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Abstract

We present interpretation of known results in the theory of discrete asymptotic and
discrete conjugate nets from the discretization by Bäcklund transformations point of
view. We collect both classical formulas of XIXth century differential geometry of
surfaces and their transformations, and more recent results from geometric theory
of integrable discrete equations. We first present transformations of hyperbolic sur-
faces within the context of the Moutard equation and Weingarten congruences. The
permutability property of the transformations provides a way to construct integrable
discrete analogs of the asymptotic nets for such surfaces. Then after presenting the the-
ory of conjugate nets and their transformations we apply the principle that Bäcklund
transformations provide integrable discretization to obtain known results on the dis-
crete conjugate nets. The same approach gives, via the Ribaucour transformations,
discrete integrable analogs of orthogonal conjugate nets.

1 Introduction

Given integrable system of differential equations one is often interested in finding the cor-
responding (in the sense of small lattice step size limit) discrete system while preserving
the integrability properties. It turns out that usually the simple/naive replacement of
derivatives by difference operators spoils the integrability. The discretization has to be
made on the level where the integrability features are visible and transparent. Such meth-
ods are, for example (i) discrete version of the linear problem [1], (ii) the Hirota method
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via a bilinear form [52], (iii) extensions of the Zakharov–Shabat dressing method [71],
(iv) direct linearization using linear integral equations [86].

Another technique, which is the subject of the present work, is based on Bäcklund
transformations, which are discrete symmetries of integrable equations. It is the funda-
mental observation made by Decio Levi, which we present quoting abstracts of two of his
papers:

It is shown that any Bäcklund transformation of a nonlinear differential equation in-
tegrable by the multichannel Schrödinger eigenvalue problem can be written in the form
Vx = U ′V − V U . This allows us to interpret the Bäcklund transformation formally as
a nonlinear differential difference equation for which we can immediately construct the
soliton solutions. [68]

In this paper, one shows that the best known nonlinear differential difference equa-
tions associated with the discrete Schrödinger spectral problem and also with the discrete
Zakharov-Shabat spectral problem can be interpreted as Bäcklund transformations for some
continuous nonlinear evolution equations. [69]

Bäcklund transformations arose in connection with the construction, by XIXth cen-
tury geometers [6, 5], of pseudospherical surfaces and corresponding solutions of the
sine-Gordon equation. It was shown by Bianchi [7] that such transformations can be
iterated leading to an algebraic superposition formula. More recently, Wahlquist and Es-
tabrook [110] demonstrated that also the Korteweg–de Vries equation, which is a paradig-
matic example of integrable partial differential equation [48], admits invariance under a
Bäcklund-type transformation and possesses an associated permutability theorem. They
have used for that purpose the transformation introduced by Darboux [18] in the con-
text of Sturm–Liouville problems. The subject is generally known in the soliton theory
as Bäcklund or Darboux transformations [63, 97, 81, 98, 50, 46], but in the geometric
theory of transformations of surfaces exhibiting permutability property, also other names
are relevant [24, 96, 56]. The classical results of the old differential geometry of surfaces
and their transformations are summarized in [20, 19, 8, 45, 109, 65, 47].

The most general transformations of conjugate nets and their permutability were in-
troduced and studied by Jonas [56, 45]. The Darboux equations of multidimensional con-
jugate nets [19] have been rediscovered by Zakharov and Manakov [112, 113] as the most
general systems solvable by the non-local ∂̄-dressing method. The discrete analogue of
conjugate nets on a surface was introduced first on the geometric level [100, 102], and con-
nected to integrability theory in [25]. The integrable discrete version of the corresponding
Darboux system was given in [14]. Geometric studies of multidimensional discrete conju-
gate nets have been initiated in [34] and were followed in [79, 36, 38]. The integrability
of circular lattices, which form a distinguished reduction of discrete conjugate nets and
in the continuous limit give orthogonal conjugate nets, was first studied geometrically in
[17] and then confirmed by other tools [36, 60, 4, 39]. Compelling reasons for such an
interpretation were given in [80, 91] on the basis of the computer graphics, and in [11, 9]
from the theory of discrete isothermic nets.

I met first time Decio Levi in late eighties when he came to Institute of Theoretical
Physics of Warsaw University to visit his friend Antoni Sym, who supervised both my
master and PhD theses. They worked together on integrable generalization of pseudo-
spherical surfaces, known now as Bianchi surfaces [70]. In the present work we show a
harmonious coexistence of two points of view: Bäcklund transformations provide integrable
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discretization by Decio Levi, and soliton theory is surface theory [108] by Antoni Sym.
In the theory of integrable systems it is quite common that the same equations can be
derived using different methods, which give different perspective and emphasize different
connections.

The paper is constructed as follows. In Section 2 we present the classical theory of
hyperbolic surfaces in asymptotic parametrization emphasizing their connection with the
Moutard equation [83]. The corresponding transformations and their permutability prop-
erty [89] give rise to discrete asymptotic nets, which coincide with their natural geometric
analogs [102]. The next Section 3 is devoted to conjugate nets and their transformations.
We give a discretization of the nets starting from their fundamental transformation and
exploiting its permutability properties. In Section 4 we present derivation of integrable
discrete version of orthogonal conjugate nets on the base of geometric interpretation of the
Ribaucour reduction [96, 24] of the fundamental transformation. We conclude the paper
with additional discussion on geometry of Hirota’s discrete Kadomtsev–Petviashvili (KP)
system and with some remarks about dispersionless systems.

In the paper we tried to present old results, most of them more than one hundred years
old, from contemporary perspective and in unified notation. We remark that interpretation
of the fundamental transformation and its Ribaucour reduction in terms of vertex operators
within the free-fermion formalism of the multicomponent KP hierarchy was the subject
of [40, 39], where also the aspects of integrable discretization of conjugate and orthogonal
nets were investigated.

2 Discretization of asymptotic nets, and the Moutard
transformation

The classical transformation of Bianchi and Bäcklund for pseudospherical surfaces and the
sine-Gordon equation can be considered as a reduction of Weingarten transformation of
hyperbolic surfaces in asymptotic parametrization. We devote the present Section to such
asymptotic nets and to the Moutard equation [83], which governs the behaviour of their
normal vector. We use the standard notation and terminology of the classical theory of
surfaces [44], see also [98].

2.1 Hyperbolic surfaces, the Moutard equation, and the Lelieuvre
formulas

Let (u, v) be local coordinate system on a surface Σ in R3, and by r(u, v) denote the
position vector of a generic point. The coordinate lines are called asymptotic when in
every point their tangent planes coincide with the tangent plane to the surface. Surfaces
admitting the asymptotic coordinates are called hyperbolic. In such case we have

r,uu = a1r,u + b1r,v , (2.1)

r,vv = a2r,u + b2r,v , (2.2)

where ai, and bi, i = 1, 2, are functions of the local coordinates; here and in all the paper by
a subscript after comma we denote the partial derivative with respect to the corresponding
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variable. As a consequence of the compatibility condition r,uuvv = r,vvuu there exists a
function ϕ, given up to an additive constant, such that

a1 = ϕ,u , b2 = ϕ,v . (2.3)

By direct calculation one can check that the normal vector

ν = e−ϕr,u × r,v (2.4)

satisfies the Moutard equation

ν ,uv = fν , (2.5)

with the potential

f = ϕ,uv − b1a2 . (2.6)

Moreover, using eventually the allowed freedom in definition of ϕ and/or changing the
orientation, the position vector is given by the Lelieuvre formulas [67]

r,u = ν ,u × ν , r,v = ν × ν ,v . (2.7)

2.2 The Moutard transformation and its permutability property

The following result provides a way how to transform solutions of a Moutard equation into
new solution of equation of the same form but with different potential. In consequence,
given a hyperbolic surface it allows to construct new surface of the same type.

Theorem 2.1. [83] Given vector-valued solution ν of the Moutard equation corresponding
to a given potential f , and given scalar solution θ of the same equation, then the vector-
valued function ν̂ defined by the compatible equations

(θν̂),u = θ,uν − θν ,u , (2.8)

(θν̂),v = −θ,vν + θν ,v , (2.9)

satisfies the Moutard equation with the potential

f̂ =
θ̂,uv

θ̂
, where θ̂ =

1

θ
.

Corollary 2.2. Notice that ν is the Moutard transform of ν̂ with θ̂ taken as the trans-
formation function.

Corollary 2.3. One can check that the surface

r̂ = r + ν̂ × ν, (2.10)

can be obtained from ν̂ via the Lelieuvre formulas (2.7). In particular the local parameters
(u, v) form an asymptotic coordinate system on the transformed surface.
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Remark. The two-parameter family of lines ⟨r, r̂⟩ , which are tangent to both surfaces Σ
and Σ̂ at the corresponding points, forms the so called Weingarten congruence. The cor-
responding transformation between hyperbolic surfaces Σ and Σ̂ is called the Weingarten
transformation.

Let θi, i = 1, 2, be two solutions of the Moutard equation satisfied by the normal ν, and
let ν{i}, i = 1, 2, be its corresponding two transforms. By θ2{1} denote also the Moutard
transform of θ2 with respect to θ1(

θ1
(
ν{1}

θ2{1}

))
,u

= θ1,u

(
ν
θ2

)
−θ1

(
ν
θ2

)
,u

,

(
θ1

(
ν{1}

θ2{1}

))
,v

= −θ1,v

(
ν
θ2

)
+θ1

(
ν
θ2

)
,v

,

(2.11)

and by θ1{2} denote the Moutard transform of θ1 with respect to θ2(
θ2

(
ν{2}

θ1{2}

))
,u

= θ2,u

(
ν
θ1

)
−θ2

(
ν
θ1

)
,u

,

(
θ2

(
ν{2}

θ1{2}

))
,v

= −θ2,v

(
ν
θ1

)
+θ2

(
ν
θ1

)
,v

.

(2.12)

In consequence, the transformation formulas (2.10) on the hyperbolic surfaces level Σ{1}

and Σ{2} take the form

r{1} = r + ν{1} × ν, r{2} = r + ν{2} × ν. (2.13)

Let us apply to ν{1} the Moutard transformation with θ2{1},(
θ2{1}ν{1,2}

)
,u
= θ2{1},u ν{1}− θ2{1}ν{1},u ,

(
θ2{1}ν{1,2}

)
,v
= −θ2{1},v ν{1}+ θ2{1}ν{1},v ,

(2.14)

and to ν{2} the transformation with θ1{2}(
θ1{2}ν{2,1}

)
,u
= θ1{2},u ν{2}− θ1{2}ν{2},u ,

(
θ1{2}ν{2,1}

)
,v
= −θ1{2},v ν{2}+ θ1{2}ν{2},v .

(2.15)

We would like both transformations give the same result ν{2,1} = ν{1,2}. Moreover since
we have

(θ1θ2{1} + θ2θ1{2}),u = 0 = (θ1θ2{1} + θ2θ1{2}),v,

then the additive constants in definition of θ1θ2{1} and of θ2θ1{2} can be fixed such that

θ2θ1{2} = θ12 = −θ1θ2{1} . (2.16)

By elimination of derivatives of the normal vectors from equations (2.11)-(2.12) and (2.14)-
(2.15), and using identity (2.16) we can arrive to the the following important result.
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Theorem 2.4 (Permutability of the Moutard transformations). The vector-valued func-
tions ν{12} given by algebraic formula

ν{12} − ν =
θ1θ2

θ12

(
ν{1} − ν{2}

)
(2.17)

is simultaneously Moutard transform of ν{1} with respect to θ2{1} and the Moutard trans-
form of ν{2} with respect to θ1{2}.

ν
θ1−−−−→ ν{1}

θ2

y yθ2{1}

ν{2}
θ1{2}−−−−→ ν{12}.

Remark. Actually, because of free additive parameter in definition of θ12 we obtain this
way one-parameter family of the transforms.

Corollary 2.5. The one-parameter family of vector-valued functions r{12} given by alge-
braic formula

r{12} = r +
θ1θ2

θ12
ν{1} × ν{2} (2.18)

provides simultaneously the Weingarten transforms of the hyperbolic surface r{1} with
respect to θ2{1} and the Weingarten transforms of the hyperbolic surface r{2} with respect
to θ1{2}.

2.3 The Moutard transformation as integrable discretization

The successive application of the Weingarten-Moutard transforms, taking into account
their algebraic superposition formula, to a given hyperbolic surface Σ allows to build a
two dimensional lattice Σm,n of such surfaces. Let us fix a point on Σ and trace properties
of a lattice in R3 of the corresponding points, represented by vectors rm,n.

Proposition 2.6. The five points rm,n, rm±1,n, rm,n±1 belong to a common plane.

Proof. The statement follows from equations (2.13), which imply that lines ⟨rm,n, rm+1,n⟩
are orthogonal to both the vectors νm,n and νm+1,n, and the lines ⟨rm,n, rm,n+1⟩ are
orthogonal to both the vectors νm,n and νm,n+1. The common plane of the five points is
orthogonal to the vector νm,n. ■

Corollary 2.7. Equations (2.13) are discrete analogs of the Lelieuvre formulas (2.7), see
also [59].

Remark. The three points rm,n, rm±1,n, define the tangent plane of the first discrete
coordinate curve at point rm,n, and the three points rm,n, rm,n±1, define the tangent
plane of the second curve at this point. Both planes coincide with the common plane of
Proposition 2.6, what allows to call the curves the discrete asymptotic lines.

Definition 2.1 ([102, 100]). The discrete asymptotic net is a map r : Z2 → R3 such that
for arbitrary (m,n) ∈ Z2 the five points rm,n, rm±1,n, rm,n±1 are coplanar.
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r

rr

r
m,n

r
m−1,n

m,n−1

m,n+1 m+1,n

Figure 1. Discrete asymptotic nets

Corollary 2.8. The algebraic superposition formula (2.17) of the Moutard transforma-
tions on the level of the normal vector νm,n can be interpreted as the discrete Moutard
equation [89]

νm+1,n+1 − νm,n = fm,n
(
νm+1,n − νm,n+1

)
. (2.19)

Remark. To obtain the Moutard equation (2.5) and the Lelieuvre formulas (2.7) from
(2.19) and (2.13) one first has to change the orientation of the normal vector according to
νm,n → (−1)nνm,n.

Integrability of the hyperbolic surfaces can be understood as existence of transforma-
tions satisfying algebraic permutability principle. It turns out that one can construct
analogous transformations for integrable discrete hyperbolic surfaces (discrete asymptotic
nets). The corresponding transformation formulas, their geometric interpretation, and
their permutability property have been considered in [89, 84, 27]. See also [55] for devel-
opment of their theory in direction of application in computer graphic.

Hyperbolic surfaces with constant Gauss curvature, i.e. pseudospherical surfaces, are
described by the celebrated sine-Gordon equation for the angle between the asymptotic
coordinates on such surfaces. Restricting the Weingarten–Moutard transformation to
such surfaces we obtain discrete asymptotic nets whose elementary quadrilaterals have
opposite sides of equal length, and which provide integrable discrete analogs of pseudo-
spherical surfaces [101, 111, 10]. The corresponding Bianchi’s permutability theorem for
the Bäcklund transformation of the sine-Gordon equation provides its integrable difference
analog [53], and describes the angle between asymptotic coordinates on discrete pseudo-
spherical surface. The Bianchi surfaces [8], whose integrability was discussed in [70], are
hyperbolic surfaces characterized by the property that their Weingarten transformation
preserves Gauss curvature in the corresponding points; see [12, 103, 37, 105] for discussion
of discrete analogs and this and other integrable reductions of asymptotic nets.

2.4 Discrete BKP equation

Integrable non-linear equations appear in the context of discrete Moutard equation, prior
to reductions of discrete hyperbolic surfaces, for more then two discrete variables [89, 28].
Consider a map ν : ZN → RM , N,M ≥ 3, which satisfies the system of discrete Moutard
equations in each pair of variables

νn+ei+ej − νn = fn
ij

(
νn+ei − νn+ej

)
, 1 ≤ i ̸= j ≤ N ; (2.20)
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here n ∈ ZN , and ei is the unit vector in ith direction, i = 1, . . . , N . Compatibility of the
system leads to the following set of nonlinear equations

1+fn+ei
jk (fn

ij −fn
ik) = f

n+ej
ik fn

ij = fn+ek
ij fn

ik, i, j, k distinct, fn
ji = −fn

ij . (2.21)

The second equality implies existence of the potential τ : ZN → R, in terms of which the
functions fij can be written as

fn
ij =

τn+eiτn+ej

τn τn+ei+ej
, i < j. (2.22)

The first equality can be then rewritten in the form of the system of Miwa’s discrete BKP
equations [82]

τnτn+ei+ej+ek = τn+ei+ejτn+ek−τn+ei+ekτn+ej+τn+ej+ekτn+ei , 1 ≤ i < j < k ≤ N.

(2.23)

Geometric meaning of the above equations goes beyond the theory of discrete asymptotic
nets, and can be incorporated [28] into the theory of discrete conjugate nets [34, 38].

3 Multidimensional conjugate nets, their fundamental
transformation, and multidimensional lattices
of planar quadrilaterals

Conjugate nets on a surface are second, after asymptotic nets, distinguished coordinate
systems studied in depth by geometers of XIXth century. They include, as a special
subcase, curvature coordinates, whose theory will be studied in the next Section. For
classical results on the subject see works of Gabriel Lamé [64], Luigi Bianchi [8] or Gaston
Darboux [19]. The relation of conjugate nets on a surface to linear partial differential
equations of the second order allows to transfer special theorems on such equations [66,
72, 83, 49] to the geometric level. The theory of transformations within special classes of
such equations/conjugate nets has obtained mature form in works of Hans Jonas [56] and
Luther P. Eisenhart [45], see also [109, 65, 47]. The Darboux equations, which describe
multidimensional conjugate nets, were rediscovered in [112, 113] in the context of soliton
theory as the most general partial differential equations integrable by the non-local ∂̄-
dressing method. Moreover, in [57] they were isolated as the simplest equations within
multicomponent KP hierarchy. We start this Section with presenting basic elements of
the theory of conjugate nets on a surface and their transformations. Then we move to the
multidimensional nets.

3.1 Conjugate coordinates on a surface, and the Lévy transformation

Local coordinates (u, v), on a surface in the space RN of arbitrary dimension N ≥ 3, are
called conjugate if the second mixed derivative of the position vector r(u, v) are tangent
to the surface. The defining equation takes then the form of the Laplace equation

r,uv = ar,u + br,v, (3.1)
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r̂

r

v

u

u

v

r (u)

v

u

r (v)

r

v

u

r

v

r (u)

r (v)

u

(v)

(u)

(u)

(v)

Figure 2. The fundamental transform r̂, the Lévy transforms r(u), r(v), the adjoint Lévy trans-

forms r(u), r(v), and the Laplace transforms r
(u)
(v) , r

(v)
(u) of two-dimensional conjugate net r

where a(u, v) and b(u, v) are corresponding functions of the conjugate parameters. The
following considerations allow to introduce concepts relevant in the general theory of trans-
formations of multidimensional conjugate nets.

Let θ be a scalar solution of equation (3.1), linearly independent of the components of
r, then by direct calculation one can check that the so called Lévy transforms of r, given
by

r(u) = r − θ

θ,u
r,u, r(v) = r − θ

θ,v
r,v, (3.2)

are new surfaces with (u, v) being local conjugate coordinates. The corresponding Laplace
equations (3.1) of the new nets have coefficients

a(u) = a+

(
log

θ

θ,u

)
,v

, b(u) = b(v) +
(
log a(u)

)
,u
, (3.3)

a(v) = a(u) +
(
log b(v)

)
,v
, b(v) = b+

(
log

θ

θ,v

)
,u

, (3.4)

what can be verified by direct calculation. In the proof it is convenient to show first that

r(u),v = a(u)
(
r(u) − r(v)

)
, r(v),u = b(v)

(
r(v) − r(u)

)
,
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what means that the lines joining the corresponding points of both Lévy transforms of the
conjugate net r are simultaneously tangent to v-coordinate lines of r(u) and to u-coordinate
lines of r(v), see Figure 2.

Few comments are in order:

• Lines through r in direction of r,u form the u-tangent congruence of the conjugate
net. Equivalently, r is u-focal net of the congruence. Similarly one defines the v-
tangent congruence of r, which is its v-focal net. Using such a terminology one can
state that r(v) is u-focal net of the v-tangent congruence of r(u), and vice versa.

• Notice that we use the notion of congruence of lines in the narrow sense, i.e. the
parameters (u, v) of the family define its focal nets. This means that one-dimensional
family of lines parametrized by u forms a developable surface and is made of tangents
to u-coordinate on the u-focal net; similar condition folds for v-parameter family of
the congruence. We say that the congruence is referred to its developables.

• The unique v-focal net of the u-tangent congruence to r, given by

r
(u)
(v) = r −

1

b
r,u, (3.5)

is called the uv-Laplace transform of r. Analogously one defines the vu-Laplace
transform of r

r
(v)
(u) = r −

1

a
r,v. (3.6)

In particular the conjugate net r(u) is the uv-Laplace transform of r(v).

• The net r(u) is called conjugate to the u-tangent congruence of r, similarly the net
r(v) is conjugate to the v-tangent congruence of r. In such relation the conjugate
coordinates on a surface are the parameters which define the focal nets of the con-
gruence. One can reverse the situation and try to find focal nets of a congruence
conjugate to a given conjugate net. Such focal nets, denoted by r(u) and r(v), are
called adjoint Lévy transforms of the net.

• The conjugate net r̂ is called a fundamental transform of r when the two-dimensional
family of lines joining their corresponding points forms a congruence (in the narrow
sense explained above) whose developables cut both nets along the conjugate coor-
dinate lines, i.e. both nets are conjugate to the same congruence.

3.2 Multidimensional conjugate nets and the Darboux equations

Consider N -dimensional submanifold in RM with local parameters u = (u1, . . . , uN ) sat-
isfying in each pair (ui, uj), i ̸= j, the conjugate net condition

r,ij = aijr,i + ajir,j . (3.7)

The functions aij of the local conjugate parameters cannot be arbitrary, because for N > 2
they should satisfy the following compatibility conditions of the above system (3.7) of
Laplace equations

aij,k = aijajk + aikakj − aijaik, i, j, k distinct. (3.8)
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The nonlinear Darboux equations (3.8) imply in particular that aij,k = aik,j , what allows
to introduce potentials hi, called Lamé coefficients, such that

aij =
hi,j
hi

, i ̸= j, (3.9)

and correspondingly the Laplace system (3.7) takes the form

r,ij = (log hi),jr,i + (log hj),ir,j i ̸= j. (3.10)

The remaining part of the Darboux equations in Laplace coefficients aij can be written in
terms of the Lamé coefficients as

hi,jk =
hj,khi,j

hj
+

hk,jhi,k
hk

, i, j, k distinct. (3.11)

Following Darboux, let us introduce the suitably scaled tangent vectors Xi, i =
1, . . . , N , from equations

r,i = hiXi. (3.12)

Then the Laplace equations (3.7) take the particularly simple form

Xi,j = βijXj , i ̸= j, (3.13)

where the rotation coefficients βij are defined by the linear system adjoint to (3.13)

hj,i = βijhi, i ̸= j. (3.14)

The corresponding version of the Darboux equation reads

βij,k = βikβkj , i, j, k distinct. (3.15)

The tangent lines to i-th coordinate on the conjugate net r form its i-th tangent
congruence. Its j-th focal net, called ij-Laplace transform of r, is given by

r
(i)
(j) = r −

1

aji
r,i. (3.16)

The Laplace transforms satisfy the following identities

(r
(i)
(j))

(j)
(i) = r, (r

(i)
(j))

(j)
(k) = r

(i)
(k), (r

(i)
(j))

(k)
(i) = r

(k)
(j) . (3.17)

This means that each generic N -dimensional conjugate net comes together with whole
system of conjugate nets enumerated by points of the Q(AN−1) root lattice.
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3.3 The vectorial fundamental (binary Darboux) transformation
of conjugate nets

The contemporary theory of transformations of conjugate nets and of the Darboux equa-
tions is based on the following Lemma, given first in the discrete setting in [79]. The
present version is its direct limit.

Lemma 3.1. Given solution βij of the Darboux equations (3.15), and given solution Y i of
the linear system (3.13) taking values in the (column vector) space RK , and given solution
Y ∗

i of the adjoint linear system (3.14) taking values in the (row vector) space RL.
1. There exists the K × L matrix-valued potential Θ[Y ,Y ∗] defined by the following
compatible system

Θ[Y ,Y ∗],i = Y i ⊗ Y ∗
i , i = 1, . . . , N. (3.18)

2. If K = L and the potential Θ[Y ,Y ∗] is invertible, then the functions

β̂ij = βij − Y ∗
jΘ[Y ,Y ∗]−1Y i, (3.19)

are new solutions of the Darboux equations.
3. The vector-valued functions

Ŷ i = Θ[Y ,Y ∗]−1Y i, Ŷ
∗
i = Y

∗
iΘ[Y ,Y ∗]−1, (3.20)

are the corresponding new solutions of the linear and the adjoint linear problem equa-
tions (3.13)-(3.14). In addition, the new matrix-valued potential is of the form

Θ[Ŷ , Ŷ
∗
] = C −Θ[Y ,Y ∗]−1, (3.21)

where C is a constant operator.

Remark. Notice that equations (3.12) mean that one can write r = Θ[X, h].

Remark. In the theory of Darboux transformations of the KP hierarchy [92] the function
Θ is called the squared-eigenfunction potential.

By suitable arrangement of the transformation data [38] we arrive at the following
version of the above Lemma.

Theorem 3.2. Consider conjugate net r with Lamé coefficients hi, normalized tangent
vectors Xi and rotation coefficients βij. Given transformation data Y i, Y

∗
i which satisfy

point 2. of Lemma 3.1 then

r̂ = r −Θ[X,Y ∗]Θ[Y ,Y ∗]−1Θ[Y , h], (3.22)

is new conjugate net, called the fundamental transform of r. The new rotation coefficients
are given by equation (3.19), and the Lamé coefficients and normalized tangent vectors
read

ĥi = hi − Y ∗
iΘ[Y ,Y ∗]−1Θ[Y , h], X̂i =Xi −Θ[X,Y ∗]Θ[Y ,Y ∗]−1Y i. (3.23)
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When the transformation data are scalar functions Yi and Y ∗
i then θ = Θ[Y, h] is a

scalar additional solution of the Laplace equation of r. The N -dimensional vector-valued
function X ′ = Θ[X, Y ∗] defines new conjugate net with Lamé coefficients Y ∗

i and the
same normalized tangent vectors Xi. The function θ′ = Θ[Y, Y ∗] is a scalar solution of
the Laplace equation of X ′ and in such a notation the scalar fundamental transformation
reads

r̂ = r − θ

θ′
X ′. (3.24)

The vector X ′ points in the direction of the congruence of the transformation, and is
called the Combescure transform of r. The corresponding i-th Lévy transform r(i) of r,
the intersection of i-tangents of r and r̂ reads

r(i) = r − θ

θ,i
r,i = r −

θ

Yi
Xi, (3.25)

while the i-th adjoint Lévy transform r(i) of r, whose i-th tangent congruence is the
congruence of the transformation is given by

r(i) = r −
hi
Y ∗
i

X ′. (3.26)

See Figure 2 to compare with the two-dimensional case.

3.4 Superpositions of fundamental transformations, and
multidimensional lattices of planar quadrilaterals

The vectorial form of the fundamental transformation given in Lemma 3.1 contains already
their permutability theorem.

Theorem 3.3. Assume the following splitting of the data of the vectorial fundamental
transformation

Y i =

(
Y a

i

Y b
i

)
, Y ∗

i = (Y ∗
ai Y

∗
bi) , (3.27)

associated with the partition RK = RKa ⊕RKb, which implies the following splitting of the
potentials

Θ[Y , h] =

(
Θ[Y a, h]

Θ[Y b, h]

)
, Θ[X,Y ∗] = (Θ[X,Y ∗

a] Θ[X,Y ∗
b ]) ,

Θ[Y ,Y ∗] =

(
Θ[Y a,Y ∗

a] Θ[Y a,Y ∗
b ]

Θ[Y b,Y ∗
a] Θ[Y b,Y ∗

b ]

)
.

Then the vectorial fundamental transformation is equivalent to the following superposition
of vectorial fundamental transformations:
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1. Transformation r → r{a} with the data Y a
i , Y ∗

ai and the corresponding potentials
Θ[Y a, h], Θ[Y a,Y ∗

a], Θ[X,Y ∗
a]

r{a} = r −Θ[X,Y ∗
a]Θ[Y a,Y ∗

a]
−1Θ[Y a, h], (3.28)

h
{a}
i = hi − Y ∗

aiΘ[Y a,Y ∗
a]

−1Θ[Y a, h], (3.29)

X
{a}
i =Xi −Θ[X,Y ∗

a]Θ[Y a,Y ∗
a]

−1Y a
i . (3.30)

2. Application on the result the vectorial fundamental transformation with the transformed
data

Y
∗{a}
bi = Y ∗

bi − Y ∗
aiΘ[Y a,Y ∗

a]
−1Θ[Y a,Y ∗

b ], (3.31)

Y
b{a}
i = Y b

i −Θ[Y b,Y ∗
a]Θ[Y a,Y ∗

a]
−1Y a

i , (3.32)

and potentials

Θ[Y b, h]{a} = Θ[Y b, h]−Θ[Y b,Y ∗
a]Θ[Y a,Y ∗

a]
−1Θ[Y a, h] = Θ[Y b{a}, h{a}],

Θ[Y b,Y ∗
b ]
{a} = Θ[Y b,Y ∗

b ]−Θ[Y b,Y ∗
a]Θ[Y a,Y ∗

a]
−1Θ[Y a,Y ∗

b ] = Θ[Y b{a},Y
∗{a}
b ],

Θ[X,Y ∗
b ]
{a} = Θ[X,Y ∗

b ]−Θ[X,Y ∗
a]Θ[Y a,Y ∗

a]
−1Θ[Y a,Y ∗

b ] = Θ[X{a},Y
∗{a}
b ],

i.e.

r̂ = r{a,b} = r{a} −Θ[X,Y ∗
b ]
{a}

(
Θ[Y b,Y ∗

b ]
{a}

)−1
Θ[Y b, h]{a}. (3.33)

Remark. The final result (3.33) is independent of the order of making the partial trans-
formations.

Remark. The above procedure fixes already the integration constants when integrating
equations (3.18) in constructions of the potentials.

Lest us consider the simplest case of K = 2 when the vectorial fundamental transfor-
mation is obtained as superposition of two scalar transformations

r{a} = r − θa

θaa
Xa, Xa = Θ[X, Y ∗

a ], θa = Θ[Y a, h], θaa = Θ[Y a, Y ∗
a ], (3.34)

r{b} = r − θb

θbb
Xb, Xb = Θ[X, Y ∗

b ], θb = Θ[Y b, h], θbb = Θ[Y b, Y ∗
b ], (3.35)

and the final result reads

r{a,b} = r−(Xa,Xb)

(
θaa θab
θba θbb

)−1(
θa

θb

)
, θab = Θ[Y a, Y ∗

b ], θba = Θ[Y b, Y ∗
a ]. (3.36)

The point r{a,b} belongs to the plane passing through r, r{a}, r{b} (the plane containing
r and spanned by Xa and Xb), see Figure 3, and the superposition formula (3.36) can be
rewritten in the form of a discrete analogue of the Laplace equation (3.7)

r{a,b} − r =
θa{b}θaa

θ
a{b}
a θa

(r{a} − r) +
θb{a}θbb

θ
b{a}
b θb

(r{b} − r). (3.37)
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r

r
{a}

r
{a,b}

r
{b}

Figure 3. Elementary quadrilateral of superposition of two fundamental transformations

If r, r{a}, r{b} are given then the position of r{a,b} on the plane is arbitrary due to the
integration constants in definitions of θab and θba.

The superposition of three scalar fundamental transformations

r{a,b,c} = r − (Xa,Xb,Xc)

θaa θab θac
θba θbb θbc
θca θcb θcc

−1θa

θb

θc

 , (3.38)

does not generate new integration constants. This result can be found in [45] as the
extended theorem of permutability. It implies, in particular, that the point r{a,b,c} is
uniquely given as intersection of three planes ⟨r{a}, r{a,b}, r{a,c}⟩, ⟨r{b}, r{a,b}, r{b,c}⟩ and
⟨r{c}, r{a,c}, r{b,c}⟩; see also [34].

Due to equation (3.34) the vectorsXa can be interpreted as normalized tangent vectors
to the lattice direction, and − θa

θaa
playing the role of the Lamé coefficients. The transfor-

mation formulas

X
{a}
b =Xb −

θab
θaa
Xa (3.39)

give the discrete analog of the linear problem (3.13) with − θab
θaa

playing the role of the
rotation coefficients. The corresponding transformation rules provide nonlinear relations,
which can be interpreted as discrete Darboux equations. To close this Section we briefly
recapitulate the basic theory of discrete conjugate nets [34], which we have just obtained
from the theory of transformations of conjugate nets in the spirit of works [68, 69].

Definition 3.1. The discrete conjugate net is a map r : ZN → RM of N -dimensional
integer lattice such that for arbitrary n ∈ ZN and any two directions a ̸= b of the lattice,
the vertices rn, rn+ea , rn+eb , and rn+ea+eb of elementary quadrilaterals are coplanar.

The coplanarity condition can be written in terms of the system of discrete Laplace
equations

rn+ea+eb − rn = An
ab

(
rn+ea − rn

)
+An

ba

(
rn+eb − rn

)
, a ̸= b. (3.40)
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Due to compatibility of the system (3.40) the functions An
ab can be expressed in terms of

the discrete Lamé coefficients

An
ab =

Hn+eb
a

Hn
a

, a ̸= b , (3.41)

which satisfy equations

Hn+ea+eb
c −Hn

c =
Hn+eb+ec

a

Hn+ec
a

(
Hn+ea

c −Hn
c

)
+

Hn+ea+ec
b

Hn+ec
b

(
Hn+eb

c −Hn
c

)
, (3.42)

for distinct a, b and c. If we introduce the suitably scaled tangent vectorsXa, a = 1, ..., N ,

rn+ea − rn = Hn
aX

n
a , (3.43)

then equations (3.40) can be rewritten as a first order system

Xn+eb
a −Xn

a = Qn
abX

n
b , a ̸= b . (3.44)

The proportionality factors Qab, called the discrete rotation coefficients, can be found from
the linear equations

Hn+ea
b −Hn

b = Hn+eb
a Qn

ab, a ̸= b , (3.45)

adjoint to (3.13). The compatibility condition for the system (3.13) (or its adjoint) gives
the following form of the discrete Darboux equations

Qn+ec
ab −Qn

ab = Qn+eb
ac Qn

cb, a, b, c distinct. (3.46)

The integrable discretization of the Darboux system was achieved first in [14] within
the ∂̄ technique. The discrete analog of a conjugate net on a surface was introduced on a
purely geometric basis in [100, 102]. Its connection with integrability theory was made first
in [25] by connecting the Laplace sequence of two-dimensional discrete conjugate nets to
Hirota’s discrete generalized Toda lattice [54]. Soon after that the discrete analogs of mul-
tidimensional conjugate nets were introduced in [34]. In particular it was shown there that
the number of discrete variables in the discrete Darboux equations can be arbitrary large,
and this augmentation does not restrict the solution space of the basic three-dimensional
system — this property is known nowadays as multidimensional consistency [3, 85] and is
considered as the basic concept of the theory of discrete integrable systems [51].

The Darboux–Bäcklund transformations of the discrete Darboux equations were for-
mulated first on the algebraic level in [79], and then in [38] the full geometric flavour of
the theory was presented together with the interpretation of the transformations on the
nonlocal ∂̄-dressing method level, see also [73, 75, 40, 77, 78]. In particular it was pointed
out in [38], referring to [68] and other similar works, that for discrete conjugate nets there
is no essential difference between transformations and generation of new dimensions of
the lattice. On the other hand, the conjugate nets are natural continuous limits of the
lattices of planar quadrilaterals, what can be easily seen on the level of their Laplace
equations (3.7) and (3.40). Therefore, the principle of getting the integrable discretization
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via Bäcklund transformation approach in this particular case finds natural explanation.
This shows that, from the point of view of the theory of integrable systems, the discrete
ones seem to be more basic.

The transformation theory of discrete conjugate nets can be constructed [38] following
the geometric principles of the continuous case. Also here the notion of congruence of
lines (any two neighbouring lines of the family are coplanar) turns out to be crucial. In
particular, it implies natural definition of focal lattices of such congruences. The simplest
congruences are given by tangent lines in a fixed direction of a discrete conjugate net.

Remark. The discrete Weingerten congruences, which are relevant in the theory of trans-
formations of discrete asymptotic nets described in Section 2, do not satisfy the definition
of a discrete congruences of the theory of transformations of discrete conjugate nets, as
it was pointed to me by Maciej Nieszporski. In fact, as it was explained in [27], the
discrete Weingarten congruences provide two-dimensional lattices of planar quadrilaterals
in the Plücker quadric. Their theory fits therefore into the general scheme of quadratic
reductions of discrete conjugate nets [26].

4 Curvature coordinates, the Ribaucour transformation,
and circular lattices

The notion of conjugate nets is invariant with respect to projective transformations of
the ambient space. By imposing an additional geometric structure one can consider the
corresponding reduction of the general theory. In the Euclidean space (we work in the
standard orthonormal basis where the scalar product of two vectors is given with the help
of transposition u · v = ut v) one can consider orthogonal conjugate nets, which turn out
to be curvature coordinates on the given submanifold. The corresponding reduction of the
fundamental transformation is provided by the Ribaucour transformation.

The classical Ribaucour transformation [96] concerns surfaces in three dimensional
Euclidean space E3 such that lines of curvature (which are both conjugate and orthogonal)
correspond and such that the normals to both surfaces in corresponding points in a point
(the center of the Ribaucour sphere) equidistant to both of them. In general one can
consider N -dimensional submanifold of EM , N ≤ M , parametrized by conjugate and
orthogonal coordinates.

The orthogonality constraint

r,i · r,j = 0, i ̸= j, (4.1)

implies that the function

ρ =
1

2
r · r,

satisfies the Laplace equations of the orthogonal conjugate net r, and the functions

X◦
i = r ·Xi,

give the corresponding solution to the linear system (3.13), i.e. ρ = Θ[X◦, h]. Equivalently,
the above facts imply orthogonality of the conjugate net.
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The corresponding Ribaucour reduction of the vectorial fundamental transformation,
compatible with the orthogonality of a given conjugate net, can be constructed using
only half of the transformation data, for analogous but different description see [74]. The
following result can be checked directly by calculating derivatives of both sides of the
formulas.

Lemma 4.1. Given solution Y ∗
i of the adjoint linear problem (3.14) of the orthogonal

conjugate net r then

Y i = Θ[X,Y ∗]tXi, (4.2)

give a solution to the linear problem (3.13) of the net. Moreover, the integration constants
in construction of the corresponding potentials Θ[Y ,Y ∗], Θ[Y , h] and Θ[X◦,Y ∗] can be
chosen such that

Θ[Y ,Y ∗]t +Θ[Y ,Y ∗] = Θ[X,Y ∗]t Θ[X,Y ∗], (4.3)

Θ[Y , h] = Θ[X,Y ∗]tr −Θ[X◦,Y ∗]t. (4.4)

Theorem 4.2. The vectorial fundamental transformation of orthogonal conjugate net r
calculated by (3.22) with application of the above constraints (4.3)- (4.4) is again conjugate
orthogonal net.

The proof is based on the observation that orthogonality of the conjugate net r̂ is
equivalent to the fact that the function 1

2 r̂ · r̂ satisfies the Laplace system of the net.
The statement follows then from direct verification, using the constraints (4.3)-(4.4), and
showing that

1

2
r̂ · r̂ =

1

2
r · r −Θ[X◦,Y ∗]Θ[Y ,Y ∗]−1Θ[Y , h] = ρ̂, (4.5)

is therefore the corresponding transform of the solution ρ of the Laplace system of r.
The formulation of the theorem on permutability of superpositions of vectorial Ribau-

cour transformations reads as in Theorem 3.3. One has to check, what can be done by
direct calculation, that on the intermediate level the reduction conditions (4.2)-(4.4) are
satisfied by the transformed data.

Geometry of integrable discrete analog of orthogonal conjugate nets follows from the
observation made by Demoulin, who showed [24] that the vertices r, r{a}, r{b}, and r{a,b}

of the Ribaucour transform are concircular, see Figure 4. In proving that we will follow
[45], where this fact was shown as an implication of the orthogonality constraint imposed
on the fundamental transformation. Given three points r, r{a} and r{b}, the coordinates
of the center of the circle passing through them are of the form

r + λXa + µXb,

where λ and µ are determined by the condition that the lines joining the center to the
mid-points of the segments [r, r{a}] and [r, r{b}], are perpendicular to these segments.
These conditions, due to the transformation formulas (3.34) and the diagonal elements of
the reduction condition (4.3)

2θaa =Xa ·Xa, (4.6)
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Figure 4. The superposition of two scalar Ribaucour transforms of an orthogonal conjugate net.

The vertices r, r{a}, r{b}, and r{a,b} of the elementary quadrilateral are concircular. For circular

quadrilaterals opposite angles sum up to π. The center of the circle is the intersection point of

bisectors of all the four sides of the quadrilateral

are reducible to

θa + (λXa + µXb) ·Xa = 0, θb + (λXa + µXb) ·Xb = 0. (4.7)

Analogously, the condition that the line joining the center to the mid-point of the segments
[r{a}, r{a,b}] is perpendicular to the segment is(

r{a} +
1

2

(
r{a,b} − r{a}

)
− r − λXa − µXb

)
·X{a}

b = 0, (4.8)

what can be verified using the transformation formulas, equations (4.7), and off-diagonal
elements of the reduction condition (4.3)

θab + θba =Xa ·Xb. (4.9)

Remark. In [36] we proved the circularity of the quadrilaterals by showing equivalence of
the constraint with equation

Xa ·X{a}
b +Xb ·X{b}

a = 0, (4.10)

an immediate consequence of the transformation formulas (3.39) and of the condition (4.3).

In the spirit of works [68, 69] one can conclude that the integrable discrete analogs of
orthogonal conjugate nets is provided by circular lattices.

Definition 4.1. The integrable discrete analogue of orthogonal conjugate net is a map
r : ZN → EM of N -dimensional integer lattice such that for arbitrary n ∈ ZN and any two
directions a ̸= b of the lattice, the vertices rn, rn+ea , rn+eb , and rn+ea+eb of elementary
quadrilaterals are concircular.

Integrability of the circular reduction of lattices of planar quadrilaterals follows from the
fact that the circularity constraint is preserved [17] by evolution of the lattices expressed
by the extended permutability theorem, i.e. if the three quadrilaterals with vertices

{r, r{a}, r{b}, r{a,b}}, {r, r{a}, r{c}, r{a,c}}, {r, r{b}, r{c}, r{b,c}},
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are circular, then the three circles through the triplets

{r{a}, r{a,b}, r{a,c}}, {r{a}, r{a,b}, r{a,c}}, {r{a}, r{a,b}, r{a,c}},

intersect in the point r{a,b,c}, what is equivalent to the Miquel theorem of elementary
geometry. In view of multidimensional consistency of lattices of planar quadrilaterals this
implies the multidimensional consistency of circular lattices. Soon after geometric proof
of their integrability, it was confirmed by the non-local ∂̄ dressing technique in [36], the
algebro-geometric construction [4], by construction of the corresponding reduction of the
fundamental transformation [26, 75], and within the free-fermion description of the KP
hierarchy [39].

Integrability of other basic reductions of the multidimensional lattice of planar quadri-
laterals was investigated in [35], see also [13]. We remark that transformations [89] of
the system of discrete Moutard equations (2.20) and of the corresponding Miwa’s discrete
BKP system (2.23) can be obtained as an integrable reduction of the fundamental trans-
formation [28]. For review of the theory and many other geometric aspects of integrable
discrete systems see [13]. Interesting applications of the theory to architectural design and
computer graphics are discussed in [94, 95].

5 Conclusion and open problems

We presented interpretation of known results in the theory of discrete asymptotic and
discrete conjugate nets from the discretization by Bäcklund transformations point of view.
We collected both classical formulas of XIXth century differential geometry of surfaces and
their transformations, and more recent results from geometric theory of integrable discrete
equations. Darboux–Bäcklund transformations of difference operators are reviewed in [33].
Old ideas of differential geometry of surfaces relevant to integrability are still sources of
inspiration for contemporary research, see for example [15, 23].

The theory of multidimensional discrete conjugate nets is based on the simple geo-
metric principle of planarity of elementary quadrilaterals. Their integrable reductions
often come from geometric understanding, in the spirit of Klein, of various reductions
of projective geometry by introducing absolute objects and corresponding restrictions of
the group of projective transformations. Moreover, basic analytic tools of the theory of
integrable systems, like the non-local ∂̄-dressing method and the algebro-geometric tech-
niques, could be applied to construct such lattices and corresponding solutions to discrete
Darboux equations in a rather pure form. It turns out however, surprisingly, that the
principle of coplanarity of four points can be replaced, without loss of generality from the
integrability viewpoint, by the condition of collinearity of three points [30]. The multidi-
mensional consistency of such lattices is equivalent to the Desargues theorem of projective
geometry. The collinearity condition for such N -dimensional Desargues lattice in natural
homogeneous coordinates of the projective space can be rewritten in the form

ψn+ei −ψn+ej = unijψ
n, 1 ≤ i ̸= j ≤ N. (5.1)

The compatibility condition

unji+unij = 0, unij+unjk+unki = 0, uniju
n+ej
ik = uniku

n+ek
ij , i, j, k disctinct (5.2)
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can be simplified by introducing the single potential τ such that

unij =
τn+ei+ejτn

τn+eiτn+ej
= −unji, i < j, (5.3)

which satisfies the system of Hirota equations [54, 82]

τn+eiτn+ej+ek − τn+ejτn+ei+ek + τn+ekτn+ei+ej = 0, i < j < k. (5.4)

As it was shown in [30] the 2N − 1-dimensional Hirota system is equivalent to discrete
Darboux equations of N -dimensional discrete conjugate net supplemented by (N − 1)
dimensional lattice of its Laplace transformations.

The Hirota system (5.4) is probably the most important discrete integrable system both
from theoretical [82] and practical [62] viewpoint. In particular, its multidimensional con-
sistency gives rise to the full hierarchy of commuting symmetries of the KP equation [22].
Originally it was called the discrete Toda system, which is another sign of a general rule
that single integrable discrete equation can lead, via different limits, to many differential
equations. In fact, the original name is related to the theory of two-dimensional lattices
of planar quadrilaterals and their Laplace transforms [25], while the other name is re-
lated to the Desargues lattices [30]. Darboux–Bäcklund transformations of the Hirota
system were studied in [87, 88], where the fundamental transformation of the theory of
discrete conjugate nets appears under the name of binary Darboux transformation (the
Lévy transformation is called there the elementary Darboux transformation).

Among distinguished integrable reductions of the KP hierarchy of equations there is
the BKP hierarchy, which is encompassed by the single Miwa equation (2.23). The CKP
hierarchy [21] leads, via the Darboux–Bäcklund transformations to the corresponding re-
duction [58, 104] of the Hirota system, see also [35, 29] for geometry of the corresponding
reduction of the discrete conjugate nets. In parallel to the reductions of the KP hierarchy,
which is based on restrictions of the Lie algebra gl(∞) to its orthogonal and symplectic
subalgebras so(∞) and sp(∞), on the discrete level one has the corresponding root lat-
tices and their affine Weyl group interpretations [31, 32] of the Hirota system, the Miwa
(discrete BKP) and the Kashaev (discrete CKP) equations. Many of known integrable
systems, both discrete and continuous, can be obtained as its further reductions, see
[90, 99] for applications of the root lattices and affine Weyl groups to understand Painlevé
equations. It may seem therefore that integrable discrete systems are enough to fully
understand integrability.

There is however a distinguished class of integrable differential equations, called dis-
persionless systems [76, 16, 42, 43, 61, 107], which escapes the above interpretation. The
distinguished examples of such systems are the so called generalized heavenly equations
[106, 41], which describe self-dual Einstein spaces [93], or the self-dual Yang–Mills equa-
tions [2], and both of them are genuine four dimensional.
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[20] G. Darboux, Leçons sur la théorie générale des surfaces. I–IV, Gauthier – Villars,
Paris, 1887–1896.

[21] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, KP hierarchies of orthogonal and
symplectic type. Transformation groups for soliton equations VI, J. Phys. Soc. Japan
50 (1981) 3813–3818.

[22] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, Transformation groups for soliton
equations, [in:] Nonlinear integrable systems — classical theory and quantum the-
ory, Proc. of RIMS Symposium, M. Jimbo and T. Miwa (eds.), World Scientific,
Singapore, 1983, 39–119.

[23] F. Dellinger, X. Li, H. Wang, Discrete orthogonal structures, Computers and Graph-
ics 114 (2023) 126–137.

[24] A. Demoulin, Sur la transformation de Ribaucour, Comptes Rendus Acad. Sci. Paris
150 (1910) 25–29.

[25] A. Doliwa, Geometric discretisation of the Toda system, Phys. Lett. A 234 (1997)
187–192.

[26] A. Doliwa, Quadratic reductions of quadrilateral lattices, J. Geom. Phys. 30 (1999)
169–186.

[27] A. Doliwa, Discrete asymptotic nets and W-congruences in Plücker line geometry,
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]ocnmp[ Bäcklund transformations as integrable discretization 27

[83] Th-F. Moutard, Sur la construction des équations de la forme 1
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carest, 1923.

[110] H. D. Wahlquist, F. B. Estabrook, Bäcklund transformation for solutions of the
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Krümmung, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsver. II 160 (1951)
39–77.

[112] V. E. Zakharov, S. V. Manakov, Multidimensional integrable nonlinear systems and
methods for constructing their solutions, Zap. Nauchn. Sem. LOMI 133 (1984) 77–
91; J. Math. Sci. 31 (1985) 3307–3316.

[113] V. E. Zakharov, S. V. Manakov, Construction of higher-dimensional nonlinear in-
tegrable systems and of their solutions, Funktsional. Anal. i Prilozhen. 19 (1985)
11–25; Funct. Anal. Appl. 19 (1985) 89–101.


	Introduction
	Discretization of asymptotic nets, and the Moutard  transformation
	Hyperbolic surfaces, the Moutard equation, and the Lelieuvre formulas
	The Moutard transformation and its permutability property
	The Moutard transformation as integrable discretization
	Discrete BKP equation

	Multidimensional conjugate nets, their fundamental  transformation, and multidimensional lattices of planar quadrilaterals
	Conjugate coordinates on a surface, and the Lévy transformation
	Multidimensional conjugate nets and the Darboux equations
	The vectorial fundamental (binary Darboux) transformation of conjugate nets
	Superpositions of fundamental transformations, and multidimensional lattices of planar quadrilaterals

	Curvature coordinates, the Ribaucour transformation, and circular lattices
	Conclusion and open problems

