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UMR 7589, 4 Place Jussieu F-75252 Paris CEDEX 05, France

Received August 15, 2023; Accepted January 2, 2024

Abstract

We illustrate the use of the notion of derived recurrences introduced earlier to evaluate
the algebraic entropy of self-maps of projective spaces. We in particular give an
example, where a complete proof is still awaited, but where different approaches are
in such perfect agreement that we can trust we get to an exact result. This is an
instructive example of experimental mathematics.

1 Introduction: algebraic entropy of maps

We deal with birational self-maps of N -dimensional projective space PN . Such maps are
given as polynomial maps of degree d when written in terms of the N + 1 homogeneous
coordinates. Birationality means that the inverse maps are also polynomial (not necessarily
of the same degree). The iterates can be evaluated polynomially, and the degree dn of the
nth iterate is uniquely defined once all common factors to the homogeneous coordinates
are removed.

The algebraic entropy [1, 2] is defined from the sequence of degrees {dn} by

ǫ = lim
n→∞

1

n
log(dn) (1)

Some authors also use the terminology ’dynamic degree’ [3] or ’dynamical degree’ (see [4]

and references therein) δ = limn→∞ d
1/n
n , of which ǫ is the logarithm. Our definition

is not without relation to the spectral radius of the map induced in homology, which
already appeared in previous definitions of entropy [5, 6, 7] and to the notion of complexity
introduced in [8].
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The limit (1) always exists and is invariant by any birational change of coordinates. It
is an excellent -if not the best- detector of integrability of birational discrete-time systems:
integrability = vanishing of the entropy.

Beyond this use as an integrability criterion, an important question is to determine the
set of non zero values the entropy can take. On aspect of the problem is then, given a
map, to find explicitly the exact value of ǫ.

This can be achieved - especially in the two dimensional case which is of paramount
importance since it encompasses the discrete Painlevé equations [9, 10] - by a singularity
analysis of the maps: in that case one may eventually define a rational variety obtained
by blow-ups of points, where the maps are diffeomorphisms, and the induced action on
the Picard group gives the answer (see [11, 12, 13]).

We are interested in situations where this approach cannot be used. In particular,
going beyond the “easy” two-dimensional case, makes the singularity analysis much more
intricate, see for example [14, 15, 16, 17].

The most elementary thing one can do is to evaluate as many terms as possible of the
sequence degrees, using one’s favourite formal calculus software.

An approximate value of ǫ may then possibly be obtained by calculating the successive
ratios dn+1/dn. Let us call this low brow analysis ’Method 0’. It gives an idea of the value
of ǫ.

A better approach is to look for a generating function for the sequence of degrees. This
function is by definition

g(s) =

k=∞∑

k=0

dk s
k (2)

This method (’Method 1’) - which at first may look too heuristic - works extremely well,
and this is due to the underlying algebraic structure of the problem.

A third method (’Method 2’), introduced in [18] and expanded in [19], is an analysis
of the form of the iterates. If the factor structure of the iterates happens to stabilise, we
may rewrite the maps in a different way, giving immediately the value of the entropy.

The main point is actually that the asymptotic behaviour which ǫ measures can be
extracted from a finite piece of the sequence {dn}. The fundamental reason is the fact
that more than often, the sequence {dn} verifies a finite recurrence relation. In addition
this recurrence relation has integer coefficients, yielding for the entropy the remarkable
property that it is the logarithm of an algebraic integer. This last property was conjec-
tured [1] to be true for all birational self-maps of projective spaces, and its generality is
now questioned[20].

The possible drop of degrees of the iterates (meaning that dn is strictly lower than dn1 ),
the nature of the generating function of the sequence of degrees, as well as the stabilisation
phenomenon of the form of the iterates are all footprints of the singularity structure of
the iterations. Our point is that - apart from the simplest two dimensional case, as is the
warm-up example we have chosen, a full analysis of this structure is often difficult for the
higher dimensional maps. We stick to an experimental approach, using our calculation
tools to their limits, and do not embark into the singularity analysis, leaving it to further
study..
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2 Warm-up: a well studied two dimensional map

As a good example of what can be done for self-maps of P2, we start from the prototype
of algebraically stable (aka “confining”) map with positive entropy given in [21].

ϕ : [x, y, z] −→ [x3 + az3 − yx2, x3, x2z] (3)

which is the transcription as a map in P2 of the simple order 2 recurrence

un+1 + un−1 = un +
a

u2n
(4)

This map has been shown to have positive entropy by various methods, among which
the construction of a rational surface over P2 where the singularities are resolved [22, 23].
The lift of the map to the Picard group of this variety is a linear map whose maximal
eigenvalue (spectral radius) gives the entropy.

A possible first step is to calculate the beginning of the sequence of degrees:

{dn} = 1, 3, 9, 27, 73, 195, 513, 1347, 3529, 9243, 24201, 63363, . . . (5)

and then extract as much as information from this limited amount of data.
Method 0: The most naive - but already useful - thing to do is to see how the ratio

dn+1/dn evolves with n:

n dn+1/dn
1 3.

2 3.

3 3.

4 2.703703...

5 2.671232...

6 2.630769...

7 2.625730...

8 2.619896...

9 2.619155...

10 2.618305...

11 2.618197...

Clearly these numbers point to a value of the order of log(2.618...) for the entropy. This
is not enough if we want the exact value, but it already tells us that the entropy is not
vanishing. In other words the recurrence does not fall into the integrable class [21].

Method 1: It is possible to fit the sequence (5) with the rational generating function

g(s) =
3s3 + 1

(1− s) (1 + s) (s2 − 3s+ 1)
(6)

The entropy is the logarithm of the inverse of the smallest modulus of the poles of g,
since this is what governs the growth of the Taylor expansion of g(s). This gives ǫ =
log((3 +

√
5)/2) ≃ log(2.618033988...)

To go beyond the approximation of Method 0 and the heuristic nature of Method 1, go
to Method 2, keeping in mind that it may imply much heavier calculations.
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For the map (3) the form of the iterates does stabilise to the pattern

pk = [A3
k−3Ak, Ak−4A

3
k−1, z A

2
k−3A

2
k−2A

2
k−1] (7)

and the recurrence relation between the blocks Ak is just

A3
k A

3
k−3 + a z3A6

k−1A
6
k−2 −A3

k−1Ak−4A
2
k = A2

k−3A
3
k−2 Ak+1 (8)

We call (8) the derived recurrence of the original one (4). Notice that it is the same as
equ (4.6) of [24], where it was obtained by a different approach. Recurrence (8) extends
over a string of length 6. This relation is not quadratic nor multi-linear, but it allows to
prove (7), providing the recurrence condition on the degrees of the iterates of ϕ, and the
value of the entropy ǫ = log((3 +

√
5)/2) (same as above).

The properly conducted singularity analysis, blowing up enough points of P2, and
looking at the induced map on the Picard group of the rational variety constructed in this
way, confirms the value ǫ = log((3 +

√
5)/2)[22, 23].

So all Methods 0,1,2, and the complete singularity analysis agree perfectly. Method 0
is approximate but useful, Method 1 is providing us with an educated guess, and suggests
a candidate for the value of ǫ. This value turns out to be exact, as one can prove using
Method 2, or with the full desingularisation of the map.

Remark: The sequence (5) is registered in the On-Line Encyclopedia of Integer Se-
quences (https://oeis.org/) under number A084707.

At this point it is interesting to notice that the recurrence relation (8) belongs the
’Somos-like’ family (see [25, 26, 27] and https://faculty.uml.edu//jpropp/somos/history.txt
). Although Ak+1 is given as a rational fraction in terms of the previous A’s, the recur-
rence has the so called Laurent property [19, 28]. Moreover, if one launches the recurrence
with appropriate polynomial initial conditions, the values one obtains are, by construction,
multivariate polynomials.

3 A more challenging map

Monomial maps are known to behave in a particular way, as far as the sequence of de-
grees of their iterates is concerned. Birational monomial maps have an entropy which is
the logarithm of an algebraic integer, but the generating function of the sequence is not
necessarily rational [29].

We will now examine a map acting in dimension larger than two. Consider the recur-
rence of order 4 [30]:

xn+1 =
xnxn−2

xn−1(1− xn−1)xn−3
(9)

This recurrence defines a birational (almost monomial) map in P4.

ϕ : [x, y, z, u, t] → [x z t2, x u y (t− y), u y2 (t− y), u y (t− y) z, u y (t− y) t] (10)

with inverse

ψ : [x, y, z, u, t] → [x y z (t− z) , x z2 (t− z) , x z u (t− z) , y u t2, x z (t− z) t] (11)
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The direct calculation of the sequence of degrees yields

{dn} = 1, 4, 5, 9, 11, 16, 21, 30, 43, 61, 86, 120, 168, 234, 329, 459, 645, 902, 1267, 1771,

2484, 3476, 4871, 6822, 9555, 13384, 18745, 26256, 36774, 51507, 72143, 101043,

141524, 198223, 277633, 388864, 544644, 762846, 1068451, 1496494, 2096019,

2935716, 4111826, 5759091, 8066291, 11297797, 15823888, 22163239, 31042218,

43478302, 60896502, 85292724, 119462566, 1677321393, 234353404, 328239604,

. . . (12)

3.1 Method 0

We have the following sequence of ratios dn+1/dn:

4., 1.250000000, 1.800000000, 1.222222222, 1.454545455, 1.312500000, 1.428571429,

1.433333333, 1.418604651, 1.409836066, 1.395348837, 1.400000000, 1.392857143,

1.405982906, 1.395136778, 1.405228758, 1.398449612, 1.404656319, 1.397790055,

1.402597403, 1.399355878, 1.401323360, 1.400533771, 1.400615655, 1.400732601,

1.400552899, 1.400693518, 1.400594150, 1.400636319, 1.400644573, 1.400593266,

1.400631414, 1.400631695, 1.400609415, 1.400640414, 1.400602781, 1.400632340,

1.400611657, 1.400620150, 1.400619715, 1.400615166, 1.400621177, 1.400616417,

1.400618778, 1.400618574, 1.400617129, 1.400619051, 1.400617392, 1.400618409,

1.400618221, 1.400617789, 1.400618487, 1.400617772, 1.400618294, 1.400618034,

. . .

There is no doubt that the sequence converges, and that the numerical value of the entropy
is around log(1.400618...), but we want to have its exact value.

3.2 Method 1

It is not possible to fit the sequence (12) with a satisfactory rational generating function.
This could come from two different reasons: either the generating function is not rational,
either the information we have is not sufficient. Unfortunately, the explicit calculation of
the degrees cannot go much further due to the practical limitations of the formal calculus
software we have at hand...

3.3 Method 2

The images pn of the generic starting point p0 = [x, y, z, u, t] are made of products of factors
Bk with B1 = t− y and B2 = t− x, and the further Bk’s are the proper transforms[31] of
Bk−1.

The first coordinate of pn is a product of some Bj’s with various powers, Bn not
appearing, and some adventive monomials in x, y, z, u, t, which remain of low degree.

The other four coordinates are of the same form, but all contain Bn with power 1.
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The outcome1 is that the form indeed stabilises after order 27, and remains unchanged
up to the maximum order we were able to reach. To give an idea the 44th iterate looks
like

p44 := [y u3 t3B18B19B20B23B
2
24B

2
25B

3
26B

3
27B28B

2
31 B32B

3
33B

4
34B

2
35B38B39B

2
40B

3
41B

2
42,

x2 z u4 t2B18B19B
2
22B

2
23B24B

2
25B

3
26B27B

2
29B

2
30B31B32B

4
33B

2
34B36B

2
37B38B39B

3
40B

2
41B44,

x2 y u2 t3B18B
2
21B

3
22B23B24B

2
25B26B

2
28B

4
29B30B31B

2
32B

2
33B35B

3
36B

2
37B38B

2
39B

2
40B43B44,

x2 y2 t3B2
20B

3
21B

2
22B23B24B

2
27B

4
28B

3
29B30B

2
31B34B

3
35B

3
36B

2
37B

2
38B39B42B43B44,

x y u2B18B19B20B21B22B25B
2
26B

2
27B

2
28B

2
29B

2
33B

2
34B

2
35B

2
36B37B40B41B42B43B44];

and the equation giving B44 is

equ44 : { B17B44 = B19B20B26B
2
27B

2
34B35B41B42

− B21B
2
22B23B24B25B

2
29B30B31B

2
32B36B37B38B

2
39B40 t

3 x} (13)

This is a recurrence of order 27, and it gives for the rate of growth of the degrees the
largest root of

r44 − r42 − r41 − r35 − 2r34 − 2r27 − r26 − r20 − r19 + r17 (14)

which happens to be 1.400618098... to be compared with the approximate value ǫ ≃
log(1.400618...) we had from the original sequence of degrees.

Remark: In (14) we neglected the factors in x, y, z, u, t appearing in (13). These factors
are present and will be taken into account in the next section. The main point is that
they do not affect the value of the entropy.

Happily enough we have a candidate for the exact value of the entropy. It is the
logarithm of an algebraic integer.

Notice that the derived recurrence if of much larger order than the initial one.

4 Why did Method 1 not work?

The monomial factors appearing in pn have some structure:
Setting

f(k) =
Bk−21B

2
k−20Bk−19Bk−18Bk−17B

2
k−13Bk−12Bk−11B

2
k−10Bk−6Bk−5Bk−4B

2
k−3Bk−2

Bk−23Bk−22Bk−16B
2
k−15B

2
k−8Bk−7Bk−1Bk

,

the k-th iterate pk of the generic point p0 = [x, y, z, u, t] then reads

pk ≃ [αk · f(k), βk · f(k − 1), γk · f(k − 2), δk · f(k − 3), ηk] (15)

where ≃ means equality up to a common factor.
The adventive factors αk, βk, γk, δk, ηk are simple monomials in x, y, z, u, t. Two periods

appear for these factors, namely 7 and 32. Defining

ρk = xXρ(k) yYρ(k) zZρ(k) uUρ(k) tTρ(k), ρ = α, β, γ, δ, η. (16)

1Maple calculation up to order 17, insufficient, and then calculation using the V. Shoup’s NTL C++
library [32]
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The powers Xρ, Uρ and Tρ are periodic with period 32, and Yρ and Zρ are periodic with
period 7. There exist in addition simple relations between Yρ and Zρ as well as between
Uρ and Xρ, ρ = α, β, γ, δ, η.

Yρ(k) = Zρ(k + 2) and Uρ(k) = Xρ(k + 4), ρ = α, β, γ, δ, η. (17)

We give here the values of X, Y , and T on one period starting at k = 1

Xα = [1, 0, 0, 0, 0, 0, 2, 3, 2, 1, 1, 0, 0, 2, 4, 3, 1, 2, 0, 0, 1, 3, 3, 2, 2, 1, 0, 0, 1, 1, 1, 1],

Xβ = [1, 1, 0, 0, 1, 0, 0, 2, 3, 1, 1, 2, 1, 0, 2, 4, 1, 1, 2, 2, 0, 1, 3, 2, 1, 2, 2, 0, 0, 1, 1, 0],

Xγ = [0, 1, 1, 0, 1, 1, 0, 0, 2, 2, 1, 2, 3, 1, 0, 2, 2, 1, 1, 4, 2, 0, 1, 2, 1, 1, 3, 2, 0, 0, 1, 0],

Xδ = [0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 2, 3, 3, 1, 0, 0, 2, 1, 3, 4, 2, 0, 0, 1, 1, 2, 3, 2, 0, 0, 0],

Xη = [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 1, 1, 1, 1, 1, 0],

Yα = [0, 1, 2, 1, 0, 1, 0], Yβ = [1, 0, 1, 2, 0, 0, 1], Yγ = [2, 1, 0, 1, 1, 0, 0],

Yδ = [1, 2, 1, 0, 0, 1, 0], Yη = [1, 1, 1, 1, 0, 0, 0],

Tα = [2, 4, 3, 1, 1, 0, 0, 2, 6, 6, 3, 3, 1, 0, 0, 4, 6, 5, 3, 3, 0, 0, 2, 4, 4, 3, 3, 1, 0, 0, 0, 0],

Tβ = [0, 2, 4, 2, 1, 2, 2, 0, 2, 6, 4, 2, 3, 4, 0, 0, 4, 6, 2, 3, 4, 2, 0, 2, 4, 2, 2, 3, 2, 0, 0, 0],

Tγ = [0, 0, 2, 3, 2, 2, 4, 2, 0, 2, 4, 3, 2, 6, 4, 0, 0, 4, 3, 2, 4, 6, 2, 0, 2, 2, 1, 2, 4, 2, 0, 0],

Tδ = [0, 0, 0, 1, 3, 3, 4, 4, 2, 0, 0, 3, 3, 5, 6, 4, 0, 0, 1, 3, 3, 6, 6, 2, 0, 0, 1, 1, 3, 4, 2, 0],

Tη = [1, 1, 1, 0, 0, 1, 3, 3, 3, 3, 1, 0, 0, 3, 3, 3, 3, 3, 0, 0, 1, 3, 3, 3, 3, 1, 0, 0, 1, 1, 1, 1].

All this means that there is a global period of 224 = 7× 32 for these factors.

The Bk verify the recurrence relation of order 27

µk ·Bk−23B
2
k−22Bk−21Bk−20Bk−19B

2
k−15Bk−14Bk−13B

2
k−12Bk−8Bk−7Bk−6B

2
k−5Bk−4

+ νk ·Bk−25Bk−24Bk−18B
2
k−17B

2
k−10Bk−9Bk−3Bk−2 −Bk−27Bk = 0 (18)

where µk and νk are monomials in x, y, z, u, t with period 224. They can be evaluated
from the explicit expression of pk.

The generating function of both sequences ( gB for the degrees of the B’s, and gp for
the pk’s) are then readily obtained.

gB =
P

(s− 1) (s+ 1) (s6 + s5 + s4 + s3 + s2 + s+ 1) (s4 + 1) (s8 + 1) (s16 + 1)Q
,

with

P = s58 + s57 − s56 − 2s55 − 2s52 − 2s51 + s50 + s49 − 2s48 − 2s47 + s46 − 3s44 − 2s43

+2s42 + s41 − 3s40 − 2s39 + 2s38 − 4s36 − 2s35 + 3s34 + s33 − 3s32 − s31 + 2s30

−3s29 − 7s28 − 3s27 + s26 − 3s25 − 5s24 − s23 + s22 − 4s21 − 6s20 − 2s19 − 4s17

−4s16 − s15 − 4s13 − 5s12 − 2s11 − s10 − 4s9 − 3s8 − 3s5 − 3s4 − s3 − s2 − 2s − 1,

and

Q = s22 − s20 − s19 − s17 + s15 + s14 − s13 − s12 − s10 − s9 + s8 + s7 − s5 − s3 − s2 + 1.
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We also have

gp =
R

(1− s) (s+ 1) (s2 + 1) (s4 + 1) (s6 + s5 + s4 + s3 + s2 + s+ 1) (s8 + 1) (s16 + 1)Q
,

with

R = 4 s59 + 9 s58 + 14 s57 + 16 s56 + 18 s55 + 15 s54 + 13 s53 + 10 s52 + 13 s51 + 15 s50

+19 s49 + 21 s48 + 22 s47 + 19 s46 + 15 s45 + 11 s44 + 11 s43 + 15 s42 + 18 s41

+23 s40 + 23 s39 + 22 s38 + 15 s37 + 11 s36 + 6 s35 + 6 s34 + 6 s33 + 12 s32 + 15 s31

18 s30 + 15 s29 + 13 s28 + 7 s27 + 6 s26 + 5 s25 + 10 s24 + 13 s23 + 20 s22 + 21 s21

+22 s20 + 17 s19 + 14 s18 + 10 s17 + 10 s16 + 13 s15 + 17 s14 + 20 s13 + 20 s12 + 18 s11

+14 s10 + 12 s9 + 9 s8 + 11 s7 + 13 s6 + 16 s5 + 15 s4 + 13 s3 + 9 s2 + 5 s+ 1.

The entropy is the log of the inverse of the smallest root of the polynomial Q (which
also happens to be its largest root) approximately log(1.400618098) in perfect agreement
with the numerical evaluation obtained from the explicit calculation of the 55 first terms
of the sequence of degrees of the iterates of the map.

The degrees of the numerator and the denominator (respectively 59 and 60) of the
generating function gp indicate that we would have needed to evaluate the degree of the
first 119 iterates to use Method 1. This is beyond the capabilities of the presently available
formal calculus software.

Notice that the denominator of gp is just Q (s7 − 1) (s32 − 1)/(s − 1), and the two
periods 7 and 32 appear there naturally (they are present as well in gB).

All this is not quite a proof, but we can bet we have the exact value of the entropy,
and this value is once more the logarithm of an algebraic integer!.

5 Conclusion

The derived recurrence (18) has two remarkable properties, having to do with Lau-
rent/’Somos like’ characteristics.

The first one is obtained by construction: if we take as initial conditions the factors
Bk obtained from the iterates of the generic point [x, y, z, u, t] of P4, all further B’s are
multivariate polynomials.

Moreover -and this is another experimental fact- if we start from Bi = 1, i = 1..27 then
again all further B′s are polynomials in (x, y, z, u, t), and of course integers if (x, y, z, u, t)
are themselves. This comes from the fact that recurrence (18) has the Laurent property
for arbitrary [x, y, z, u, t] , as is easy to check explicitly on the first iterates. The proof will
come later.

In summary, the ’derivation’ process of recurrences provides us with a factory of Somos
like recurrences, keeping in mind that it is not a mere change of coordinates. It is a
complete change of description.

This raises a number of questions:

• The process defines sequences of multivariate polynomials. What are the properties
of these polynomials?
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• Is it possible to predict the order of the derived recurrence? We gave two examples.
In the first one the original recurrence was of order 2 and the derived one of order
5, and for the latter the original order was 4 and the new one is 27.

• Iterating the derivation process could produce more recurrences but may as well
reach a fixed point. This should be investigated. In fact, when applied to the
Somos-4 recurrence, it just reproduces Somos-4 with a periodic decoration similar
to the factors µk and νk seen in (18)2.

• The stabilisation of the form of the iterates is necessary for the existence of a derived
recurrence. How can we characterise the systems having this property? This question
is crucial since it ensures that the entropy is the log of an algebraic integer.

• In the specific case of discrete integrable systems (vanishing entropy) the derived
recurrence may take the form of the Hirota quadratic relation between τ functions.
The link has to be clarified.

There would be much more to say about last item of the previous list: Discrete Inte-
grable Systems. Among the contributors to the subject Decio Levi was there from the first
day. He was at the origin (together with Pavel Winternitz, and Luc Vinet) of the series
of SIDE conferences [33], a very important series of meeting in the field and he took an
active part, as early as 1994, organising more than one of the meetings. I have had a long
interaction with Decio, not only at the occasion of these conferences, but also of visits to
Roma Tre (where I made the acquaintance of his then Ph.D. student Giorgio Gubbiotti,
now a collaborator). Decio was always very supportive, and discussions with him very
constructive. He will be sorely missed.
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