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Abstract

The paper begins with a review of the well known KdV hierarchy, N -th Novikov equa-
tions and its finite hierarchiey in the classical commutative case. Its finite hierarchy
consists of N compatible integrable polynomial dynamical systems in C2N . Then we
discuss a non-commutative version of the N -th Novikov hierarchy defined on a finitely
generated free associative algebra BN with 2N generators. Using the quantisation
ideals method in BN , for N = 1, 2, 3, 4, we have found two-sided homogeneous ide-
als QN ⊂ BN (quantisation ideals) which are invariant with respect to the N -th
Novikov equation and such that the quotient algebra CN = BN/QN has a well de-
fined Poincare–Birkhoff–Witt basis. It enables us to define the quantum N -th Novikov
equation and its hierarchy on the CN . We have found N commuting quantum first
integrals (Hamiltonians) and represented equations of the hierarchy in the Heisenberg
form. In this paper we introduce the concept of Frobenius-Hochschild algebras and
in its terms we express explicitly first integrals of the N -th Novikov hierarchy in the
commutative, free and quantum cases.

1 Introduction

We dedicate this paper to the late Decio Levi, in tribute to his profound contributions to
the advancement of the theory of integrable systems. His research journey began with the
exploration of quantum systems. We believe that our paper, situated at the intersection of
classical and quantum integrability and founded on a novel approach to the quantisation
problem, will resonate with Decio’s interests and legacy.

The problem of quantisation of dynamical systems has a history spanning over a cen-
tury. In 1925, Heisenberg put forward a new quantum theory, suggesting that the multi-
plication rules, rather than the equations of classical mechanics, require modifications [16].
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Almost immediately1 Dirac reformulated Heisenberg’s ideas in mathematical form, intro-
duced quantum algebra, and noticed that in the limit ~ → 0 the Heisenberg commutators
of quantum observables tend to the Poisson brackets between the corresponding observ-
ables in the classical mechanics âb̂ − b̂â → i~{a, b} [9]. In other words, non-commutative
multiplication rules in the quantum theory can be regarded as a deformation of commu-
tative multiplication of smooth functions. Nowadays there is enormous amount of papers,
books and conferences devoted to deformation quantisation. In [9] Dirac stated that “The
correspondence between the quantum and classical theories lies not so much in the limiting
agreement when ~ → 0 as in the fact that the mathematical operations on the two theories
obey in many cases the same laws” and raise the important issue of self-consistency of the
quantum multiplication rules and their consistency with the equations of motion for finite
value of the Plank constant ~.

Recently, AVM presented a new approach to the problem of quantisation [19]. It is
suggested to commence with dynamical systems defined on a free associative algebra, i.e.
with a free associative mechanics. In this theory smooth functions on a phase space (or a
Poisson manifold) are replaced by elements of a free algebra, generated by the dynamical
variables. Any finitely generated associative algebra, including Dirac’s quantum algebra,
can be regarded as a quotient of a free algebra with an equivalent number of generators
over a suitable two-sided ideal. The commutation rules of a quantum theory enables
one to swap positions of any two variables. In [19] by quantisation it is understood a
reduction of a system defined on a free associative algebra to the dynamical system on a
quotient algebra such that any two generators can be re-ordered using its multiplication
rule. In order to achieve the consistency (to solve the issue raised by Dirac) the ideal
(the quantisation ideal) should be invariant with respect to the derivation defined by the
dynamical system. The classical commutative case corresponds to the ideal generated by
the commutators of all dynamical variables. The method of quantisation proposed in [19]
does not appeal to a Poisson structure of the system, and therefore it enables to define
a concept of non-deformation quantisation. For example, the Volterra integrable lattice
admits a deformation quantisation. Using the new method it is shown that its cubic
symmetry admits two different quantisations, and one of which is non-deformation. This
approach has been developed further and applied to quantisation of the Volterra hierarchy
in [7]. In particular it was shown that a periodic Volterra lattice with period three admits
a bi-quantum structure which is a quantum analog of the corresponding bi-Hamiltonian
structure.

The aim of our paper is to apply the approach proposed in [19] to the problem of
quantisation of stationary flows of the KdV hierarchy, known as the Novikov equations
[5], [8], [15], [22]. Novikov discovered that the stationary flows of the KdV equation
is a completely integrable dynamical system, it possess a rich family of periodic and
quasiperiodic exact solutions which can be expressed in terms of Abelian functions [11],[22].
Here we would like to emphasise that we study the problem of quantisation of finite
dimensional systems of ordinary differential equations and not of the field theory associated
with partial differential equations of the KdV hierarchy.

1The speed of publications and Dirac’s reaction was astonishing! Heisenberg’s paper [16] was submitted
on 29th of July, published in September. Dirac received a proof of Heisenberg’s paper in August, submitted
his paper containing a deep development of Heisenberg’s theory on 7th of November, which was published
on the 1-st of December 1925 [9].



]ocnmp[ KdV hierarchies and quantum Novikov equations 3

In Section 2 we give an explicit algebraic description of N -th Novikov equation and
the corresponding finite hierarchy of symmetries in the form convenient for further gen-
eralisations. The N -the Novikov equation is an ordinary differential equation of order
2N . In Proposition 17 it is shown that a complete set of N first integrals of the N -th
Novikov equations can be explicitly presented in terms of the coefficients of fractional

powers L
2k−1

2 of the Schrödinger operator L = D2 − u, D = d
dx
. The KdV hierarchy de-

fines evolutionary derivations in the graded algebra A0 = C[u0, u1, u2, . . .] with the weights
|uk| = k+2, where u0 = u, uk+1 = D(uk). The commuting evolutionary derivations define
a representation of algebraically independent variables u0, u1, u2, . . . as smooth functions
uk = uk(t1, t3, . . .) of graded variables t2k−1, k ∈ N where the weight |t2k−1| = −2k + 1
and t1 = x. We treat the N -th Novikov equation as a generator of a differential ideal
IN in the graded ring A = A[u, u1, . . .], where A is a commutative algebra of graded
parameters α4, α6, . . . , α2N+2 where the weights |α2n| = 2n. The Proposition 16 shows
that the KdV hierarchy induces the finite N hierarchy of integrable ordinary differential
polynomial equations on the quotient ring A�IN which is called N -th Novikov hierarchy.
Here by integrability we understand the existence of N first integrals and N commuting
symmetries, one of which is the N -th Novikov equation itself.

Let B be an associative C-algebra with the unit 1 and M be a complex linear space. Let
ε : B → M be a linear map such that ε(1) 6= 0. In this paper we introduce the Frobenius-
Hochschild algebra FH(B,M). The name and notation are motivated by the fact that
the structure of a FH(B,M)-algebra U is given by a skew-symmetric quadratic form Φ
on the B-bimodule U with values in M, and this form Φ is a 1-cocycle in the cochain
Hochschild complex of the algebra U . Partial cases of the Frobenius-Hochschild algebras
are anti-Frobenius algebras. The latter was introduced and developed in connection with
the associative Yang-Baxter equation, see [25]. In Section 1.2 we describe properties of
the FH(B,M)-algebra in the case B = M = A0. In terms of the form Φ = σ(·, ·) of this
algebra, the first N -Novikov integrals are explicitly described in the case of a commutative
ring of polynomials A0.

The KdV equations with non-commutative matrix variables were introduced in [26],
[6]. The KdV hierarchies on free associative algebras were studied in [10], [12], [23], [24],
[25]. In Section 3 we give a description of the integrable KdV hierarchy on a differential
graded free associative algebra B0 = C〈u, u1, . . .〉, D(uk) = uk+1. Here, by integrability
we understand the existence of an infinite hierarchy of commuting symmetries, which are
generators of symmetries of the non-commutative KdV equation. There is a complete
classification of integrable hierarchies of evolutionary non-commutative equations [24]. In
particular, it was shown that the hierarchy of the KdV equation can be generated by
a (non-local) recursion operator. In the non-commutative case in order to define local
conservation laws we need to introduce a linear space of functionals with the values in
the quotient linear space B0�

(
Span([B0,B0]) ⊕ D(B0)

)
, see [10], [23], [24]. Formal

definitions of the N -th Novikov equation and its hierarchy of symmetries are the same as
in the commutative case. Namely, we take a stationary flow of a linear combination of
the first N members of the KdV hierarchy with commuting constant coefficients α2n ∈ A,
as a generator of the two-sided ideal IN ⊂ B = A〈u, u1 . . .〉. The N -Novikov hierarchy
is defined as the canonical projection of the KdV hierarchy to the quotient ring BN =
B�IN which is free over A and finitely generated. The first system of the hierarchy
∂t1uk = D(uk), k = 0, . . . 2N − 1 is the N -th Novikov equation itself, written in the form
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of a first order system where D is the derivation of BN induced by D. In contrast to
the commutative case, the hierarchy of linearly independent symmetries is infinite. The
case N = 1 is already nontrivial. For N = 1 the Novikov equation coincides with the
(non-commutative) Newton equation u2 = 3u2 +8α4 and in B1 is represented by the first
order system

∂t1u = u1, ∂t1u1 = 3u2 + 8α4. (1)

Equation (1) admits an infinite hierarchy of commuting symmetries. First four of them
are presented in Section 2.

A general definition of first integrals for equations on free associative algebra was dis-
cussed in [20]. First integrals for the non-commutative N -th Novikov equation and its
hierarchy are introduced in Definition 25. In Section 2.2 we describe the properties of
the FH(B,M)-algebra, where B = B0, and M = B0/Span([B0,B0]). First integrals of
the non-commutative N -th Novikov hierarchy are explicitly represented in terms of the
form Φ = σ(·, ·) of this algebra. Using Lemma 19, we constructed infinitely many alge-
braically independent first integrals for the non-commutative N -th Novikov equation and
its hierarchy.

In Section 4 we consider the quantisation problem for N -th Novikov equation following
the method proposed in [19]. Let QN be a commutative graded ring of parameters

QN = C[α2j+2, qi,j, q
ω
i,j | 0 6 i < j 6 2N − 1, 0 6 |ω| < i+ j + 4]

where |qi,j| = 0, ω = (i2N−1, . . . , i1, i0) ∈ Z2N
> , |ω| = (2N + 1)i2N−1 + · · · + 3i1 + 2i0,

|qωi,j| = i + j + 4 − |ω|, and BN (q) denotes the graded free associative ring BN (q) =
QN 〈u0, . . . , u2N−1〉. Having N -th Novikov equation on BN (q), we introduce a differential
homogeneous two-sided ideal QN ⊂ BN (q) generated by the polynomials

pi,j = uiuj − qi,jujui +
∑

06|ω|<i+j+4

qωi,ju
ω, 0 6 i < j 6 2N − 1, qi,j 6= 0. (2)

where uω = u
i2N−1

2N−1 · · · u
i1
1 u

i0
0 are normally ordered monomials. The ideal QN is a quanti-

sation ideal of the N -th Novikov equation if the quotient algebra CN = BN (q)/QN has a
Poincaré–Birkhoff–Witt additive QN -basis of normally ordered monomials uω, ω ∈ Z2N

> ,
and QN is invariant with respect to the derivation D. It follows from D(QN ) ⊂ QN that
the coefficients qi,j, q

ω
i,j satisfy a system of algebraic equations. In particular, these equa-

tion imply that qi,j = 1 for all 0 6 i < j 6 2N − 1 (Lemma 33). In the cases N = 1, 2, 3
and 4 we have found out that the all structure constants qωi,j of the quantisation ideals QN

can be parameterised by one parameter which we denote ~. In the case N = 1 the com-
putations are presented in full detail in Section 4.2. In this case we have shown that the
quantisation ideal for equation (1) is generated by the commutation relation [u1, u] = i~,
which coincides with Heisenberg’s commutation relation in quantum mechanics [16], [9].
In the case N = 2 we have shown (Proposition 40) that the quantisation ideal Q2 is
generated by six commutation relations

[ui, uj] = 0 for i+ j < 3 or i+ j = 4;
[u3, u] = [u1, u2] = i~, [u3, u2] = 10i~u0,
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The quantum N = 2 KdV hierarchy can be written in the Heisenberg form (Theorem 42)

∂t1uk = D(uk) =
i

~
[H5,3, uk] =

{
uk+1, 0 6 k 6 2,

32α6 − 16α4u+ 5u21 + 10u2u− 10u3, k = 3;

4∂t3uk =
i

~
[H5,5, uk] = Dk+1(u2 − 3u2).

Here the Hamiltonian H5,3 ∈ C2 for the Novikov equation coincides with the first integral
of weight 8 in the commutative case, assuming that all monomials are normally ordered,
while the Hamiltonian H5,5 ∈ C2 requires a quantum correction (Proposition 41). These
Hamiltonians commute with each other [H5,3,H5,5] = 0. We conclude Section 4 by discus-
sion of quantum ideals for N = 3 and N = 4 and the hierarchy of quantum KdV equations
in the Heisenberg form in the case N = 3.

We emphasize, that the method of quantisation proposed in [19] does not assume any
Hamiltonian structure of the noncomutative dynamical system, nevertheless we present
the quantum equations in the Heisenberg form ∂tuk = i

~
[H, uk] in Section 4.

2 Novikov’s equations and the corresponding finite KdV hi-

erarchies.

2.1 Lie algebra of evolutionary differentiations.

Consider a graded commutative differential polynomial algebra

A0 = (C[u0, u1, . . .], D), (3)

where D is a derivation of C[u0, u1, . . .] such that D(uk) = uk+1, k = 0, 1, . . . In terms of
grading we assume that the variables uk have weight |uk| = k + 2 and operator D have
weight |D| = 1. The variable u0 will be often denoted as u. The derivation D can be
represented in the form

D = Xu1
=

∞∑

k=0

uk+1
∂

∂uk
.

Derivations of A0 form a Lie algebra DerA0 over C. A formal sum

X =

∞∑

n=0

fn
∂

∂un
, fn ∈ A0, (4)

is a derivation in A0. Its action X : A0 7→ A0 is well defined, since any element
a ∈ A0 depends on a finite subset of variables, and therefore the sum X(a) contains only a
finite number of non-vanishing terms. The C linearity and the Leibniz rule are obviously
satisfied. For example, partial derivatives ∂

∂ui
, i = 0, 1, . . ., are commuting derivations in

A0.

A derivation X is said to be evolutionary if it commutes with the derivation D. For an
evolutionary derivation it follows from the condition XD = DX that all coefficients fn in
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(4) can be expressed as fn = Dn(f) in terms of one element f ∈ A0, which is called the
characteristic of the evolutionary derivation. We will use notation

Xf =

∞∑

i=0

Di(f)
∂

∂ui
(5)

for the evolutionary derivation corresponding to the characteristic f . The derivation D is
also evolutionary D = Xu1

with the characteristic u1.
Evolutionary derivations form a Lie subalgebra of the Lie algebra DerA0. Indeed,

αXf + βXg = Xαf+βg, α, β ∈ C,
[Xf ,Xg] = X[f,g],

where [f, g] ∈ A0 denotes the Lie bracket

[f, g] = Xf (g)−Xg(f), (6)

which is bi-linear, skew-symmetric and satisfying the Jacobi identity. Thus A0 is a Lie
algebra with Lie bracket defined by (6).

Let a(u, . . . , un) be a non-constant element of A0. Then Xf (a) can be represented by
a finite sum

Xf (a) =

n∑

i=0

∂a

∂ui
Di(f) = a∗(f), (7)

where

a∗ =

n∑

i=0

∂a

∂ui
Di (8)

is the Fréchet derivative of a(u, . . . , un) and a∗(f) is the Fréchet derivative of a in the
direction f . Using the Fréchet derivative we can represent the Lie bracket (6) in the form

[f , g] = g∗(f)− f∗(g). (9)

An evolutionary derivation Xf we identify with the partial differential equation

∂t(u) = f, f ∈ A0. (10)

Following [25] we define symmetries of (10).

Definition 1. A dynamical system

∂τ (u) = g, g ∈ A0 (11)

is called an infinitesimal symmetry (or just symmetry for brevity) for (10) if (10) and (11)
are compatible.

It is clear that equation (11) is a symmetry of equation (10) iff [Xf ,Xg] = 0. By a
symmetry we will also call the evolutionary derivation ∂τ which commutes with ∂t.
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2.2 Frobenius–Hochschild algebras.

We shall assume that u is a smooth function u = u(t1, t3, . . . , t2k−1, . . .) of graded
variables t2k−1, k = 1, 2, . . ., where |t2k−1| = 1−2k. The variable t1 we will identity with x.
We use abbreviated notations for partial derivatives ∂u

∂t2k−1
= ∂t2k−1

(u) and ∂x = ∂t1 = D.

The grading weights |∂t2k−1
| = 2k − 1.

Let us define a differential operator of order m as a finite sum of the form

A =

m∑

i=0

aiD
i, ai ∈ A0, am 6= 0

where D0 = 1 is the identity operator.

An operator A is called homogeneous of weight k, if |ai| + i = k for all i. Differential
operators act naturally on the algebra A0.

The set of differental graded operators

A0[D] =
{ m∑

i=0

aiD
i | ai ∈ A0, am 6= 0, m ∈ Z>0

}

and the set of graded formal differential series

AD
0 = A0[D][[D−1]] =

{∑

i6m

aiD
i | ai ∈ A0, am 6= 0, m ∈ Z

}
(12)

are non-commutative associative algebras. In this algebra, multiplication is defined by the
composition of series using the formula

bDkaDl =
∑

i>0

(
k

i

)
ba(i)Dk+l−i (13)

reflecting the Leibniz rule. Here a(k) = Dk(a) ∈ A0 and

(
k

0

)
= 1,

(
k

i

)
=

k(k − 1) · · · (k − i+ 1)

i!
= (−1)i

(
−k + i− 1

i

)
, i > 0. (14)

Obviously A0[D] ⊂ AD
0 and A0[D] is a subalgebra in AD

0 .

For example,

Dka =

k∑

i=0

(
k

i

)
a(i)Dk−i, k > 0;

D−1a =
∑

i>0

(−1)ia(i)D−(i+1) = aD−1 −D(a)D−2 +D2(a)D−3 −D3(a)D−4 + · · ·

For any two elements A,B ∈ AD
0 we have the commutator [A,B] = AB − BA. For

instance, for any a ∈ A0, the formulas are fulfilled:
[D, a] = D(a); [D−1, a] = −D(a)D−2 +D2(a)D−3 − · · ·
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Definition 2. For a formal series A ∈ AD
0 the coefficient a−1 of the term a−1D

−1 is called
the residue of this series A and denoted by resA.

Lemma 3.

1) For any B ∈ AD
0 and a ∈ A0 we have res [a,B] = 0.

2) For any a ∈ A0 and B,C ∈ AD
0

res [aB,C] = res [B,Ca]. (15)

Proof. 1) Let B =
∑
k6m

bkD
k. Then

[a,B] = −
∑

k6m

∑

i>0

(
k

i

)
bka

(i)Dk−i.

Therefore

res [a,B] =

(
k

k + 1

)
bka

(k+1) = 0, k + 1 > 0.

2) For any elements A,B,C of any associative algebra, the identity

[A,BC] + [B,CA] + [C,AB] = 0 (16)

holds. Therefore, for a ∈ A0 and B,C ∈ AD
0

[aB,C] = [B,Ca] + [a,BC]. (17)

Applying the operator “res” to (17) and using already proved statement 1), we obtain the
proof of statement 2). �

Let B be some associative C-algebra with the unit 1 and M some complex linear space.
Let a linear mapping ε : B → M be given such that ε(1) 6= 0.

Definition 4. An associative C-algebra U with unit 1 will be called a Frobenius–Hochschild
algebra over (B,M) (briefly FH(B,M)-algebra) if:

i) The algebra B is a subalgebra of U , and hence U is a two-sided B-module.

ii) The bilinear mapping Φ(·, ·) : U ⊗C U → M is defined such that:
1) for any A ∈ U and b ∈ B we have Φ(A, b) = 0;
2) for any A,B,C ∈ U the relation

Φ(A,BC) + Φ(B,CA) + Φ(C,AB) = 0 (18)

is satisfied.

Lemma 5. Let U be some FH(B,M)-algebra. Then the bilinear mapping
Φ(·, ·) : U ⊗C U → M
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a) is skew-symmetric, i.e. for any A,B ∈ U the equality Φ(A,B) = −Φ(B,A) is true;

b) defines a bilinear mapping U ⊗B U → M, i.e., for any A,B ∈ U and a ∈ B, the
equality Φ(aA,B) = Φ(A,Ba) is true.

Proof. Let us substitute C = 1 in (18). Then, according to item 1) of the Definition 4,
we obtain a proof of assertion a). If we substitute C = a in (18) then, according to item
1) of the Definition 4, obtain a proof of assertion b). �

Theorem 6. The algebra AD
0 is a FH(A0,A0)-algebra in which the bilinear form Φ =

σ : AD
0 ⊗A0

AD
0 → A0 is uniquely given by the formula

σ(Dn, bDm) =

{(
n

n+m+1

)
b(n+m), if n+m > 0, nm < 0,

0, otherwise.
(19)

Proof. Let A =
∑
k6m

akD
k. Then aA ∈ AD

0 for any a ∈ A0 and therefore the algebra AD
0

is a left A0-module with respect to the embedding ε : A0 → AD
0 : a → aD0. According to

(13), the structure of the right A0-module is given by the formula

Aa =
∑

j6m

(
m−j∑

i=0

(
j + i

i

)
aj+ia

(i)

)
Dj.

According to (19), we obtain σ(ε(a), A) = σ(aD0, A) = 0. Thus item 1) of condition
ii) of the Definition 4 has been verified.

The proof of item 2) of condition ii) is based on two lemmas, which are of independent
interest:

Lemma 7. For any A,B ∈ AD
0

D
(
σ(A,B)

)
= res [A,B]. (20)

Proof. Forms D
(
σ(·, ·)

)
and res [·, ·] are bilinear so it suffices to proof the relation:

D
(
σ(aDn, bDm)

)
= res [aDn, bDm], a, b ∈ A0, n,m ∈ Z. (21)

According to the condition of Theorem 6, for any a, b ∈ A0 we have

σ(aDn, bDm) = σ(Dn, bDma).

But according to item 2) of Lemma 3

res [aDn, bDm] = res [Dn, bDma].

Therefore, it suffices to proof the relation (21) in the case a = 1. But in this case we have:

res [Dn, bDm] =

(
n

n+m+ 1

)
b(n+m+1) = D

(
σ(Dn, bDm)

)
.

Lemma 7 is proved. �
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The monomials

uξ = uinn · · · ui00 , ξ = (in, . . . , i0), in > 0, ik > 0, k = 0, . . . , n− 1, |uξ| =

n∑

k=0

(k+2)ik,

form an additive basis of the graded algebra A0 = C[u0, u1, . . .]. We will consider A0 as a
graded algebra A0 = C ⊕ Ã0, where Ã0 = ⊕mAm

0 and Am
0 is a graded finite-dimensional

C-linear subspace in A0 with an additive basis {uξ, |uξ| = m}.

For example, {u}, {u1}, and {u2, u
2} are the basises of the spaces A2

0, A
3
0, and A4

0,
respectively.

The vectors of the space Am
0 are called homogeneous polynomials of weight m. Let us

introduce an ordering of the multiplicative generators of the algebra A0:

u = u0 < u1 < · · · < uk < uk+1 < · · ·

Then a strict order is defined in the monomial basis {uξ} of the space Am
0 for each m > 0.

This order is induced by the lexicographic order of the sequences ξ.

Lemma 8. For any m > 0 the homomorphism D : A0 → A0 defines a monomorphism
Am
0 → Am+1

0 .

Proof. By definition, D(1) = 0 and D(uk) = uk+1, k = 0, 1, . . . Therefore, the differenti-
ation operator D takes Am

0 to Am+1
0 . Let uξ ∈ Am

0 where ξ = (in, . . . , i0), in 6= 0. Then

D(uξ) = inun+1u
in−1
n uξ̂ + uinn D(uξ̂). The composition of linear homomorphisms

D : Am
0 → Am+1

0 → Am+1
0 : D(uξ) = uξ

′

= inun+1u
in−1
n uξ̂

maps the ordered set of monomials uξ ∈ Am
0 into the ordered set of monomials uξ

′

∈ Am+1
0 .

We will show that this mapping is monotone and thus we obtain that the homomorphism
D is a monomorphism for m > 0.

Let ξ1 = (in1
, . . . , i01) > ξ2 = (in2

, . . . , i02) where in1
6= 0 and in2

6= 0. Then n1 > n2.
If n1 > n2 then ξ′1 > ξ′2. If n1 = n2 and in1

> in2
then in this case it is also obvious

that ξ′1 > ξ′2. Finally, let n1 = n2 = n and in1
= in2

= in. Then there is a sequence
ζ = (in, . . . , ik), 0 < k 6 n, such that ξ1 = (ζ, η1) and ξ2 = (ζ, η2) where η1 > η2. In
this case uξ

′

1 = D(uξ1) = D(uζ)uη1 and uξ
′

2 = D(uξ2) = D(uζ)uη2 and therefore uξ
′

1 > uξ
′

2 .
Lemma 8 is proved. �

We now continue the proof of Theorem 6. It remains to prove that item 2) of condition
ii) of Definition 4 is satisfied, i.e. that relation (18) is true.

Let A,B,C ∈ AD
0 . Take the residue res of the left side of equality (16). Then, according

to Lemma 7, we obtain:

D
(
σ(A,BC) + σ(B,CA) + σ(C,AB)

)
= 0.

Since according to Lemma 8 the operator D is the monomorphism on non-constant series,
we obtain that relation (18) is true. Theorem 6 is proved. �

Corollary 9.
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1) For any a, b ∈ A0 we have

σ(aDn, bDm) =





(
n

n+m+1

) n+m∑
s=0

(−1)sa(s)b(n+m−s), if n+m > 0, nm < 0,

0, otherwise.

(22)

2) For any A ∈ AD
0 we have

σ(D,A) = resA. (23)

3) For any A,B ∈ AD
0 we have

σ
(
D, [A,B]

)
= D

(
σ(A,B)

)
. (24)

Proof. Assertion 1) follows from Lemma 5 and formulas (19) and (13). Assertion 2)
follows from formula (22). Assertion 3) follows from formula (23) and Lemma 7. �

For A =
∑
i6m

aiD
i, am 6= 0, we put A = A+ + A− where A+ = 0 if m < 0, and

A+ =
m∑
i=0

aiD
i if m > 0.

Corollary 10.

1) σ(A,B) = σ(A+, B−) + σ(A−, B+).

2) Let [A,B] = 0. Then σ(A,B) = 0.

Proof. Assertion 1) follows from formula (22). Assertion 2) follows from item 3) of
Corollary 9 and Lemma 8. �

Theorem 11. The form σ(·, ·) is given in terms of the operation res by the recursive
formula

σ(A,BD) = σ(DA,B)− resAB (25)

with the initial condition σ(A, bD) = −resAb for any A ∈ AD
0 and b ∈ A0.

Proof. As was noted above, resA = σ(D,A). For the triple (A,B,D), according to
identity (18), we obtain formula (25). �

For example:

σ(A, bD2) = σ(DA, bD) − resAbD = −res (DAb+AbD)

for any A ∈ AD
0 and b ∈ A0.
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2.3 KdV hierarchy.

Let us consider a homogeneous operator L = D2 − u, |L| = 2.

Lemma 12. A homogeneous formal series

L = D +
∑

n>1

I1,nD
−n, |L| = 1,

where I1,n ∈ A0 are homogeneous polynomials of the weight n + 1, satisfies the equation
L2 = L if and only if I1,1 = −1

2u, I1,2 =
1
4u1 and

2I1,n + I ′1,n−1 +
n−2∑

k=1

I1,k

n−k−2∑

i=0

(−1)i
(
k + i− 1

i

)
I
(i)
1,n−k−i−1 = 0, n > 3. (26)

Proof. Consider the equation


D +

∑

k>1

I1,kD
−k




D +

∑

q>1

I1,qD
−q


 = D2 − u.

We obtain

∑

q>1

DI1,qD
−q +

∑

k>1

I1,kD
−k+1 +

∑

k>1,q>1

I1,kD
−kI1,qD

−q = −u.

Using (13), we get (26). �

Formula (26) allows to calculate the polynomials I1,n, n > 3, recursively

L = D −
1

2
uD−1 +

1

4
u1D

−2 −
1

8
(u2 + u2)D−3 +

1

16
(u3 + 6uu1)D

−4−

−
1

32
(u4 + 14u2u + 11u21 + 2u3)D−5 + . . .

Let us define a sequence of differential operators

A2k−1 = L2k−1
+ = D2k−1 −

1

2
(2k − 1)uD2k−3 + · · ·+ a2k−1, k = 1, 2, . . . , (27)

where a2k−1 = A2k−1(1) ∈ A0, |a2k−1| = 2k−1, and homogeneous differential polynomials
ρ2k ∈ A0, |ρ2k| = 2k,

ρ0 = 1, ρ2k = resL2k−1, k = 1, 2, . . . (28)

Thus

L2k−1 = A2k−1 + ρ2kD
−1 + . . . , k > 0.

We have a1 = 0 and ρ2 = −1
2u.
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Let be

L2k−1 = A2k−1 +
∑

n>1

I2k−1,nD
−n, k > 0.

From the relation L2k+1 = LL2k−1 we obtain

A2k+1 = (D2 − u)A2k−1 + I2k−1,1D + (I2k−1,2 + 2I ′2k−1,1), (29)

I2k+1,n = I2k−1,n+2 + 2I ′2k−1,n+1 + I ′′2k−1,n − uI2k−1,n. (30)

Corollary 13.

a2k+1 = (D2 − u)(a2k−1) + I2k−1,2 + 2ρ′2k, k > 1, (31)

ρ2k+2 = I2k−1,3 + 2I ′2k−1,2 + ρ′′2k − uρ2k. (32)

Let J = 〈u, u1, . . .〉 ⊂ A0 be the two-sided maximal ideal generated by u, u1, . . .

Proposition 14. For k ∈ N the following formula holds:

ρ2k+2 = −
1

22k+1

(
u2k + . . .+ (−1)k

(
2k + 1

k

)
uk+1

)
= −

1

22k+1
(u2k − ρ̂2k+2) (33)

where ρ̂2k+2 ∈ J2.

Proof. By definition, ρ2n = resL
2n−1

2 , n > 1. Since [D,u] = u1, then to calculate the
coefficient at un, it is sufficient to calculate the coefficient at x−1 of the series f(x) =

(x2 − a)
2n−1

2 where [x, a] = 0. We have

f(x) = x2n−1
(
1− x−2a

) 2n−1

2

= x2n−1


1 +

∑

k>1

(−1)k
(2n−1

2

k

)
x−2kak


 .

Therefore, the desired coefficient is

(−1)n
(2n−1

2

n

)
an = (−1)n

1

22n−1

(
2n− 1

n

)
an.

Formula (26) implies that

I1,n = (−1)n
1

2n
un−1 mod J2, n > 0.

Using formulas (30) and (32), we obtain by induction that

ρ2k+2 = −
1

22k+1
u2k mod J2, k > 0.

�
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Examples:

ρ4 = −
1

8
(u2 − 3u2), ρ6 = −

1

32
(u4 − 10u2u− 5u21 + 10u3),

ρ8 = −
1

128
(u6 − 28u3u1 − 14u4u− 21u22 + 70u2u

2 + 70u21u− 35u4).

It is easy to show that [L2k−1, L] = 0 and therefore the commutator

[A2k−1, L] = [L2k−1 − (L2k−1)−, L] = 2D(ρ2k) ∈ A0,

is the operator of multiplication on the function 2D(ρ2k).

Definition 15. The KdV hierarchy is defined as an infinite sequence of differential equa-
tions

∂t2k−1
(u) = −2D(ρ2k), k ∈ N. (34)

Examples:

∂t1(u) = u1,
4∂t3(u) = u3 − 6uu1,
16∂t5(u) = u5 − 10uu3 − 20u1u2 + 30u2u1,

and so on.
The partial derivatives ∂t2k−1

can be extended to derivations of the algebra AD
0

∂t2k−1
(A) =

∑

i6m

∂t2k−1
(ai)D

i, where A =
∑

i6m

aiD
i.

Therefore the KdV hierarchy can be written in the form of Lax’s equations

∂t2k−1
(L) = [A2k−1, L]. (35)

It can be shown, that the derivations ∂t2k−1
commute with each other [25], and thus the

KdV hierarchy is a system of compatible equations.
It follows from ∂t2k−1

(L) = ∂t2k−1
(L2) = ∂t2k−1

(L)L + L∂t2k−1
(L) and (35) that

∂t2k−1
(L) = [A2k−1,L],

and therefore,

∂t2k−1
(L2n−1) = [A2k−1,L

2n−1], n, k ∈ N. (36)

Let’s put

σ2k−1,2n−1 = σ(L2k−1
+ ,L2n−1

− ) ∈ A0. (37)

According to Corollary 10, we obtain:

σ2k−1,2n−1 = σ2n−1,2k−1. (38)
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Taking the residue from the equation 36, we get

∂t2k−1
(ρ2n) = D(σ2k−1,2n−1). (39)

Thus {ρ2n, n ∈ N} is a sequence of common conserved densities for the infinite KdV
hierarchy (34), and σ2k−1,2n−1 are homogeneous differential polynomials, |σ2k−1,2n−1| =
2n+ 2k − 2.

On the algebra A0 the evolutionary derivations ∂t2k−1
are represented by commuting

derivations

D2k−1 = −2

∞∑

ℓ=0

Dℓ+1(ρ2k)
∂

∂uℓ
. (40)

In particular D1 = D,

D3 =
1

4
(u3 − 6uu1)

∂

∂u
+

1

4
(u4 − 6uu2 − 6u21)

∂

∂u1
+ · · ·

2.4 The N-th Novikov hierarchy.

Let us choose a positive integer N . Let A = C[α4, . . . , α2N+2] be a graded algebra
of parameters and A = A[u0, u1, . . .]. We assume that |α2n| = 2n, n > 2, and α2n are
constants, meaning that D2k−1(α2n) = 0 for all k > 1 and n > 2.

Let us define a symmetry ∂τ of the KdV equation taking a linear combination with
constant coefficients of the first N members of the KdV hierarchy (34)

∂τ (u) = ∂t2N+1
(u) +

N−1∑

k=1

α2(N−k+1)∂t2k−1
(u). (41)

Let us define a polynomial

F2N+2 = ρ2N+2 +
N−1∑

k=0

α2(N−k+1)ρ2k. (42)

In (42) we assume that ρ0 = 1 and α2N+2 is a constant parameter of weight |α2N+2| =
2N + 2. The polynomial F2N+2 (see (42)) is homogeneous of weight 2N + 2. Let us
restrict ourselves with solutions of the KdV hierarchy which are invariant with respect to
the symmetry (41). It implies that

ρ2N+2 +

N−1∑

k=0

α2(N−k+1)ρ2k = 0. (43)

It follows from (33) that equation (43) can be resolved with respect to the variable u2N
and written in the form

u2N = f2N+2(u0, u1, . . . , u2N−2) (44)
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where f2N+2 = ρ̂2N+2 + 22N+1
N−1∑
k=0

α2(N−k+1)ρ2k ∈ A is a homogeneous polynomial,

|f2N+2| = 2N + 2. Equation (44) is called N -th Novikov equation. Since ρ2n ∈ A0,
these equations depend linearly on α4, . . . , α2N+2.

For example:

N = 1 : u2 = 3u2 + 8α4,
N = 2 : u4 = 10(u2 − u2)u+ 5u21 − 16α4u+ 32α6,
N = 3 : u6 = 14(u4 − 5u2u+ 5u21)u+ 28u1u3 + 21u22 + 35u4 − 16α4(u2 − 3u2)

− 64α6u+ 128α8.

Since uk = Dk(u) = u(k), theN -th Novikov equation is an ordinary differential equation
of the 2N -th order for the function u = u(x).

Let IN = (F2N+2) ⊂ A be a differential ideal generated by the polynomial F2N+2 and
the D derivatives. For any element of A the canonical projection

πN : A 7→ A�IN

is the result of the elimination of variables uk, k > 2N , using equation (44) and equation
u2N+k = Dk(f2N+2) recursively.

Proposition 16. The ideal IN is invariant with respect to evolutionary derivations
∂t2k−1

, k ∈ N.

Proof. Indeed, it follows from (7), (38), and (40) that

∂t2k−1
(F2N+2) = ∂t2k−1

(
ρ2N+2 +

N−1∑

ℓ=0

α2(N−ℓ+1)ρ2ℓ

)
=

=
(
∂2N+1 +

N−1∑

ℓ=1

α2(N−ℓ+1)∂2ℓ−1

)
(ρ2k) = −2(ρ2k)∗(D(F2N+2)) ⊂ IN . (45)

�

Commuting derivations D2k−1, 1 6 k 6 N (see (40)) induce on A/IN the derivations

D = D1 =

2N−2∑

ℓ=0

uℓ+1
∂

∂uℓ
+ f2N

∂

∂u2N−1
,

D2k−1 = − 2

2N−1∑

ℓ=0

Dℓ+1(ρ2k)
∂

∂uℓ
, 1 6 k 6 N.

In C2N there are N compatible systems of N ordinary differential equations

∂t2k−1
(us) = D2k−1(us) = −2Ds+1(ρ2k), s = 0, . . . , N − 1, k = 1, . . . , N, (46)

which we will call N -th Novikov hierarchy. In this case, the parameters α2k are assumed to
be fixed complex numbers. In the hierarchy (46), system with k = 1, s = 0, . . . , N −1 rep-
resents the N -th Novikov equation (44) as a first order system of 2N ordinary differential
equations.
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Proposition 17. The N -th Novikov equation possesses N first integrals

H2n+1,2N+1 = σ2n+1,2N+1 +

N−1∑

k=1

α2N−2k+2σ2n+1,2k−1, n = 1, . . . , N. (47)

The polynomials H2n+1,2N+1 are homogeneous of weight |H2n+1,2N+1| = 2N + 2n + 2.

Proof. It follows from (38) that

∂t2n−1
(F2N+2) = D(H2n+1,2N+1)

where

H2n+1,2N+1 = σ2n+1,2N+1 +

N−1∑

k=1

α2N−2k+2σ2n+1,2k−1. (48)

Thus, it follows from (45) that D(H2n+1,2N+1) = ∂t2n+1
(F2N+2) ∈ IN and thus vanish in

A/IN . For n = 1, . . . , N one can check that H2n+1,2N+1 6∈ IN , and thus H2n+1,2N+1 is a
first integral of Novikov’s equation. Moreover the first integrals H2n+1,2N+1, n = 1, . . . , N ,
are algebraically independent. �

It is known that N -th Novikov equation and equations of the N -th Novikov hierarchy
can be reduced to integrable Hamiltonian systems [5]. It follows from the general theory
of integrable Hamiltonian systems that the derivations Dt2s−1

with s > N in A/IN are
dependent, since they are linear combinations of Dt2k−1

, k = 1, . . . , N , i.e.

Dt2s−1
=

N∑

k=1

akDt2k−1
(49)

with coefficients ak ∈ C[α4, . . . , α2N+2,H2N+1,3, . . . ,H2N+1,2N+1] where H2n+1,2N+1, n =
1, . . . , N , are first integrals of the N -th Novikov equation. Using (47) one can find the
polynomials H2n+1,2N+1, n > N , which are also first integrals (it follows from the proof
of Proposition 17), but they are algebraically dependent with H3,2N+1, . . . ,H2N+1,2N+1.

For example:
N = 1: The N = 1 Novikov equation coincides with the Newton equation ∂2

t1u =
3u2 + 8α4.

∂t1(u) = u1;

∂t1(u1) = 3u2 + 8α4,

and according Proposition 17 we get one first integral

H3,3 = −
3

16

(
1

2
u21 − u3 − 8α4u

)
. (50)

N = 2: The hierarchy consists of two compatible systems in which the first one is the
N = 2 Novikov equation

∂t1(us) = us+1, s = 0, 1, 2;

∂t1(u3) = 32α6 − 10u3 − 16α4u+ 10u2u+ 5u21;

4∂t3(us) = Ds+1(u2 − 3u2), s = 0, 1, 2, 3 .
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Proposition 17 give us two first integrals

H3,5 = −
3

128

(
5u4 + 16α4u

2 − 64α6u− 10u21u− u22 + 2u3u1
)
, (51)

H5,5 =
5

512
(24u5 + 64α4u

3 − 20u2u
3 − 192α6u

2 − 30u21u
2 − 32α4u2u+ (52)

+ 16α4u
2
1 + 64α6u2 + 4u22u+ 12u3u1u− u23 − 2u2u

2
1).

Obviously H2n+1,2N+1 (see (47) in case N = 2) are first integrals for any n, but they
are algebraically dependent with H3,5,H5,5

H7,5 =
7

6
(3α2

6 − 2α4H3,5),

H9,5 = −3α6H3,5 −
9α4

5
H5,5,

H11,5 =
11

90

(
− 45α4α

2
6 − 18α6H5,5 + 30α2

4H3,5 + 5H2
3,5

)
,

and so on.
N = 3: The hierarchy consists of three compatible systems. The first one is the N = 3

Novikov equation, the rest are its commuting symmetries:

∂t1(us) = us+1, s = 0, . . . , 4;
∂t1(u5) = 128α8 + 35u4 + 48α4u

2 − 70u2u
2 − 64α6u

− 16α4u2 − 70u21u+ 14u4u+ 21u22 + 28u1u3;
4∂t3(us) = Ds+1(u2 − 3u2), s = 0, . . . , 5 ;
16∂t5(us) = Ds+1(u4 − 5u21 − 10uu2 + 10u3 + 16α4u), s = 0, . . . , 5 .

It follows from Proposition 17 that there are three common first integrals of this systems

H3,7 =
3

29
(
14u5 + 32α4u

3 − 64α6u
2 − 70u21u

2 + 256α8u− 16α4u
2
1 − 14u22u+

+ 28u3u1u− u23 + 28u2u
2
1 + 2u4u2 − 2u5u1

)
; (53)

H5,7 = −
5

211
(
70u6 + 144α4u

4 − 70u2u
4 − 256α6u

3 − 280u21u
3 − 96α4u2u

2+

+ 768α8u
2 − 14u22u

2 + 168u3u1u
2 + 128α6u2u+ 16α4u

2
2 − 64α6u

2
1−

− 256α8u2 − 20u23u+ 140u2u
2
1u+ 12u4u2u− 12u5u1u− 35u41 − 2u32−

− u24 − 36u3u2u1 + 12u4u
2
1 + 2u5u3

)
; (54)

H7,7 =
7

213
(
300u7 + 576α4u

5 − 700u2u
5 − 960α6u

4 − 1050u21u
4 + 70u4u

4−

− 960α4u2u
3 + 2560α8u

3 + 420u22u
3 + 560u3u1u

3 + 96α4u4u
2 + 1280α6u2u

2−

− 100u23u
2 + 1400u2u

2
1u

2 − 80u4u2u
2 − 60u5u1u

2 + 256α4u
2
2u− 192α4u3u1u−

− 128α6u4u− 2560α8u2u+ 16α4u
2
3 + 192α4u2u

2
1 − 32α4u4u2 − 64α6u

2
2+

+ 128α6u3u1 − 1280α8u
2
1 + 256α8u4 − 20u32u+ 4u24u− 360u3u2u1u− 20u4u

2
1u+

+ 20u5u3u− 410u22u
2
1 − u25 + 20u3u

3
1 + 2u4u

2
2 − 4u4u3u1 + 40u5u2u1

)
. (55)
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3 KdV hierarchy and Novikov equations on free associative

algebra.

3.1 KdV hierarchy on free associative algebra.

It is well known that the KdV equation and its hierarchy can be defined on a free differ-
ential algebraB0 = (C〈u0, u1, . . .〉,D) with infinite number of noncommuting variables (see
for example, [24], [25]). Algebra B0 has monomial additive basis {uξ = ui1ui2 . . . uim | ik ∈
Z>0, m ∈ N}. It is graded algebra

B0 = C
⊕

n>2

B0,n, (56)

induced by the grading of the variables uk, |uk| = k+2 for any k > 0 and therefore |uξ| =
i1+· · ·+im+2m = n. Here B0,n is a finite dimensional space B0,n = SpanC〈uξ ; |uξ| = n〉.

The construction of the hierarchy is similar to the commutative case, although one has
to take care on the order of the variables, since uk ·us 6= us ·uk if k 6= s. Starting with the
operator L = D2 − u, one can find its square root by the formula L = D +

∑
n>1

I1,nD
−n,

where I1,n ∈ B0 are non-commutative polynomials. It follows from the proof of Lemma 2
that formula (26) for the recursive calculation of the polynomials I1,n is also applicable in
the case of a free associative algebra B0.

Now the initial segment of the series L has the form

L = D −
1

2
uD−1 +

1

4
u1D

−2 −
1

8
(u2 + u2)D−3 +

1

16
(u3 + 2u1u+ 4uu1)D

−4 + · · ·

Similarly to the commutative case, we introduce fractional powers L2k−1 and polynomials
̺2k = resL2k−1. From the identity L2k+1 = LL2k−1 follows a formula for the recursive
calculation of the polynomials ̺2k+2. It follows from the proof of the formulas (30) and (32)
that they are applicable in the case of a free associative algebra B0. However, expressions
for ̺2k ∈ B0 are different from expressions for ρ2k ∈ A0, k > 3,

̺2 = −
1

2
u; ̺4 =

1

8
(3u2 − u2); ̺6 =

1

32

(
5(u2u+ uu2) + 5u21 − 10u3 − u4

)
; (57)

̺8 =
1

128

(
7(u4u+ uu4) + 14(u3u1 + u1u3) + 21u22 − 21(u2u

2 + u2u2)−

− 28uu2u− 28(u21u+ uu21) − 14u1uu1 + 35u4 − u6
)
; (58)

and so on.

Definition 18. The compatible system of equations on the free associative algebra B0

∂t2k−1
(u) = −2D(̺2k) (59)

is called the KdV hierarchy (similar to the commutative case (34)).
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Equations of the KdV hierarchy define the commuting evolutionary derivations D2k−1

of B0. Their action on the variables un is given by

D2k−1(un) = −2Dn+1(̺2k)

and it can be extended to B0 by the linearity and the Leibniz rule.
We have

∂t2k−1
(̺2n) = ∂t2n−1

(̺2k) = res [L2n−1
+ ,L2k−1

− ] = res [L2k−1
+ ,L2n−1

− ]. (60)

In the non-commutative case res [A,B] is not any more in the image of the derivation
D and Lemma 7 should be modified. Let us introduce the algebra

BD
0 =

{
A =

∑

i6m

aiD
i | ai ∈ B0,|am|+m−i, am 6= 0, m ∈ Z

}
= ⊕

k∈Z
BD

0,k .

Definition 19. Let us introduce the homogeneous skew-symmetric bilinear over C form

σ̂(·, ·) : BD
0 ⊗BD

0 → B0, |σ̂(A,B)| = |A|+ |B|,

such that for n,m ∈ Z

σ̂(aDn, bDm) =





1
2

(
n

n+m+1

)n+m∑
s=0

(−1)s(a(s)b(n+m−s) + b(n+m−s)a(s)), if n+m > 0, nm < 0,

0, otherwise.

(61)

Lemma 20. We have res [A,B] = D
(
σ̂(A,B)

)
−∆(A,B) for any A,B ∈ BD

0 where

∆(aDn, bDm) =
1

2

(
n

n+m+ 1

)(
[a, b(n+m+1)] + (−1)n+m[b, a(n+m+1)]

)
.

Proof. The statement of this lemma is verified by directly calculating the value of
∆(aDn, bDm). �

Corollary 21. Let

A2k−1 =

2k−1∑

i=0

a2k−1−iD
i, L2n−1

− =
∑

j>1

I2n−1,jD
−j , n > 1.

Then

res[A2k−1,L
2n−1
− ] = D(σ̂2k−1,2n−1)−∆2k,2n−1

where

σ̂2k−1,2n−1 =
1

2

2k−1∑

i=1

i∑

j=1

(
i

i− j + 1

) i−j∑

s=0

(−1)s
(
a
(s)
2k−1−iI

(i−j−s)
2n−1,j + I

(i−j−s)
2n−1,j a

(s)
2k−1−i

)
, (62)

∆2k,2n−1 =
1

2

2k−1∑

i=1

i∑

j=1

(
i

i− j + 1

)(
[a2k−1−i, I

(i−j+1)
2n−1,j ] + (−1)i−j [a

(i−j+1)
2k−1−i , I2n−1,j]

)
. (63)



]ocnmp[ KdV hierarchies and quantum Novikov equations 21

In the non-commutative case the definition of densities of local conservation laws has
to be modified, since

∂t2k+1
(̺2n) ∈ Span[B0,B0]⊕D(B0).

Here Span[B0,B0] is a linear subspace generated by all commutators of elements from
B0.

A C-linear space of functionals is defined as B
♯
0 = B0/

(
Span[B0,B0] ⊕ D(B0)

)
, see

[10], [23], [24]. The polynomials ̺2n as elements of B♯
0 are constants of motion of the

nonabelian KdV hierarchy (59).

3.2 Frobenius–Hochschild algebras over free associative algebra.

Denote by ξk = (j1, . . . , jk) sequences of non-negative integers of length k > 1. Let

uξk = uj1 · · · ujk . We obtain |uξk | = 2k +
k∑

s=1
js.

We will consider B0 as a graded algebra B0 = C ⊕ B̃0, where B̃0 = ⊕mB0,m, m > 2,
and B0,m is a graded finite-dimensional C-linear space with an additive lexicographically
by indices ordered monomial basis {uξk , |uξk | = m}.

For example, {u3, u1u, uu1} is a monomial and lexicographically ordered basis u3 ≻
u1u ≻ uu1 in B5

0.

Let ξk = (j1, . . . , jk) be a multindex of the monomial uξk and Tk be a generator of the
cyclic permutation group of order k: T1(ξ1) = ξ1 and Tk(ξk) = (j2, . . . , jk, j1), k > 2. Let
us denote by T (ξk) the maximal index set in T (ξk) = max≻{ξk, Tk(ξk), . . . , T

k−1
k (ξk)} with

respect to the lexicographic ordering. We define the linear homomorphism T : B0,m →
B0,m by its action on the monomial basis elements T (uξk) = uT (ξk).

For example, T (u1u) = T (uu1) = u1u.

Proposition 22. Homomorphism T : B0 → B0 is a projector such that
ker T = Span[B0,B0] and ImT ≃ B

♮
0 = B0/Span[B0,B0].

Proof. It follows directly from the definition that T = T 2. The properties of T follow
from the following facts:

1. [uξ′
k
, uξ′′s ] = uξk.s − uT k

k+s
(ξk.s)

, where ξk.s = (ξ′k, ξ
′′
s ) is the concatination of ξ′k and ξ′′s ;

2. uξk − uT (ξk) = [uj1 , uj2 · · · ujk ] for ξk = (j1, . . . , jk), k > 1.

�

It follows from Proposition 22 that the projector T gives the splitting of the exact sequence

0 → Span[B0,B0] → B0−→B
♮
0 → 0. (64)

It enables us to identify the element T (b), b ∈ B0 with its canonical projection in B
♮
0.
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Theorem 23. The algebra BD
0 is the FH(B0,B

♮
0)-algebra in which the bilinear form

Φ = σ : BD
0 ⊗B0

BD
0 → B

♮
0 is uniquely given by the formula

σ(Dn, bDm) =

{(
n

n+m+1

)
T (b(n+m)), if n+m > 0, nm < 0,

0, otherwise.
(65)

Proof. Let us first explain the expression T (b(n+m)). The space Span[B0,B0] is closed
under the differentiation D. Therefore, the operator D on B0 uniquely determines the
linear operator D : B0 7→ B

♮
0, and for any b ∈ B0 the formula D(b) = T (D(b)) holds.

Let ξk = (j1, . . . , jk), k > 1, and T (ξk) = (j1,∗, . . . , jk,∗). If ξk = (j1, . . . , j1) =
(j1)

k, k > 1, then D(uξk) = kuj1+1u
k−1
j1

. If there are at least two distinct elements in the

set ξk, then D(uξk) is a sum of monomials with the leading monomial uj1+1,∗uj2,∗ · · · ujk,∗ .

Thus, in a strictly ordered basis, the homomorphism D : B0,m → B
♮
0,m+1 is given by

an upper triangular matrix with a non-zero diagonal. It induces the monomorphism
D : B♮

0,m → B
♮
0,m+1. Following the proof of Theorem 6 and using Lemma 20, it is easy to

complete the proof of Theorem 23.

�

Corollary 24. The algebraBD
0 is the FH(B0,B

♮
0)-algebra with the bilinear form σ̂(A,B)

(62).

Proof. It follows immediately from Theorem 23 and the fact that
σ̂(A,B)− σ(A,B) ∈ Span[B0,B0] for any A,B ∈ BD

0 . �

3.3 Non-commutative N-th Novikov equation and its hierarchy.

Let B = (A〈u, u1, . . .〉,D) be the differential ring, where A = C[α4, . . .], D(uk) =
uk+1, D(α2n) = 0, and α2n are commuting parameters, i.e centre elements of B. Similar
to the commutative case, we fix a positive integer N and define a homogenous polynomial
F2N+2 ∈ B:

F2N+2 = ̺2N+2 +

N−1∑

k=0

α2(N−k+1)̺2k. (66)

Let IN ⊂ B be a two-sided differential ideal generated by the polynomials F2N+2 and
Dk(F2N+2), k ∈ N. The quotient ring BN = B/IN is a graded finitely generated free ring
BN = A〈u0, u1, . . . , u2N−1〉 over A. Similar to Proposition 16 we can show that equations
of the hierarchy (59) are all compatible, therefore D2k−1(IN ) ⊂ IN . The derivations
D2k−1 induce derivations D2k−1 of the quotient algebra BN .

The equation F2N+2 = 0 can be written in the form

u2N = G2N+2(u0, u1, . . . , u2N−2) = ̺̂2N+2 + 22N+1
N−1∑

k=0

α2(N−k+1)̺2k, (67)

which is called the non-commutative N -th Novikov equation.
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In the non-commutative case the definition of first integrals has to be modified [20],
[25]. Let SpanA[BN ,BN ] be a A-linear subspace generated by the commutators of all
elements in BN . We would like to emphasise that SpanA[BN ,BN ] is not an ideal in BN .

Let B♮
N = BN/SpanA[BN ,BN ] be the corresponding quotient linear space. It follows

from the Leibniz rule that derivations of BN are well defined on B
♮
N . There is a short

split exact sequence (compare with (64):

0 → SpanA[BN ,BN ] → BN → B
♮
N → 0. (68)

All constructions and results associated with exact sequence (64) carry over to the case
of exact sequence (68).

Definition 25. A non-constant element H ∈ B
♮
N is called a first integral of the N -

th Novikov equation (respectively of the non-commutative N -th Novikov hierarchy) if
T (DH) = 0 (resp. T (D2k−1H) = 0, k = 1, 2, . . . , N).

Thus, an element H ∈ BN is a representative of a first integral, if and only if T (H) 6= 0
and T (DH) = 0.

It follows from (60) and Corollary 21 that

Ĥ2n+1,2N+1 = σ̂2n+1,2N+1 +
N−1∑

k=1

α2N−2k+2σ̂2n+1,2k−1, n ∈ N (69)

are first integrals of the non-commutative N -th Novikov equation. In the case of free
algebra BN we get infinitely many first integrals, since they are algebraically independent.
Also the KdV hierarchy (59) reduced to BN is infinite, since the derivations D2k−1, k > N ,
cannot be represented as liner combinations of D2k−1, 1 6 k 6 N , with coefficients from
a ring of constants (as it takes place in the commutative case (49)).

Example. The N = 1 Novikov equation (Newton equation on the free algebra
B1 = 〈u, u1〉 with the force 3u2 + 8α4)

∂t1(u) = u1; ∂t3(u) = 0;
∂t1(u1) = 3u2 + 8α4; ∂t3(u1) = 0;

has an infinite hierarchy of commuting symmetries

16∂t5(u) = (u1u
2 + u2u1)− 2uu1u− 16α4u1; (70)

16∂t5(u1) = −(uu21 + u21u) + 2u1uu1 − 48α4u
2 − 128α2

4;

32∂t7(u) = 8α4uu1 + 8α4u1u+ 2u1u
3 − u31 + 2u3u1 − u2u1u− uu1u

2; (71)

32∂t7(u1) = 128α2
4u− 8α4u

2
1 + 64α4u

3 − 2u2u21 + uu1uu1 − 2uu21u+ u1u
2u1+

+ u1uu1u− 2u21u
2 + 6u5;

16∂t9(u) = 3α4(u
2u1 − 2uu1u+ u1u

2 − 8α4u1); (72)

16∂t9(u1) = 3α4(64α
2
4 + 24α4u

2 + uu21 − 2u1uu1 + u21u).
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There are infinitely many algebraically independent first integrals (in the sense of Def-

inition 25) given by (69). For example, it follows from (69) that in B
♮
1

Ĥ3,3 = −
3

16

(
1

2
u21 − u3 − 8α4u

)
; (73)

T (Ĥ5,3) =
5

128
T
(
64α2

4 + 5uu21 − 10u1uu1 + 5u21u
)
=

5

2
α2
4; (74)

T (Ĥ7,3) =
7

265
(u1uu1u− u21u

2)−
7

3
α4Ĥ3,3; (75)

T (Ĥ9,3) =
9

512

(
u1uu1u

2 − u21u
3
)
−

9

2
α3
4 +

1

2
T (Ĥ2

3,3). (76)

We have

D(Ĥ3,3) = −
3

64
(u2u1 − 2uu1u+ u1u

2); D(T (Ĥ5,3)) = 0;

D(T (Ĥ7,3)) =
7

256

(
8α4uu1u− 8α4u1u

2 + u1uu
2
1 − u21uu1 + 3u3u1u− 3u2u1u

2
)

−
7

3
α4D(Ĥ3,3),

and T (D(Ĥ3,3)) = T (D(Ĥ5,3)) = T (D(Ĥ7,3)) = T (D(Ĥ9,3)) = 0.

3.4 Self-adjointness of the KdV and N–Novikov hierarchies.

Let BA = A〈u, u1, . . .〉. The set of differential operators

BA[D] =

{
A+ =

m∑

i=0

aiD
i | ai ∈ BA, am 6= 0, m ∈ Z>0

}

and the set of differential formal series

BD
A = BA[D][[D−1]] =

{
A =

∑

i6m

aiD
i | ai ∈ BA, am 6= 0, m ∈ Z

}

are non-commutative associative algebras in which multiplication is defined by formula
(13). According to formula (13), a conjugation anti-automorphism

† : BD
A → BD

A : (AB)† = B†A†

is defined on the ring BD
A .

Lemma 26. 1. The operator † is uniquely defined by the conditions

u† = u, D† = −D, α†
2k = α2k, z† = z̄, z ∈ C.

2. On the ring BA the operators D and † commute, i.e.

(D(a))† = D(a†) for any a ∈ BA. (77)
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Proof. We have u1 = Du − uD. Therefore, u†1 = −uD + Du = u1. Using the formula

uk+1 = Duk − ukD, by induction on k, k > 1, we obtain that u†k+1 = uk+1. Using

now the formula DDk = Dk+1, by induction on k > 1 and k 6 −1 we obtain that
(Dk)† = (−1)kDk, where k ∈ Z and D0 = 1 is the identity operator.

Statement 1 now follows from the fact that elements uk, k > 0, D and D−1, where
DD−1 = 1, multiplicatively generate the ring BD

A as a module over the ring A.
Assertion 2 is verified directly. Let a ∈ BA. Then

(D(a))† = (Da− aD)† = −a†D +Da† = D(a†).

�

A differential series A ∈ BD
A is called self-adjoint if A† = A, and anti-self-adjoint if

A† = −A.

Examples.

1. The operator L = D2 − u is self-adjoint.
2. The series L = D − 1

2uD
−1 + . . . , L2 = L, is anti-self-adjoint.

Let A,B ∈ BD
A . Then

[A,B]† = (AB)† − (BA)† = B†A† −A†B† = −[A†, B†].

3. Let A and B be self-adjoint (or anti-self-adjoint) series. Then series [A,B] is anti-
self-adjoint.

4. Let one of the series A or B be self-adjoint and the other be anti-self-adjoint. Then
series [A,B] is self-adjoint.

Consider the series A =
∑
i6m

aiD
i. From the formula (13), we obtain

A† =
∑

i6m

(−1)iDia†i =
∑

i6m

(−1)i
∑

j>0

(
i

j

)
Dj(a†i )D

i−j. (78)

According to (78), from conditions j > 0 and i = j − 1 we obtain that j = 0 and i = −1,
i.e.

res(A†) = −(resA)†. (79)

The representation A = A+ +A− is uniquely defined. So according to (78), we have

(A+)
† = (A†)+ and (A−)

† = (A†)− (80)

Corollary 27. ̺†2k = ̺2k, k > 1.

Proof. ̺†2k =
(
resL2k−1

)†
= −res

(
(L2k−1)†

)
= resL2k−1 = ̺2k. �

Explicit formulas ̺†2k = ̺2k in the case k = 1, 2, 3, 4 see (57) and (58).

Lemma 28. The operators ∂t2k−1
, k = 1, 2, . . ., participating in the noncommutative

hierarchy KdV, commute with the conjugation operator †, i.e.
(
∂t2k−1

(a)
)†

= ∂t2k−1
(a†) (81)

for any a ∈ BA.



26 ]ocnmp[ V M Buchstaber and A V Mikhailov

Proof. Applying the Leibniz rule for the operator ∂t2k−1
, we find that it suffices to prove

formula (81) only for multiplicative generators ui, i > 0, of the ring BA. Since ui = Di(u)
and the operators ∂t2k−1

commute with the operator D, it suffices to verify formula (81)
only for the case a = u. By the definition of the hierarchy KdV, on a free associative
algebra we have ∂t2k−1

(u) = −2D(̺2k) where by definition ̺2k = resL2k−1. Using the
formula (77) and Corollary 20, we obtain

(
∂t2k−1

(u)
)†

= −2
(
D(̺2k)

)†
= −2D(̺†2k) = −2D(̺2k) = ∂t2k−1

(u).

�

Let us now turn to the case of the N–Novikov hierarchy described in Section 3.3.

Lemma 29.

1. For any N > 1, the conjugation operator † : BN → BN is defined.

2. The operators D2k−1, of the N–Novikov hierarchy, commute with the operator †.

Proof. We have BN = B/IN where IN is a two-sided ideal generated by polynomials

F2N+2 and Dk(F2N+2), k ∈ N. Since ̺†2k = ̺2k and
(
D(a)

)†
= D(a†), then all generators

of the ideal IN are self-adjoint polynomials. This proves assertion 1.

Assertion 2 follows directly from Lemma 28. �

Let us consider the short exact sequence (68). The operator † : BN → BN moves the

linear space SpanA[BN ,BN ] into itself. Therefore, the conjugation operator † : B♮
N → B

♮
N

is defined. The first integrals of the N–Novikov hierarchy are given by formula (69), where
by definition σ̂2n+1,2k−1 = σ̂(L2n+1

+ ,L2k−1
− ).

Lemma 30. The self-adjoint polynomials

Ĥ2n+1,2N+1 =
N+1∑

k=1

α2N−2k+2 σ̂2n+1,2k−1, where α0 = 1, (82)

are first integrals of the N–Novikov hierarchy.

The proof follows from Corollary 21 and Lemma 29.

4 Quantisation of Novikov’s equations.

4.1 Quantum Novikov equations.

In this section we define a quantisation ideal QN and the quantum N -th Novikov
equation. Let QN be a commutative graded algebra of parameters

QN = C[α2j+2, qi,j, q
ω
i,j | 0 6 i < j 6 2N − 1, 0 6 |ω| < i+ j + 4]

where |qi,j| = 0, ω = (i2N−1, . . . , i1, i0) ∈ Z2N
> , |ω| = (2N + 1)i2N−1 + · · · + 3i1 + 2i0,

|qωi,j| = i + j + 4 − |ω|. The parameters are constant in a sense that for any a ∈ QN we
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have D2k−1(a) = 0. Let uω = u
i2N−1

2N−1 · · · u
i1
1 u

i0
0 , and thus |uω| = |ω|. Let BN (q) denote the

graded ring

BN (q) = QN 〈u0, . . . , u2N−1〉.

with parameters, which are in the centre of the ring.
Let QN = 〈pi,j | 0 6 i < j 6 2N − 1〉 ⊂ BN (q) be a two-sided D = D1 differential

homogeneous ideal generated by the polynomials

pi,j = uiuj − qi,jujui +
∑

06|ω|<i+j+4

qωi,ju
ω, 0 6 i < j 6 2N − 1, qi,j 6= 0. (83)

Let us consider the graded associative algebra CN = BN (q)/QN and the ring epimorphism
BN (q) → CN preserving the grading.

Definition 31. The ideal QN is called the Poincaré–Birkhoff–Witt ideal (briefly, the
PBW-ideal) if the image of the set of monomials uω, ω ∈ Z2N

> , forms a non-degenerate
additive basis in the Q-module CN .

Definition 32. The ideal QN is a quantisation ideal of the N -th Novikov equation if:

1. it is the PBW-ideal;

2. it is invariant with respect to the derivation D.

Condition 2 of Definition 32 reduces to a system of polynomial algebraic equations in
QN .

Lemma 33. Let QN ⊂ BN be a quantisation ideal of the N -th Novikov equation. Then
qi,j = 1.

Proof. The Lemma can be proven by induction. Let us show that q2N−2,2N−1 = 1.
Applying D to the polynomial p2N−2,2N−1 we get

D(p2N−2,2N−1) = (1− q2N−2,2N−1)u
2
2N−1 + f2N−2,2N−1.

where f2N−2,2N−1 is a polynomial whose leading monomial Lm(f2N−2,2N−1) < u22N−1.
Thus q2N−2,2N−1 = 1 is the necessary condition for D(QN ) ⊂ QN . Let us assume that
qi,j = 1 for all i < j, such that i+ j > k. For a polynomial pi,j with i < j and i+ j < k
we get

D(pi,j) = (ui+1uj + uiuj+1)− qi,j(uj+1ui + ujui+1) +
∑

qωi,jD(uω).

By the induction assumption qi,j+1 = 1. Therefore, D(pi,j) = (1− qi,j)uj+1ui+ fi,j, where
fi,j is a polynomial such that Lm(fi,j) ≺ uj+1ui in the additive basis of CN . It follows
from D(pi,j) ∈ QN that qi,j = 1. �

Corollary 34.

1. The relation

[ui, uj ] = −hij , 0 6 i < j 6 2N − 1,
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holds in the ring CN , where

hij =
∑

06|ω|<i+j+4

qωi,ju
ω, qωi,j ∈ QN .

2. For any P ∈ CN , polynomial [uk, P ] ∈ CN is a linear combination of polynomials
hij with coefficients from CN .

Since the ideal QN ⊂ BN (q) is D-invariant, i.e. D(QN ) ⊂ QN , then the derivation D
induces a well defined derivation ∂t1 on the quotient algebra BN (q)/QN and a quantum
dynamical system defined by the quantum N -th Novikov equation

∂t1(uk) = uk+1, k = 0, . . . , 2N − 2, ∂t1(u2N−1) = G2N+2(u0, . . . , u2N−2),

where G2N+2(u0, . . . , u2N−2) ∈ BN (q)/QN is a canonical projection of
G2N+2(u0, . . . , u2N−2) ∈ BN .

Theorem 35. The ideal QN is the quantisation ideal of the N -th Novikov equation if
and only if the set of polynomials hij ∈ CN is a solution of the following systems in the
ring CN :

I. the system of algebraic equations linear in hij

[hij , uk] + [hjk, ui] = [hik, uj ] (84)

for all triples (i, j, k), 0 6 i < j < k 6 2N − 1;

II. the system of differential equations linear in hij

h′ij = h̃i+1,j + h̃i,j+1 (85)

where h′ij = ∂t1(hij) and

h̃i+1,j =

{
hi+1,j, if i+ 1 < j;

0, if i+ 1 = j;
h̃i,j+1 =

{
hi,j+1, if j + 1 < 2N ;

[ui,G2N+2], if j = 2N − 1.

Proof. In [18], V. Levandovskyy obtained necessary and sufficient conditions on poly-
nomials pi,j of the form (83) under which the ideal QN is the BPW-ideal. Under the
additional condition qi,j = 1 (see Lemma 33), Lemma 2.1 from [18] provides a proof of
Statement I. The proof of Statement II follows from Statements 1–2 of Corollary 4. �

Let the ideal QN ⊂ BN be a quantization ideal that is invariant under derivations
D2k−1, k = 2, . . . , N , on the ring BN . Then derivations ∂t2k−1

, k = 2, . . . , N , are defined
on the ring CN such that ∂t2k−1

(u) = ∂t1(̺̂2k), where ̺̂2k ∈ CN is the image of the
polynomial ̺2k ∈ BN .

Corollary 36. The polynomials hij ∈ CN satisfy the following system of differential
equations linear in hij

∂t2k−1
(hij) = [ui, ∂

j+1
t1

(̺̂2k)]− [uj , ∂
i+1
t1

(̺̂2k)], k = 1, . . . , N, 0 6 i < j 6 2N − 1.
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4.2 Quantum N = 1 Novikov equation.

Let

u2 = G4(u0) = 3u2 + 8α4 (86)

and I1 ⊂ B is the two-sided differential ideal generated by Novikov equation relatively
the derivation D, such that D(uk) = uk+1. Then in B1 = B/I1 = A〈u0, u1〉 the induced
derivation D can be defined by its action on the generators

D(u) = u1, D(u1) = 3u2 + 8α4.

Let us consider a homogeneous two sided ideal Q1 ⊂ B1(q) generated by one polynomial

p0,1 = uu1 − u1u− q(0,2)u2 − q(1,0)u1 − q(0,1)u− q(0,0)

with arbitrary constants qω. Let us find conditions on these constants under which the
ideal Q1 becomes the quantization ideal. According to Theorem 35 we obtain

h′01 = [u, 3u2 + 8α4] = 0.

Thus, q(0,2) = q(1,0) = q(0,1) = 0 and q(0,0) is a free parameter. Let us denote q(0,0) = 8i~,
then the quotient algebra C1 = B1(q)/Q1 coincides with the Heisenberg (Weyl) algebra
C[α4, ~]〈u, u1〉/〈uu1−u1u−8i~〉 in quantum mechanics. Thus we have proved the following
statement.

Proposition 37. The ideal Q1 ⊂ B1(q) is the quantization ideal if and only if uu1−u1u =
8i~, where ~ is an arbitrary parameter.

In the case N = 1 the N -th Novikov equation u2 = 3u2 + 8α4 has the form of the
classical Newton equation. According to Proposition 37, the quantum N = 1 Novikov
equation is unique and can be written in the Heisenberg form

i~∂t1(u) = [u,H3,3] = i~u1, i~∂t1(u1) = [u,H3,3] = i~(3u2 + 8α4), (87)

where the Hamiltonian operator H3,3 = −2
3Ĥ3,3 =

1
16(u

2
1−2u3−16α4u) is self-adjoint and

[u, u1] = 8i~. Here Ĥ3,3 is given by (82). It follows from (87) that the t1 derivative of
any element of a ∈ C1 can be written in the form ∂t1(u) = i

~
[H3,3, a]. In particular the

Hamiltonian H3,3 is a quantum constant of motion ∂t1(H3,3) =
i
~
[H3,3,H3,3] = 0.

We have ∂t3(u) = 0. Higher symmetries (70), (71),(72) on the free associative algebra
B1 after the reduction to C1 take the self-adjoint form

∂t5(u) = −α4u1;

∂t5(u1) = −α4(3u
2 + 8α4);

32∂t7(u) = 64iα4~+ 16α4u1u+ 24iu2~+ 2u1u
3 − u31;

32∂t7(u1) = 64α4u
3 + 128α2

4u− 8α4u
2
1 − 48iu1u~+ 6u5 − 3u21u

2 + 192~2;

2∂t9(u) = 3α2
4u1;

2∂t9(u1) = 3α2
4(3u

2 + 8α4).



30 ]ocnmp[ V M Buchstaber and A V Mikhailov

4.3 Quantum N = 2 Novikov hierarchy.

In the case N = 2 the N -th Novikov equation on the free associative algebra
B = C[α4, α6]〈u, u1, . . .〉 can be written in the form

u4 = G6(u0, u1, u2), (88)

where

G6 = 5(u2u+ uu2) + 5u21 − 10u3 − 16α4u+ 32α6. (89)

It defines two commuting derivations D,D3 on the quotient ring
B2 = C[α4, α6]〈u, u1, u2, u3〉 = B/I2 which results in the 2-KdV hierarchy consisting of
two compatible nonabelian systems. The first system of the hierarchy

(
∂t1(uk) = D(uk)

)

∂t1(u) = u1; ∂t1(u1) = u2; ∂t1(u2) = u3; ∂t1(u3) = G6 (90)

is equation (88) written in the form of a first order system. The second system of the
hierarchy is

4∂t3(uk) = ∂k+1
t1

(u2 − 3u2), k = 0, 1, 2, 3. (91)

Let us introduce a two-sided ideal

Q̂2 = 〈[ui, uj ]− hij ; [hij , uk]; 0 6 i < j 6 3, 0 6 k 6 3〉 ⊂ B2(q)

and set

Ĉ2 = B2(q)/Q̂2.

Lemma 38. The ideal Q̂2 is a quantisation ideal of the 2-nd Novikov equation if and only
if polynomials hij ∈ Ĉ2 are the solution of the following linear in hij system of differential
equations:

h′01 = h02; h′02 = h12 + h03; h′12 = h13;

h′03 = h13 + P8; h′13 = h23 + P9; h′23 = P10,

where h′ij = ∂t1(hij), P8 = (h01u)
′ = h02u + h01u1, P9 = 10(h12u − h01u2) + 16α4h01,

P10 = 10h02(−u2 + 3u2)− 10h12u1 + 16α4h02.

Proof. Using the formula

G6 = 10(u2u− u3) + 5(h02 + u21)− 16α4u+ 32α6 ∈ Ĉ2,

we obtain that the assertion of this lemma is an immediate consequence of Theorem 35. �

Proposition 39. The ideal Q2 ⊂ B2(q) is the quantization ideal if and only if

[ui, uj ] = 0 for i+ j < 3 or i+ j = 4; [u, u3] = [u2, u1] = 32i~; [u2, u3] = 320i~u,

where ~ is an arbitrary parameter.
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Proof. Set h01 = ξ ∈ Ĉ2. Then, accordingly to Lemma 38, in the ring Ĉ2 we have:

h02 = ξ′; 2h03 = ξ′′ + 10ξu+ 2α, where α = const, |α| = 7;

2h12 = ξ′′ − 10ξu− 2α; 2h13 = ξ′′′ − 10(ξu)′;

2h23 = ξ(4) − 10(ξu)′′ − 20(h12u− ξu2)− 16α4ξ;

ξ(5) − 10(ξu)′′′ − 20(h12u− ξu2)
′ − 16α4ξ

′ = 20ξ′(−u2 + 3u2)− 20h12u1 + 32α4ξ
′.

Therefore, the polynomial ξ must satisfy the equation

ξ(5) − 20ξ′′′u− 30ξ′′u1 + ξ′(10u2 + 40u2 − 48α4) + 10ξ(u3 + 10u1u) = 0. (92)

Accordingly to formula (83), the solution to this equation should be sought in the form:

ξ = β1u
2 + β2u1 + β3u+ β5, |βk| = k. (93)

Substituting expression (93) into equation (92) and using the PBW-basis in Ĉ2, we obtain
that ξ = 0 in Ĉ2. Then the polynomial ξ ∈ B2(q) must belong to the ideal Q̂2, but this is
possible only when [u, u1] = 0.

Under condition [u, u1] = 0, the system of differential equations (85) in the case N = 2
takes the form

h01 = 0; h02 = 0; h12 + h03 = 0;

h13 = h′12 = h′03; h23 = h′13 − 5(h12u+ uh12);

h′23 = −5(h12u1 + u1h12).

If α = −32i~, then we obtain:

[u, u3] = [u2, u1] = 32i~; [u2, u3] = 320i~u.

�

Proposition 40. The following statements are equivalent

1. The ideal Q2 is D-invariant: D(Q2) ⊆ Q2.

2. The ideal Q2 is D3-invariant: D3(Q2) ⊆ Q2.

3. The ideal Q2 is generated by the commutation relations

[ui, uj] = 0 for i+ j < 3 or i+ j = 4;
[u, u3] = [u2, u1] = 32i~, [u2, u3] = 320i~u0,

where ~ is an arbitrary parameter.

Proposition 41. Quantum N = 2 KdV hierarchy has the quantum Hamiltonians

H3,5 = −
2

3
Ĥ3,5, H5,5 = −

2

5
Ĥ5,5

such that [H3,5,H5,5] = 0. Here Ĥ3,5, Ĥ5,5 are given by (82).
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Theorem 42. For N = 2 the quantum N -th Novikov equation, corresponding to the
derivations ∂t1 , can be written in the Heisenberg form

∂t1(uk) =
i

~
[H3,5, uk] =

{
uk+1, 0 6 k 6 2,

32α6 − 16α4u+ 5u21 + 10u2u− 10u3, k = 3.

The quantum dynamical system C2, corresponding to the derivations ∂t3 , can be written
in the Heisenberg form

4∂t3(uk) =
i

~
[H5,5, uk] = ∂k

t1(u3 − 6u1u), k = 0, 1, 2, 3.

4.4 Quantum N = 3 and N = 4 Novikov hierarchy.

For N = 3 non-commutative N -th Novikov’s equation has a form

u6 = G8(u0, u1, u2, u3, u4), (94)

where

G8 = 7(u4u+ uu4) + 14(u3u1 + u1u3) + 21u22 − 21(u2u
2 + u2u2)− 28(u21u+ uu21)−

− 28uu2u− 14u1uu1 + 35u4 − 16α4(u2 − 3u2)− 64α6u+ 128α8 = G†
8. (95)

In B3 = A〈u0, u1, . . . , u5〉 the non-commutative N -th Novikov equation is a generator of
the two-sided ideal I3.

Proposition 43. The following statements are equivalent

1. The ideal Q3 is D-invariant: D(Q3) ⊆ Q3.

2. The ideal Q3 is D3-invariant: D3(Q3) ⊆ Q3.

3. The ideal Q3 is D5-invariant: D5(Q3) ⊆ Q3.

4. The ideal Q3 is generated by the commutation relations

[ui, uj] = 0 if i+ j < 5 or i+ j = 6,
[u, u5] = [u4, u1] = [u2, u3] = η, [u2, u5] = [u4, u3] = 7 · 2ηu,
[u5, u3] = 14ηu1, [u4, u5] = 2η~(63u2 + 14u2 − 8α4)

where η ∈ C is an arbitrary parameter.

Setting η = 27i~, where ~ is an arbitrary real parameter, we get.

Proposition 44. Quantum N = 3 KdV hierarchy has three self-adjoint commuting quan-
tum Hamiltonians

H3,7 = −
2

3
Ĥ3,7 , H5,7 = −

2

5
Ĥ5,7, H7,7 = −

2

7
Ĥ7,7
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Theorem 45. For N = 3 the quantum N -th Novikov equation, corresponding to the
derivation ∂t1 , can be written in the Heisenberg form

∂t1(uk) =
i

~
[H3,7, uk] =

{
uk+1, 0 6 k 6 4,

G8, k = 5.

where

G8 = 28u3u1 +21u22 +35u4 − 14(u4−5u2u+5u21)u− 16α4(u2−3u2)− 64α6u+128α8.

The quantum dynamical systems in C3, corresponding to the derivations ∂t3 and ∂t5
can be written in the Heisenberg form

4∂t3(uk) =
i

~
[H5,7, uk] = ∂k

t1
(u3 − 6u1u),

16∂t5(uk) =
i

~
[H7,7, uk] = ∂k

t1
(u5 − 20u2u1 − 10u3u+ 30u1u

2).

In the case N = 4 the invariant ideal of quantisation Q4 is generated by the commuta-
tion relations (η = 29i~):

[u, u7] = [u6, u1] = [u2, u5] = [u4, u3] = η, [u2, u7] = [u6, u3] = [u4, u5] = 18ηu,

[u7, u3] = 2[u4, u6] = 36ηu1, [u4, u7]− 18ηu2 = [u6, u5] = η(198u2 + 60u2 − 16α4),

[u7, u6] = η(858u21 − 1980u2u− 1716u3 − 54u4 + 64α6 + 416α4u),

[u7, u5] = η(396u1u+ 60u3), [ui, uj ] = 0 if i+ j < 7 or i+ j = 8.

The corresponding quantum hierarchy takes the form

22n−2∂t2n−1
(uk) =

i

~
[H2n+1,9, uk], n = 1, 2, 3, 4, k = 0, . . . , 7 ,

where

H2n+1,9 = −
2

2n+ 1
Ĥ2n+1,9, n = 1, 2, 3, 4.

The first equation of this fine hierarchy is the N = 4 Novikov equation written in the
Heiseberg form

∂t1(uk) =
i

~
[H3,9, uk] =

{
uk+1, 0 6 k 6 6,

G10, k = 7.

where

G10 = 512α10 − 160α4u
3 + 192α6u

2 + 160α4u2u− 256α8u+ 80α4u
2
1

−16α4u4 − 64α6u2 − 126u5 + 420u2u
3 + 630u21u

2 − 126u4u
2

−378u22u− 504u1u3u+ 18u6u+ 69u23 − 462u21u2 + 114u2u4 + 54u1u5,
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and the other three equations are (k = 0, . . . , 7):

4∂t3(uk) =
i

~
[H5,9, uk] = ∂k

t1(u3 − 6u1u),

16∂t5(uk) =
i

~
[H7,9, uk] = ∂k

t1(u5 − 20u2u1 − 10u3u+ 30u1u
2),

64∂t7(uk) =
i

~
[H9,9, uk] = ∂k

t1(u7 − 140u1u
3 + 70u3u

2 + 280u2u1u− 14u5u

+ 70u31 − 70u3u2 − 42u4u1).

There are two interesing observations. In all cases considered in this section, namely
N = 1, 2, 3, 4:

• The form of the normally ordered quantum N-Novikov equations coincide with the
corresponding classical equations in the commutative case.

• For the first N equations of the quantum N -th Novikov hierarchy the polynomials
Ĥ2n+1,2N+1, n = 1, 2, . . . , N (82) are also quantum commuting Hamiltonians. We
have shown that these polynomials are integrals for the non-commutative hierar-
chy on the free associative algebra BN , i.e. ∂t2k−1

(Ĥ2n+1,2N+1) ∈ Span[BN,BN],
where ∂t2k−1

, k = 1, . . . , N . Apparently these derivations map these polynomials
(naturally embedded in CN ) into the corresponding quantisation ideal QN . In other
words

∂t2k−1
: Ĥ2n+1,2N+1 7→ Span[BN,BN]

⋂
QN, 1 6 n, k 6 N.
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