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2 Departamento de F́ısica Teórica, Facultad de Ciencias F́ısicas, Pza. de las Ciencias 1,
Universidad Complutense de Madrid, 28040 – Madrid, Spain
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Abstract

We propose a novel discretization procedure for the classical Euler equation based on
the theory of Galois differential algebras and the finite operator calculus developed
by G.C. Rota and collaborators. This procedure allows us to define algorithmically a
new discrete model that inherits from the continuous Euler equation a class of exact
solutions.

1 Introduction

The study of discrete integrable models over the past decades has become one of the most
remarkable research lines in Mathematical Physics.

More specifically, the problem of discretizing dynamical systems in such a way that
their symmetry and integrability properties are preserved has been widely investigated
(see, e.g., the monographs [1, 7, 10, 20] and the references therein). This field is one of
those in which the scientific contribution of Decio Levi has been fundamental [10]. His
beautiful insight into the study of the multiple facets of discrete mathematics and his
tireless scientific activity during several decades have influenced several generations of
researchers in mathematical physics - and, in particular, the authors of this article - in a
deep way.
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Among the many approaches proposed for discretizing integrable models, in this paper,
we shall focus on a specific research line where the contribution of Decio Levi has been
very relevant. The underlying methodology relies on the finite operator theory (also called
Umbral Calculus), developed by G. C. Rota and his collaborators [16, 17, 18]. In essence,
it consists of requiring the Heisenberg-Weyl algebra to be preserved in the discretization
process; this, in turn, allows one to preserve the Lorentz and Galilei invariance on lattices.
This technique has been introduced in [4] for discretizing quantum mechanics and further
developed in [11, 13, 12, 14]. An application to the multiple-scale analysis of dynamical
systems on a lattice has been proposed in [12].

A related approach is based on the idea of preserving the Leibniz rule on lattices.
This idea, under different perspectives, has been proposed in [2, 23, 8, 21, 22]. A crucial
aspect of this methodology is that the standard pointwise product of functions on a lattice
is replaced by a suitable nonlocal product, in such a way that discrete derivatives act
on functions (or, more generally, on formal power series) as standard derivations. This
framework allows one to define in a natural way discrete versions of continuous ODEs
(also in the nonlinear case), which share with them the class of exact solutions expressed
in terms of power series.

Another important aspect is that by choosing the lattice points as the zeroes of the
basic polynomials associated with the discrete derivative we are using, one can avoid the
main drawback of the umbral approach to difference equations, namely the appearance of
divergent power series for the solutions of the discrete models. Indeed, the series expressing
the exact solutions are, by construction, truncated and thus convergent in an obvious sense.
In [22], this procedure has been generalized to the case of variable coefficients ODEs.

In the following, we shall adopt this theoretical framework to introduce a difference
equation that we can interpret as a novel, discrete version of the Euler equation. Indeed,
under suitable hypotheses, it can be exactly solved; besides, its solutions come in a direct
way from those of the standard Euler differential equation.

In this article, for the sake of simplicity, we shall keep the mathematical formalism to a
minimum. A more formal approach and further technical details can be found in [21, 22];
however, we will discuss our results in a self-contained way.

The paper is organized as follows. In Section 2, we review some basic notions of finite
operator theory. In Section 3, we implement our methodology for discretizing the Euler
equation. In Section 4, we derive some exact solutions of our discrete Euler equation and
address some open questions in the final Section 5.

2 The finite operator calculus: Background and notation

The finite operator theory was proposed in [18] and further developed in [17], [16] as a
formal calculus adapted to treat combinatorial problems and to discuss the properties of
relevant classes of polynomial sequences. It is the modern version of the umbral calculus
introduced by Sylvester, Cayley, Blissard, and other authors [3]. In this section, we shall
review some basic definitions and fundamental results of Rota’s approach to difference
operators.
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2.1 Delta operators and basic polynomials

Let K be a field of characteristic zero and P be the space of polynomials in one variable
x ∈ K. Let N be the set of non-negative integers. The operator T : P → P defined by
Tp(x) = p(x + h), where h > 0, will be said to be the shift operator. For simplicity, we
shall restrict to the case K = R. The notion of delta operators is a fundamental piece of
our discretization procedure.

Definition 1. An operator S is said to be shift-invariant if it commutes with the shift
operator T . A shift-invariant operator Q is a delta operator if Qx = const 6= 0.

As a simple consequence of the previous definition, we have the following

Corollary 1. For every constant c ∈ R, Qc = 0.

Delta operators very commonly used in the applications are the standard derivative D,
the forward discrete derivative ∆+ = T − 1, the backward derivative ∆− = 1 − T and
the symmetric derivative ∆s = T−T−1

2
. Many other relevant examples can be found in the

literature (e.g., in [18]).

Definition 2. A polynomial sequence {pn (x)}n∈N is said to be the sequence of basic
polynomials associated with a delta operator Q if the following conditions are satisfied:

1) p0 (x) = 1;

2) pn (0) = 0 for all n > 0;

3) Qpn (x) = npn−1 (x) .

One can prove that given a delta operator Q, there exists a unique sequence of basic
polynomials associated with it. In the case of the continuous derivative operator, the
sequence of basic polynomials is given by pn(x) = xn. For the forward and backward
discrete derivatives ∆±, the corresponding basic polynomials are, respectively

p∓0 (x) = 1, p∓n (x) := x(x± 1)(x ± 2)...(x ± (n− 1)). (1)

The basic polynomials for ∆s have been explicitly determined in [12]. A general procedure
for constructing the basic polynomials associated with an arbitrary delta operator has
been discussed in [14]. For completeness, we shall sketch here the salient aspects of this
construction. Let A be the algebra of shift-invariant operators endowed with the usual
operations: the sum of two operators, the product of a scalar with an operator, and the
product of two operators. Let x : p(x) → xp(x) denote the multiplication operator. The
Pincherle derivative of an operator U ∈ A is defined by the relation

U ′ := [U, x]. (2)

In [18], it has been proved that if Q is a delta operator, then Q′ is invertible. Let us
introduce a conjugate operator β ∈ A such that the Heisenberg-Weyl algebra is satisfied
[11]:

[Q,xβ] = 1. (3)
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Thus, the operator β is uniquely determined by the relation β = (U ′)−1. To illustrate
three simple examples, we recall that in the continuous case, Q = D, β = 1; for Q = ∆+,
β = T−1; for Q = ∆−, β = T . Generally speaking, we can formally compute the basic
polynomials associated with a delta operator Q through the relation

pn(x) = (xβ)n · 1 . (4)

In particular, this relation reproduces eq. (1) for the case of the forward and backward
derivatives.

Let F be the algebra of formal power series in x. Since the polynomials {pn(x)}n∈N for
every choice of Q provide a basis of F , any f ∈ F can be expanded into a formal series of
the form f(x) =

∑∞
n=0 anpn(x).

2.2 A general discretization scheme

Our discretization method starts from the umbral correspondence discussed in [18, 4, 13,
14]: given an ODE, by replacing the continuous derivative with a delta operator Q, and
the basic sequence xn with the basic polynomials pn(x) for Q, one can construct a formal
discretization of the original ODE. However, for this discretization to be effective, it is
also crucial to replace the pointwise product of functions with a suitable ∗ product, which
is associative and commutative, in such a way that

pn(x) ∗ pm(x) := pn+m(x). (5)

This product for the forward difference operator ∆ has been proposed in [23] and in [8].
Taking into account these ideas, for any Q, one can define the notion of Rota algebra,
introduced in [21]: it is the space (F ,+, ·, ∗Q), endowed with the composition laws of sum
of series, multiplication by a scalar and the ∗ product defined by eq. (5).

If f and g are formal series defined on a lattice of points L and expanded in the
polynomial basis given by a basic sequence, we have that

∆(f ∗ g) = (∆f) ∗ g + f ∗ (∆g) . (6)

In other words, ∆ acts as a derivation with respect to the ∗-product: the Leibniz rule is
restored on F . Besides, if the zeroes of the basic polynomials coincide with the set of points
of our lattice L, then we are led to an effective discretization since all the series involved
truncate. We shall explain this crucial point in detail in the forthcoming discussion.

Remark 1. The difference equations obtained by following this procedure inherit natu-
rally from their continuous counterparts the class of real analytic exact solutions, which
are expressed in terms of convergent power series. Indeed, their discrete versions are
represented in terms of finite series obtained replacing xn with the corresponding basic
polynomial pn(x); the coefficients of these expansions coincide with those of the analytic
solutions of the original continuous models [23, 21, 22]. In this technical sense, we say
that this procedure preserves integrability.
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3 The forward discrete derivative and the associated calcu-

lus

In the forthcoming discussion, we shall focus on the operator ∆+ := ∆. To fix the
notation, we propose here some useful formulas. First, we introduce a uniform lattice L
in the positive semi-axis R+,

xn = nh, h > 0, n ∈ N, (7)

and, given a function u(x) of a real variable, we define its discretization as the set of all
of its values at the lattice points:

un := u(xn) = u(nh). (8)

The k-degree basic polynomials for the forward discrete derivative operator on the uniform
lattice will be denoted by

(x)0 := 1, (x)k :=

k−1
∏

j=0

(x− jh), k = 1, 2, . . . (9)

These polynomials have zeros at the lattice points xi, i = 0, . . . , k−1. For n ≥ k, we have:

(nh)k =
k−1
∏

j=0

(nh− jh) = hkn(n− 1) · · · (n− k + 1) =
n!hk

(n− k)!
, n ≥ k. (10)

LetQ be a delta operator acting on P, and {pn(x)}n∈N be the basic sequence of polynomials
of order n associated with Q. Let F be the algebra of formal power series in x. Since the
polynomials {pn(x)}n∈N provide a basis of F , they allow us to expand a function u(x) in
terms of a formal power series [21]:

u(x) =
∞
∑

k=0

ζkpk(x), ζk ∈ R. (11)

In this way, we extend the action of delta operators on functions. In general, the formal
series (11) is divergent. However, in the case Q = ∆, since the lattice points coincide with
the zeroes of (x)n, the series expression for u(x) on the lattice truncates. Indeed, we have:

un =
∞
∑

k=0

ζkpk(nh) =
n
∑

k=0

n!hk

(n− k)!
ζk . (12)

We can deduce the coefficients ζk from the values of un by solving a system of linear
equations [21]. We obtain the formula

ζk =
1

hk

k
∑

j=0

(−1)k−j

j!(k − j)!
uj . (13)

In the discretization process, we replace the continuous derivatives by the operators:

u′ → ∆un =
1

h
(un+1 − un) , u′′ → ∆2un =

1

h2
(un+2 − 2un+1 + un) , (14)
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etc. The discretization of the derivative at the lattice points (the upper limit in the sums
can be taken equal to n, because pi(mh) = 0 when i > m) can be written in terms of the
basic polynomials as follows1 :

u′(nh) →

n+1
∑

j=0

jζjpj−1(nh), (15)

u′′(nh) →
n+2
∑

j=0

j(j − 1)ζjpj−2(nh), (16)

and so on.

4 A discretization of the homogeneous Euler equation

In this section, as an application of the theory outlined above, we shall consider homoge-
neous linear equations of second order:

x2u′′ + axu′ + bu = 0, a, b ∈ R. (17)

We describe the discretization procedure step-by-step to illustrate it in a self-consistent
way. A more abstract, formal approach based on category theory can also be implemented
[22].

4.1 The construction of the model

Given the differential equation (17), we substitute xk by pk(nh), the derivatives by their
discrete versions (15), (16) and the usual product by the ∗ product. Explicitly, we have

p2(nh)∗

n+2
∑

k=0

k!ζk
(k − 2)!

pk−2(nh)+a p1(nh)∗

n+1
∑

k=0

k!ζk
(k − 1)!

pk−1(nh)+b

∞
∑

k=0

ζkpk(nh) = 0, (18)

that is

n
∑

k=0

(

1

(k − 2)!
+

a

(k − 1)!
+

b

k!

)

k!ζkpk(nh) = 0, (19)

or, equivalently

n
∑

k=0

(k(k − 1) + ak + b) ζkpk(nh) =
n
∑

k=0

Λkζkpk(nh) = 0, (20)

where

Λk = k(k − 1) + ak + b (21)

is the indicial polynomial of the Euler differential equation (17).

1The bounds in the sums can be adjusted so that vanishing terms are not present in the sums; we

always take into account that a negative factorial in the denominator yields 0 in the corresponding term.
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The difference equation for uk can be easily written using (10) and (13):

n
∑

k=0

k
∑

j=0

(−1)k−jn!Λk

j!(k − j)!(n − k)!
uj =

n
∑

k=0

k
∑

j=0

(−1)k−jΛk

(

n

k

)(

k

j

)

uj = 0 . (22)

Changing the order of the sums, we obtain the relation

n
∑

j=0





n
∑

k=j

(−1)k−jΛk

(

n

k

)(

k

j

)



uj = 0 (23)

which, using some combinatorial identities listed in the Appendix, becomes:

n
∑

j=0

(

n

j

)





n
∑

k=j

(−1)k−jΛk

(

n− j

k − j

)



uj =

n
∑

j=0

(

n

j

)

cnjuj = 0. (24)

Here,

cnj =

n
∑

k=j

(−1)k−j

(

n− j

k − j

)

Λk =

n−j
∑

k=0

(−1)k
(

n− j

k

)

Λk+j. (25)

By using again the results in the Appendix, we get

n−j
∑

k=0

(−1)k
(

n− j

k

)

Λk+j =

n−j
∑

k=0

(−1)k
(

n− j

k

)

(

k2 + (a+ 2j − 1)k + j2 + (a− 1)j + b
)

.

(26)

This formula can be rewritten as

n−j
∑

k=0

(−1)k
(

n− j

k

)

Λk+j =

n−j
∑

k=0

(−1)k
(

n− j

k

)

k2 + (a+ 2j − 1)

n−j
∑

k=0

(−1)k
(

n− j

k

)

k

+
(

j2 + (a− 1)j + b
)

n−j
∑

k=0

(−1)k
(

n− j

k

)

= 2δn−j,2 − δn−j,1 − (a+ 2j − 1)δn−j,1 +
(

j2 + (a− 1)j + b
)

δn−j,0 . (27)

Finally, for the coefficients of the difference equation (24), we get

cnj = 2δn−2,j − (a+ 2j)δn−1,j +
(

j2 + (a− 1)j + b
)

δn,j.

Consequently, equation (24) reduces to a three-point difference equation. The only coeffi-
cients different from zero, for a given n, are

cn,n−2 = 2, cn,n−1 = −a− 2(n − 1), cnn = n2 + (a− 1)n+ b . (28)

Therefore, our difference equation becomes:
(

n

n− 2

)

cn,n−2un−2 +

(

n

n− 1

)

cn,n−1un−1 +

(

n

n

)

cnnun = 0. (29)

Thus, we arrive at an interesting discrete model.
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Definition 3. The difference equation

(n2 + (a− 1)n + b)un − n(a+ 2n − 2)un−1 + n(n− 1)un−2 = 0 (30)

is said to be the discrete Euler equation.

4.2 The continuous limit

The difference equation (30), which has been obtained by an algorithmic, purely algebraic
procedure, can be considered as the discrete version on the Rota algebra (F ,+, ∗∆) of the
continuous equation (17).

However, there is also a direct relation among eqs. (30) and (17). More precisely,
if h → 0 and nh remain finite with nh ≡ x, we can obtain the continuous limit of the
difference equation by rewriting eq. (30) as:

n(n− 1)h2
un − 2un−1 + un−2

h2
+ a(nh)

un − un−1

h
+ bun = 0. (31)

Then, in the limit when n → ∞, our discrete model converts into the original differential
equation

x2u′′ + axu′ + bu = 0. (32)

4.3 Exact solutions of the discrete Euler equation

As is well known, the space of solutions of the Euler equation is parametrized by the
solutions r1, r2 of the indicial equation Λr = r(r − 1) + ar + b = 0. When r1, r2 ∈ R,
r1 6= r2, the Euler equation (17) admits two independent solutions of the form xri , i = 1, 2.
When r1 = r2, one of the two independent solutions is of this form, whereas the other
contains a logarithmic singularity. When r1, r2 ∈ C, we have two solutions expressed as
a superposition of trigonometric functions of a logarithm. By construction, our method
requires the existence of power series solutions for the original continuous model; thus,
we will be able to determine two independent exact solutions of the form (11) for the
discrete Euler equation when r1 6= r2 and one solution when the (real) roots coincide. The
case of complex roots would require an extension of the method, which is presently under
investigation.

Let us assume that r ∈ N. This restriction on the coefficients a, b in eq. (17) ensures
the existence of analytic solutions.

According to our methodology, to inherit exact solutions of the discrete equation (30)
from the continuous one, we expand the known solutions of eq. (17) in terms of the basic
sequence associated with the ∆ derivative. By using eqs. (11)-(12), we obtain the discrete
function:

un = pr(n) =
n!

(n− r)!
, n ≥ r. (33)

Let us show directly that this expression is an exact solution of the difference equation
(30). By substituting it into the equation, we have

(n2+(a−1)n+ b)
n!

(n− r)!
−n(a+2n−2)

(n− 1)!

(n− 1− r)!
+n(n−1)

(n− 2)!

(n− 2− r)!
= 0. (34)
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After some simplifications, we get the relation

(n2 + (a− 1)n + b)− (a+ 2n− 2)(n − r) + (n− r)(n− r − 1) = 0, (35)

that reduces to

r(r − 1) + ar + b = 0 (36)

which is an identity since r is a root of the indicial polynomial.

5 Future perspectives

This work is part of a research project concerning the discretization of ODEs and PDEs
in the theoretical framework offered by the finite operator calculus and Rota algebras.
In the case of the Euler equation, we have shown the effectiveness of our discretization
procedure by deriving the new discrete model (30). In particular, as we have shown, a
family of exact solutions of this model is inherited by construction from the continuous
Euler equation.

For a large class of variable coefficients ODEs, several general results and different
examples have been obtained in [22]. A discrete version of the classical Frobenius theorem
for ODEs is also in order [15].

The discretization approach described in this article deserves further investigation.
Among the related open problems, we wish to address the study of the symmetry groups
admitted by the new discrete models obtained in this framework, in the spirit of Lie’s
approach to ODEs [9], and the construction of appropriate boundary value problems.

More generally, we plan to extend the discretization procedure based on Rota algebras
to the case of both linear and nonlinear partial differential equations. Several preliminary
results show the potential applicability of these ideas also to the construction of new
integrable quantum models defined on a lattice [5]. This also paves the way for possible
applications of the theory to discrete formulations of quantum gravity [6, 19].

Appendix: Some useful combinatorial identities

The Newton binomial formula holds for any a ∈ C:

n
∑

k=0

(−1)n−k

(

n

k

)

ak = (a− 1)n. (37)

When a = 1, it reduces to

n
∑

k=0

(−1)n−k

(

n

k

)

= 0, n > 0. (38)

If n = 0, for any a we have

n
∑

k=0

(−1)n−k

(

n

k

)

ak = 1 . (39)
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Then, for a = 1 and n ∈ N ∪ {0} we have the identity

n
∑

k=0

(−1)n−k

(

n

k

)

= (−1)nδn0 = δn0. (40)

Taking formally the derivative with respect to a in (37) and multiplying both sides by a,
we obtain

n
∑

k=0

(−1)n−k

(

n

k

)

kak = na(a− 1)n−1 . (41)

Thus, if a = 1 we get

n
∑

k=0

(−1)n−k

(

n

k

)

k = 0, n > 1. (42)

Again, putting n = 1 in formula (42), the r.h.s. equals 1, therefore

n
∑

k=0

(−1)k
(

n

k

)

k = (−1)nδn1 = −δn1. (43)

Taking the second derivative in (37), we deduce the relation

n
∑

k=0

(−1)n−k

(

n

k

)

k(k − 1)ak−2 = n(n− 1)(a− 1)n−2, (44)

which can also be written as

n
∑

k=0

(−1)n−k

(

n

k

)

k2ak −
n
∑

k=0

(−1)n−k

(

n

k

)

kak = n(n− 1)a2(a− 1)n−2. (45)

Equivalently, we have

n
∑

k=0

(−1)n−k

(

n

k

)

k2ak = na(na− 1)(a − 1)n−2. (46)

If a = 1, the previous formula reduces to

n
∑

k=0

(−1)n−k

(

n

k

)

k2 = 0, n > 2. (47)

However, if n = 1, we have

n
∑

k=0

(−1)k
(

n

k

)

k2 = (−1)nδn1 = −δn1 (48)

and, if n = 2

n
∑

k=0

(−1)k
(

n

k

)

k2 = 2(−1)nδn2 = 2δn2. (49)
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Thus, we obtain the formula

n
∑

k=0

(−1)k
(

n

k

)

k2 = 2δn2 − δn1 =























0, n = 0

−1, n = 1

2, n = 2

0, n > 2

. (50)

In particular, for the case under study, we deduce

n
∑

k=0

(−1)k
(

n

k

)

Λk =
n
∑

k=0

(−1)k
(

n

k

)

k2 + (a− 1)
n
∑

k=0

(−1)k
(

n

k

)

k + b

n
∑

k=0

(−1)k
(

n

k

)

=2δn2 − δn1 − (a− 1)δn1 + bδn0 = 2δn2 − aδn1 + bδn0. (51)
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Grupo UCM - F́ısica Matemática for financial support. P.T. is a member of the Gruppo
Nazionale di Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica.

References

[1] Bobenko A I and Suris Yu B Discrete differential geometry. Integrable structure,
Graduate Studies in Mathematics, 98. American Mathematical Society, Providence,
RI, 2008.

[2] Bouguenaya Y and Fairlie D B, A finite difference scheme with a Leibniz rule, J.
Phys. A: Math. Gen. 19, 1049–1053, 1986.

[3] di Bucchianico A and Loeb D, A selected survey of Umbral calculus, Electron. J.
Combin. DS3, 2000. http://www.combinatorics.org.

[4] Dimakis A, Müller–Hoissen F, and Striker T, Umbral Calculus, Discretization and
Quantum Mechanics on a Lattice, J. Phys. A: Math. Gen. 29, 6861–6876, 1996.

[5] Friedberg R and Lee T D, Discrete quantum mechanics, Nucl. Phys. B 225, 1–52,
1983.

[6] Gambini R and Pullin J, Canonical Quantization of General Relativity in Discrete
Space–Times, Phys. Rev. Lett. 90, 021301, 2003.

[7] Grammaticos B, Kosmann-Schwarzbach Y, and Tamizhmani T (Eds.), Discrete inte-
grable systems, Lect. Notes in Physics 644, 2004.

[8] Ismail M H, Classical and quantum orthogonal polynomials in one variable, Cambridge
University Press, 2004.
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