar expressions
obtained changing wy41,m — Wpmy1 and wy_1m — Wpm-1. The second integrable system

shows a two parameters non autonomous point symmetry tail too. We note that both
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the integrable systems are invariant under wy, ,, ‘= —vp m; the first integrable system is
covariant under the inversion wy, y, = 1/vy m as € is changed into 1/e, while the second
one is invariant; under the non autonomous transformation wy, , = (—1)"+m Un,m both
the integrable systems are covariant as in the first case € is changed into —e and § into
—d, while in the second one € is changed into —e. This implies that in those systems we
can limit ourselves to the range 0 < € < 1. Moreover the second integrable system under
the non autonomous transformation wy, ,, = (vn,m)(_l)wm is invariant when 6 = 1 and
covariant when § = —1 as € is changed into de. Finally both the integrable systems are
covariant under the transformation wy, y, := ivy, s, as d is changed into —d. This implies that
in those systems we can always take = 1 but in general, if we allow such a transformation,
the solution will be no more a real field but a complex one. Let’s also note that the non
autonomous transformation wy, m, = (—1)" Upm Or Wy m = (—1)" vy, brings both the
integrable systems from class QT into class Q™.

An indication that the general cases (58a, 58b) are not integrable when 7 # 0 can be

obtained showing their algebraic entropy [3] doesn’t vanish.
o[/ ?wo,04+1

P Pwno—1jc With

If in (51d) we apply the (not allowed) transformation vy, ,, =

pi= E‘éf%i # 0, we obtain

3/2
Wnm + Wntlm+1 T WnymWnt1,m+1 |:5 (wn—l-l,m + wn,m—l—l) + 6‘,0‘ / Wn+4+1,mWn,m+1

o
+—=% =0, (59
oz = % 9)
where 0 = sgn (p) = sgn (1/e — 2), which, for 6 = —1, is a real discrete Tzitzeica equation

with coefficient ¢ = 1/ (e]p|3/ ?) and for § = 1, through the (not allowed) transformation
Wy, m — 1wy, m becomes a complex Tzitzeica equation with coefficient ¢ =i/ (e\ p\g/ 2). We
remember that the Tzitzeica equation possesses a 3 x 3 Lax representation and satisfies
[15] the second order, but not the first order, integrability conditions.

We note that, besides not being subcases of the Qy equation, our systems (51), except
for (51b, 51c) with 7 = 0, where a five-point generalized symmetry depending on the points
(n+1,m), (n,m+1), (n,m), (n—1,m) and (n,m — 1) exists, are not included into the
Garifullin-Yamilov class [10] too.

4 Concluding remarks

In this paper we have considered the application of a multiple scale expansion to a class of
dispersive multilinear partial difference equation on the square lattice, Q. The integrability
conditions we obtain when we require that the multiple scale expansion of the discrete class
of equations is equivalent to the equations of the NLS hierarchy reduce the A/ = 13 initial
parameters defining the Q7 class to a maximum of A = 2 free (continuous) parameters
defining four equations. A great effort has been directed to extend the expansion up to
order €9, the related integrability conditions appearing in this paper for the first time. As
a result of our efforts we have been able to compare the A3 integrable equations to the Ay
integrable equations. They turn out to be the same, so that one could presume we might
be already in the asymptotic regime and that the obtained equations might be integrable.
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However a non vanishing algebraic entropy is an indication that the general cases (58a,
58b) are not integrable when 7 # 0.

An open problem seems of major importance now: the consideration of the second class
of dispersive multilinear partial difference equations on the square lattice, @~ is a major
task which will surely provide new classes of integrable equations. However in this case
the lowest order integrability conditions appear already at order £? and will not produce
an equation of the NLS type, but more likely a coupled wave equation. Work on it is in
progress.
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Appendix

We present explicitly the 48 conditions for ® S-asymptotic integrability (A4-integrability)
involving the real (S;) and imaginary parts (T}) of the coefficients n;, j = 1,..., 34 of the
differential polynomial (27a). The expressions of the coefficients x,, , m = 1,..., 77 of the
differential polynomial (27b) as functions of the n;, j = 1,..., 34 are complicated, so we
will omit them.
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+(a 7b)7377, 526:*7*(R12+7)71 Ta = Tog — ————,
2p5 2p2 P2 p2 / 2p2 P2

a T3o a :
Sog = Sa7 — E—b —, Tag =Ta7 —T33, Sa9 = Sa7 — E*b —, To9 = Ta7 — T3s,
P2 2

bT30
S30 =0, T30 =Ts2, S31 =0, T33 =732, S32=0, Szz=— S3q = Sar + 202 T34 =0,
2

2
4a [2p2 (p1S10 — p25S15 + p2S18) + p2 (I6S27 + bT22) + (a — b) IsT27] + a [2p2R2 + (a + 3b) Is + al12] T32 +

+2 (205 (a = b) Raz + 203 (I2 — I — 2I5) + a (b — 2a) Is| Ts3 = 0, [ITsz — IsTs3 = 0.
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