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Abstract

The generating series for the instanton contribution to Green functions of the 2D
sigma model was found in the works of Schwarz, Fateev and Frolov. We show that
this series can be written as a formal tau function of the two-component KP hierarchy.
The higher times of the two-component tau function allow to consider various multi-
parameter insertions into the instanton partition function, therefore the tau function
can be treated as the generating function for various correlators. The construction
can be generalized to the multicomponent case, which gives more parameters for the
generating function of the correlators. We call it formal singular tau function because
this tau function is a sum where each term is the infrared and ultraviolet divergent
one exactly as the series found by the mentioned authors. However, one can regularize
each divergent term of this singular tau function in such a way that it is still a tau
function. Thus, we enlarge the families of tau functions to work with.

In memory of Vladimir E. Zakharov

1 Introduction

The main purpose of this paper is to interpretate the contribution of instantons in the
Euclidean Green function of the O(3) non-linear σ model (or the continuum classical
Heisenberg ferromagnetic in two space dimensions) in terms of tau functions of integrable
hierarchies. This model can be described by the action

S =
1

2f

∫ 3
∑

a=1

(∂µσ
a (x))2 (1)

where σa, a = 1, 2, 3 are the components of the unit vector:
3
∑

a=1
σa (x)σa (x) = 1 ; µ = 0, 1.
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The model is similar to a Yang-Mills theory and possesses exact multi-instanton solu-
tions. The Euclidean Green functions can be represented in the form

∫

φ (σ) exp (−S)
∏

x

dσ (x)
∫

exp (−S)
∏

x

dσ (x)
(2)

Here φ (σ) is an arbitrary functional of σ. If we parametrize σ (x) with use of the complex
function

ω(z) =
σ1(z) + iσ2(z)

1 + σ3(z)
(3)

(the stereographic projection) obtained from the fields
(

σ1, σ2, σ3
)

and the complex vari-
able z = x0 + ix1 instead of the time and space coordinates x0, x1, then the instanton is
the solution of the equation δS = 0 with the topological charge q > 0 is given [1]

ωq (a, b, z) = c
(z − a1) ... (z − aq)

(z − b1) ... (z − bq)
(4)

where c, ai and bi are arbitrary complex parameters.
Let us note that the classical σ-model in Minkowski space is the well-studied integrable

model, see [8].

2 The instanton contribution and the τ function

In [2], the instanton contribution to the Euclidean Green functions of the fields σ using the
steepest descent approximation was obtained. If φ is a functional of the instanton fields
ω, then the evaluation of the functional integral around the instanton vacuums yields [2]
the answers written in form of multiple integrals over instanton parameters:

〈φ〉inst =





∑

q≥0
Kq

(q!)2

∫

φ(ωq)
∏

i<j≤q
|ai−aj |2|bi−bj |2

|ai−bj |2|bi−aj |2
∏q
i=1

d2aid
2bi

|ai−bi|2

∑

q≥0
Kq

(q!)2

∫
∏

i<j≤q
|ai−aj |2|bi−bj |2

|ai−bj |2|bi−aj |2
∏q
i=1

d2aid2bi
|ai−bi|2





reg

, (5)

where K is a real constant obtained as the result of the regularization procedure1, and
where for each q the instanton solution ω is given by (4). The denominator in (5) coincides
with the partition function Ξ of the neutral classical two-dimensional Coulomb system
(CCS) in the grand canonical ensemble with the definite temperature T (T=1 see [2])
(such a system was called the system of instanton quarks in [2]). The point T=1 is above
the critical temperature (which is about T=1/2); this means that the Coulomb gas is in
the plasma phase. (Below the critical temperature the Coulomb particles form dipoles).
The symbol []reg means that this expression should be regularized in the ultraviolet limit,
where ai → bj. Physical answers do not depend on the method of the regularization.

Note that, in fact, instanton-anti-instanton interaction is also significant (see Lipatov-
Bukhvostov [3]) but this was not considered in the work [2], and we also will not touch on
this much more involved topic.

1According to [2] the constant K is proportional to k0f
−2
phys exp

(

−4πf−1
phys

)

ν where ν is the substraction

point, fphys is a physical coupling constant, k0 is a constant depending on the cutoff method.
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Regularization. Let us notice that the answer (5) was obtained [2] as the result of the
calculation of the functional integral and a certain regularization procedure and, in turn,
the multiple integrals in (5) are both infrared (IR) and ultraviolet (UV) divergent, and
one needs an additional regularization procedure. In short, it is discussed in [2], page 11.

As for the IR divergence (the divergence in the limit ai, bi → ∞), it just means that
one should be interested in the densities of the instanton partition function (and of the
correlation function) rather than the partition and the correlation functions themselves.
Then it is reasonable to restrict the domain of the integration over each ai to the D = L×L
box in the complex plane, the same for bi [2]. To get the density we divide each integral
over L2, simultaneously we send the constant K to KL2.

As for the ultraviolet regularization in the regions bi ≈ aj there are different ways:
(A) We can do the following: we produce the replacement bi → bi + ǫ, b̄i → b̄i − ǫ,

where ǫ is a small real number where ǫ−1 may be treated as a cutoff in the momentum
space.

In particular, for the one-instanton partition function, we get

K

∫

d2ad2b

|b− a|2
→
(

KL2
)

L−2

∫

D2

d2ad2b

|a− b|2ǫ
where |a−b|2ǫ := |a−b|2−ǫ2+iǫℑ(a−b) (6)

The contribution of the region b ≈ a is finite and of order ǫ−1. Let us notice that, thanks
to the structure of the numerators inside the integrals in (5), the order of the q-instanton
integral is ǫ−q. Thus, to get finite expressions, we send K → KL2ǫ.

(B) One is to replace integrals by sums, that is, to consider the Coulomb gas on the
2D lattice as mentioned in [2] with the list of references. We can do it as follows: we take
a small real number h (square grid spacing) and set

a(n,m) = nh+ imh b(n,m) = (n + γ)h+ i(m+ γ′)h (7)

with non-integer γ, γ′. In fact, we have two lattices: one for positive and the other for
negative Coulomb particles:

K

∫

d2ad2b

|b− a|2
→

(

KL2
)

L−2
∑

0≤n,n′,m,m′≤L

h−2

|n′ − n+ im′ − im+ 1
2(γ + iγ′2

(8)

The summation range 0 ≤ n,m ≤ L will also be denoted D, as in the previous case.
Our goal is to relate (5) with the regularizations (A)-(B) to classical integrable systems.

3 Tau functions

3.1 Two-sided two-component KP and the regularization (A)

In this case, we use (6) and write the correlation function as

〈φ〉Ainst =

∑

q≥0
Kq

(q!)2

∫

D2q φ(ωq)
∏

i<j≤q
|ai−aj |2|bi−bj |2

|ai−bj |2ǫ |bi−aj |
2
ǫ

∏q
i=1

d2aid
2bi

|ai−bi|2ǫ
∑

q≥0
Kq

(q!)2

∫

D2q

∏

i<j≤q
|ai−aj |2|bi−bj |2

|ai−bj |2ǫ |bi−aj |
2
ǫ

∏q
i=1

d2aid2bi
|ai−bi|2ǫ

(9)

We will see that it is a certain τ function of the two-sided two-component KP. Multi-
component KP tau functions were introduced in the works of the Kyoto School [4] in
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terms of free fermion formalism, see also later works [6] and [5]. The construction of tau
functions implies the use of free massless fermions:

ψ(α)(z) =
∑

i∈Z

ψ
(α)
i zi, ψ†(α)(z) =

∑

i∈Z

ψ
†(α)
i z−1−i (10)

where α is a “color” of fermions (α = 1, 2) and anti-commutation expressions for the Fermi

modes ψ
(α)
i , ψ

†(α)
i are

[

ψ
(α)
i , ψ

(β)
j

]

+
= 0

[

ψ
†(α)
i , ψ

†(β)
j

]

= 0
[

ψ
(α)
i , ψ

†(β)
j

]

+
= δα,βδi,j (11)

The fermionic states with occupied levels up to n(1), n(2) satisfy the conditions

〈n(1), n(2)|m(1),m(2)〉 = δn(1),m(1)δn(2),m(2)

ψ
(α)
i |n(α), ∗〉 = 〈n(α), ∗|ψ

†(α)
i = ψ

†(α)
−1−i|n

(α), ∗〉 = 〈n(α), ∗|ψ
(α)
−1−i = 0, i < n(α) (12)

We denote the sets n(α), t
(α)
±1 , t

(α)
±2 , . . . by t(α), α = 1, 2 where n(α) are integers and where

t
(α)
±i are complex parameters. The sets {t

(α)
±i , i > 0} we denote t

(α)
± .

The family of tau functions of the two-sided two-component KP, which is related to
(9), is given by

τ(n, t(1), t(2)) =

〈n(1), n(2)|Γ1

(

t
(1)
+

)

Γ2

(

t
(2)
+

)

g1g2Γ
†
1

(

t
(1)
−

)

Γ†
2

(

t2−
)

|n(2) − n, n(1) + n〉. (13)

where

g1 = eK
1
2
∫
D2 ψ

(1)(a)ψ†(2)(ā)d2a, g2 = eK
1
2
∫
D2 ψ

(2)(b̄−ǫ)ψ†(1)(b+ǫ)d2b (14)

where the “evolution operators”

Γα

(

t
(α)
∓

)

= e
∑
i>0 t

(α)
i J

(α)
i , Γ†

α

(

t
(α)
∓

)

= e
∑
i>0 t

(α)
−i J

(α)
−i (15)

are expressed in terms of the modes of the currents J
(α)
i . The current is given by

: ψ(α)(z)ψ†(α)(z) := ψ(α)(z)ψ†(α)(z)− 〈0|ψ(α)(z)ψ†(α)(z)|0〉 =
∑

i∈Z

J
(α)
i zi−1 (16)

It’s modes can be written as follows:

J (α)
m =

∑

i∈Z

: ψ
(α)
i ψ

(α)
i+m : (17)

We have the Heisenberg algebra:

[

J
(α)
k , J (β)

m

]

= kδα,βδk+m,0 . (18)
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The discrete variables n, n(α) and complex parameters t
(α)
±i , α = 1, 2, i = 1, 2, 3, . . . are

called the higher times of the two-sided two-component KP hierarchy. In what follows, we
put n = 0 and omit it from the notations.

Remark. We use the term “two-sided” in relation to tau functions if we are interested
in the dependence of the tau function on both sets: on t

(1,2)
+ and by t

(1,2)
− . Otherwise, we

call it just a “two-component” tau function (α = 1, 2).
Remark. The insertion of g1g2 can be interpreted as the introduction of mass for

fermions, which were initially massless. This approach is developed in the next work [9].
As a result of direct evaluation (using the relations in Appendix 4), we obtain the

following τ function of the two-sided two-component KP:

τA
(

t1, t2|D, ǫ
)

=
∑

q≥0

Kq

(q!)2

∫

D2q

Φq
(

a,b, t1, t2
)

∏

i<j≤q

|ai − aj |
2|bi − bj |

2

|ai − bj |2ǫ |bi − aj |2ǫ

q
∏

i=1

d2aid
2bi

|ai − bi|2ǫ
(19)

where the function

Φq
(

a,b, t1, t2
)

=

q
∏

i=1

(

ai

bi

)n(1) (

āi

b̄i

)−n(2)

eθ(ai,t
1)−θ(āi,t2)+θ(bi,t2)−θ(b̄i,t1) (20)

θ(z, t1) = V (z, t1+) + V (z−1, t1−), V (z, t) =
∑

m>0

tmz
m . (21)

We imply that the parameters t(1,2) are chosen in such a way that the integrals in (19)
are convergent.

Moreover, if we modify the dependence of θ on higher times, according to

θ(z, t) = V (z, t+) + V (z−1, t−) +

P
∑

α=1

V ((z − sα,p
α)), (22)

we obtain the tau function of the (P + 4)-component tau function, where the additional

sets of higher times are the sets pα = (p
(α)
1 , p

(α)
2 , p

(α)
3 , . . . ), α = 1, . . . , P . In what follows,

we will not use this additional freedom. In this short work, we shall use only the sets t1+
and t2− which will be denoted t1 and t2, respectively.

Because Φq (a,b, 0, 0) = 1, the tau function evaluated at t1 = t2 = 0 is equal to the
instanton grand partition function τA (0, 0|D, ǫ) = Zinst and, for

φq(a,b) = Φq
(

a,b, t1, t2
)

(23)

we observe

〈φ〉Ainst =
τA
(

t1, t2|D, ǫ
)

τA (0, 0|D, ǫ)
, (24)

There is another and shorter way to write down the tau function (13). Let us introduce

ψ(i)(z, ti) = eθ(z,t
i)ψ(i)(z), ψ†(i)(z̄, ti) = e−θ(z̄,t

i)ψ†(i)(z̄), i = 1, 2 (25)

Then, the multi-component tau function can be written as

τ(t, n(1), n(2)) = c(t)〈n(1), n(2)|g1(t)g2(t)|n
(1), n(2)〉 (26)
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where c(t) = exp
∑

i=1,2

∑

m>0mt
(i)
m t

(i)
−m and where gi, i = 1, 2 are given by (14) where

the Fermi fields

ψ(1)(z), ψ†(1)(z̄), ψ(2)(z), ψ†(2)(z̄)

are replaced respectively by

ψ(1)(z, t1), ψ†(1)(z̄, t1), ψ(2)(z, t2), ψ†(2)(z̄, ti)

.

In the rest of the paper, we put n(1) = n(2) = 0.

Discrete KP equations. If we specify the parameters as follows:

t
(1)
k [n, z] := −

1

k

N
∑

i=1

niz
−k
i , t

(2)
k [m, y] = −

1

k

M
∑

i=1

miy
−k
i (27)

and denote such sets as t1[n, z] and t2[m, y], we obtain

Φq
(

a, b, t1[n, z], t2[m, y]
)

=

N
∏

i=1

(ωq(a, b, zi))
ni

M
∏

i=1

(

ωq(ā, b̄, yi)
)−mi (28)

where ωq was defined by (4). Let us notice that ω(a, b, z)ω(ā, b̄, z̄) = |ω(a, b, z)|2.

The tau function written in the variables defined by (27) solves the so-called discrete
KP equation; see [4] (and [7] for the review). If σ(i)(x), i = 1, 2, 3 are instanton solutions
of form (4)-(3), then, for the correlation function

Gn1,n2,n3(z1, z2, z3) :=

〈(

σ1(z1) + iσ2(z1)

1 + σ3(z1)

)

n1
(

σ1(z2) + iσ2(z2)

1 + σ3(z2)

)

n2
(

σ1(z3) + iσ2(z3)

1 + σ3(z3)

)

n3
〉A

inst

(29)

one can write the discrete Hirota bilinear equation (in other words, as the discrete KP
equation):

(z2 − z3)Gn1+1,n2,n3(z1, z2, z3)Gn1,n2+1,n3+1(z1, z2, z3)

+(z3 − z1)Gn1,n2+1,n3(z1, z2, z3)Gn1+1,n2,n3+1(z1, z2, z3)

+(z1 − z2)Gn1,n2,n3+1(z1, z2, z3)Gn1+1,n2+1,n3(z1, z2, z3) = 0 (30)

Other sets of equations may be written for general correlation functions involving (28)
(this will be done in a more detailed text).
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Densities. As we mentioned, the denominator in (5) coincides with the partition func-
tion Ξ of the neutral classical Coulomb system (CCS) in the grand canonical ensemble
with the definite temperature T (T=1 see [2]).

τ(0, 0, 0, 0) = Ξ (31)

The constant K plays the role of fugacity in the Coulomb system. The expression (24)
also coincides with the correlation function of the CCS (at T=1). Let us consider the
instanton contribution Ginst (x, y) in the Green function

G (x, y) = 〈△x log |ω (x) |,△y log |ω (y) |〉 (32)

corresponding to functional φ (ω) = △x log |ω (x) | △y log |ω (y) | that is ρ(x)ρ(y) with

ρ(x) = 2π (
∑

i δ (x− ai)−
∑

i δ (x− bi)). In order to obtain this result in terms of τ
functions, we have to make the Miwa transformation of times

t(α)n = −
t

nxn
−

t

nyn
(33)

then we achieve

△x △y
∂

∂t

(

q
∏

i

Φ0,0(ai, bi, t
1, t2)|

t
(α)
n =− t

nxn
− t
nyn

)

|t=0 (34)

= △x log |ω (x) | △y log |ω (y) | = ρ(x)ρ(y). (35)

One can interpret ρ(x) as the charge density. We see

Ginst (x, y) = 〈△x log |ω (x) | △y log |ω (y) |〉inst = 〈ρ(x)ρ(y)〉CCS (36)

=

C △x △y
∂
∂t

(

τ(0, 0, t1, t2)|
t
(α)
n =− t

nxn
− t
nyn

)

|t=0

τ(0, 0, 0, 0)
(37)

Similarly to the previous way, we can obtain the instanton contribution in the more general
Green function corresponding to the functional

φ (ω) = △x1 log |ω (x1) | △x2 log |ω (x2) |...△xm log |ω (xm) | (38)

by

Ginst (x1, x2, ...xm) = 〈ρ(x1)ρ(x2)...ρ(xm)〉CCS = (39)

=

C △x1 △x2... △xm
∂
∂t

(

τ(0, 0, t1, t2)|
t
(α)
n =− t

nxn
1
− t
nxn

2
... t
nxnm

)

|t=0

τ(0, 0, 0, 0)
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3.2 Two-component KP and the regularization (B)

In this case, we have

〈φ〉Binst =

∑

q≥0
Kq

(q!)2
∑

D2q φq (a, b)
∏

i<j≤q

|animi−anjmj |
2|bnimi−bnjmj |

2

|animi−bnjmj |
2|bnimi−anjmj |

2

∏q
i=1

1
|animi−bnimi |

2

∑

q≥0
Kq

(q!)2
∑

D2q

∏

i<j≤q

|animi−anjmj |
2|bnimi−bnjmj |

2

|animi−bnjmj |
2|bnimi−anjmj |

2

∏q
i=1

1
|animi−bnimi |

2

(40)

where
∑

D2q means
∑

n1,...,nq,m1,...mq∈D
and where anm, bnm are given by (7).

One just needs to replace integrals by sums according to (8) in the expression (13):

τ2KP (n
(0), n(1), n(2), t1, t2|D,h) = 〈n(1), n(2)|Γ

(

t1
)

Γ
(

t2
)

g |n(2)−n(0), n(1)+n(0)〉 (41)

where

g = e
K

1
2
∑

(k,m)∈D2 ψ
(1)(akm)ψ†(2)(ākm)

e
K

1
2
∑

(k,m)∈D2 ψ
(2)(b̄km)ψ†(1)(bkm) (42)

and where the summation range in the exponents is chosen as 0 ≤ n,m ≤ L. We obtain
the enumerator in (40):

τB
(

t1, t2|D,h
)

= (43)

∑

q≥0

Kq

(q!)2

∑

D2q

Φq
(

a, b, t1, t2
)

∏

i<j≤q

|animi − anjmj |
2|bnimi − bnjmj |

2

|animi − bnjmj |
2|bnimi − anjmj |

2

q
∏

i=1

1

|animi − bnimi |
2

(44)

If we choose φq(a, b) = Φq(a, b, t
1, t2) we get the same relations as in the previous case A,

we replace 〈∗〉Ainst by 〈∗〉Binst.

3.3 One-component KP and the regularization (B)

The regularization (B) can also be written as the following KP tau function:

τBKP(t|D,h) = 〈n|Γ(t)e
K

∑
D2

ψ(anm)ψ†(bnm)

ānm−b̄nm |n〉 (45)

where anm and bnm are given by (7), and

Γ(t) = e
∑
m>0 tmJm, Jm =

∑

i∈Z

ψiψ
†
i+m

Γ(t), the Fermi fields and Φq are the same as in subsection 3.1, where the second component
is absent:

Φq (a, b, t) =

q
∏

i=1

(

ai

bi

)n

eV (ai,t)−V (bi,t), Φq (a, b, t[n, z]) =
∏

i

(ω(zi))
ni
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where V was defined in (21) and where t[n, z] denotes the choice n = 0 and tm =
−
∑

niz
m
i , m > 0. We get the same equation (30) for

Gn1,n2,n3(z1, z2, z3) := 〈(ω(z1))
n1 (ω(z2))

n2 (ω(z3))
n3〉Binst

Formula (45) yields the same answer as (41) if we put t2 = 0 and t1 = t (see Appendix 4).
However, in the case of the one-component KP, we can not construct |ω(z)| by specializing
the parameters t1, t2, . . . in Φ.

3.4 Regularization C

Few words about different regularization (without details). This regularization is per-
formed directly in the expression for the tau function.

(a) The ultri-violet regularization is achieved by the cutting out of higher Fermi modes:

ψ(i)(z) → ψ(i)(z;M) =
∑

j≤M

zjψ
(i)
j , ψ†(i)(z) → ψ†(i)(z;M) =

∑

j≤M

zjψ
†(i)
−j−1, (46)

where M is the cutting parameter.

(b) The infra-red regularization is done via the including of the decay to the measure

∫

ψ(1)(a)ψ(2)†(ā)d2a →

∫

ψ(1)(a)ψ(2)†(ā)e−ǫ|a|
2
d2a (47)

4 Appendix. Useful relations

We use the following relations:

Γ(t)ψ(z) = eV (z,t)ψ(z)Γ(t), Γ(t)ψ†(z) = e−V (z,t)ψ†(z)Γ(t)

and Γ(t)|n〉 = |n〉. Then

〈n|ψ(z1)ψ
†(y1) · · ·ψ(zq)ψ

†(yq)|n〉 =

q
∏

i<j

(zi − zj)(yi − yj)

(zi − yj)(yi − zj)

q
∏

i=1

1

zi − yi

(

zi

yi

)n

Also

e
∑
i,j ξiηjAi,j = 1 +

∑

q>0

∑

α1>···αq
β1>···>βq

ξα1 · · · ξαqηβ1 · · · ηβq det
(

Aαi,βj
)

where ξi, ηi are odd variables (Fermi fields with the property ξiηj + ηjξi = 0 for each pair
i, j), and Ai,j is a (possibly infinite) matrix.

And at last

det

(

1

zi − yj

)

=
∏

i<j

(zi − zj)(yi − yj)

(zi − yj)(yi − zj)

∏

i

1

zi − yi
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5 Appendix. Bilinear identity for the two-component τ

function

In this section we define more general τ functions in comparison with (13):

τ(n1, n2, n, t
1, t2) = 〈n1, n2|Γ

(

t1, t2
)

g |n2 − n, n1 + n〉 , (48)

where

g = e
∫ ∑

i,j=1,2:ψ
(i)(a

(i)
1 )ψ†(j)(a

(j)
2 ):dµ(a

(i)
1 ,a

(j)
2 ) (49)

where : ψ(i)(a
(i)
1 )ψ†(j)(a

(j)
2 ) := ψ(i)(a

(i)
1 )ψ†(j)(a

(j)
2 ) − 〈0, 0|ψ(i)(a

(i)
1 )ψ†(j)(a

(j)
2 )|0, 0〉 while

Γ
(

t1, t2
)

is given by (15). Particularly interesting for us τ the following one:

τ(n1, n2, t
1, t2) := τ(n1, n2, 0, t

1, t2)

The bilinear identity is valid in the following form (see [4]). For n1 − n′1 ≥ n′ − n ≥
n′2 − n2 + 2, we have

2
∑

α=1

∮

dz

2πiz
〈n1, n2|Γ

(

t1, t2
)

ψ(α)(z)g |n2 − n− 1, n1 + n〉 (50)

×〈n′1, n
′
2|Γ

(

t
′(1), t′(2)

)

ψ†(α)(z)g |n′2 − n′ + 1, n′1 + n′〉 = 0

and the integration is taken along a small contour at z = ∞ so that
∮

dz
2πiz = 1.

Rewriting this (33), we obtain
∮

dz

2πiz
(−1)n2+n′

2 zn1−1−n′
1eV (z,t1−t′(1)) (51)

×τ(n1 − 1, n2, n + 1, t1 − θ
(

z−1
)

, t2)τ(n′1 + 1, n′2, n
′ − 1, t′(1) + θ

(

z−1
)

, t′(2))

+

∮

dz

2πiz
zn2−1−n′

2eV (z,t2−t′(2))

×τ(n1, n2 − 1, n, t1, t2 − θ
(

z−1
)

)τ(n′1, n
′
2 + 1, n′, t′(1), t′(2) + θ

(

z−1
)

) ,

where θ
(

z−1
)

=
(

1
z
, 1
2z2 , ...

1
nzn

, ...
)

.
As an example of (35), for

f = τ(n1, n2, 0, t
1, t2) = τ(n1, n2, t

1, t2),

g = τ(n1 − 1, n2 + 1, 1, t1, t2)

and
g∗ = τ(n1 + 1, n2 − 1,−1, t1, t2)

we get the following bilinear equations:
(

D
t
(1)
2

−D2

t
(1)
1

)

f · g = 0,

(

D
t
(1)
2

−D2

t
(1)
1

)

g∗ · f = 0, (52)

(

D
t
(2)
2

+D2

t
(2)
1

)

f · g = 0,

(

D
t
(2)
2

+D2

t
(2)
1

)

g∗ · f = 0,

D
t
(1)
1

D
t
(2)
1

f · f − 2g · g∗ = 0,

where Hirota operator is Dxσ · τ = lim
ε→0

∂
∂ε
σ (x+ ε) τ (x− ε) = σxτ − στx
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6 Discussion

We have shown that the Fateev-Frolov-Schwartz instanton series coincides with the formal
series for the tau function of the two-component KP hierarchy. This is a formal expression,
the manipulation of which nevertheless has a physical meaning. Such a tau function can
be treated in the same way as with expressions of quantum field theory - eliminated by di-
vergences by introducing trims, by replacing the measure, by switching to a lattice theory.
All this can be done using the fermion representation for the tau function. In this case,
based on the formal expression, one can obtain various equations for the correlation func-
tions. However, in order to calculate the correlation functions themselves it is necessary
to use not massless, but massive fermions, which obey the massive Dirac equation. Note
that this is related to works about the quantum model of sin-Grodon and the Thirring
model [10].

This is what we are doing in our next work.

Note that new connections with the theory of classical integrable systems appear here.
Firstly, these are classic works of the Kyoto School [11]. Then it is related to the so-called
∂̄-problem for the KP equation [12],[13].
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