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To Decio

This short note is dedicated to the memory of a friend who was an inspiration for me further
to be an important scientist in soliton investigation. I will not mention the many important results
he obtained in his long carreer but I prefer to mention a personal memory by S. Carillo:“Among
the many occasions I was so lucky to share my time with Decio, I may recall that Decio introduced
me to who is doing what in the field playing the older brother role with me. Thus, the first NEEDS
conference I attended to in Balaruc, was really a key step in my career and, possibly, in my life. My
deep gratitude and memory to Decio and his kind and measured style will never be forgotten.”

Abstract

A couple of applications of Bäcklund transformations in the study of nonlinear evolu-
tion equations is here given. Specifically, we are concerned about third order nonlinear
evolution equations. Our attention is focussed on one side, on proving a new invari-
ance admitted by a third order nonlinear evolution equation and, on the other one,
on the construction of solutions. Indeed, via Bäcklund transformations, a Bäcklund
chart, connecting Abelian as well as non Abelian equations can be constructed. The
importance of such a net of links is twofold since it indicates invariances as well as
allows to construct solutions admitted by the nonlinear evolution equations it relates.
The present study refers to third order nonlinear evolution equations of KdV type. On
the basis of the Abelian wide Bäcklund chart which connects various different third
order nonlinear evolution equations an invariance admitted by the Korteweg-deVries
interacting soliton (int.sol.KdV) equation is obtained and a related new explicit so-
lution is constructed. Then, the corresponding non-Abelian Bäcklund chart, shows
how to construct matrix solutions of the mKdV equations: some recently obtained
solutions are reconsidered.
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1 Introduction

The relevance of Bäcklund transformations [34, 35] in the study of soliton equations is well known
according to some of the most well known books concerned about them [1, 3, 40, 37, 39, 27]. In
particular, the focus is on the Korteweg-de Vries (KdV) equation, one of the most studied third
order nonlinear evolution equations, which, both in the scalar case [6, 5] as well as in the non-
Abelian one, [14, 9, 8, 11], turns out to be connected to many other third order nonlinear evolution
equations. Specifically, a novel invariance admitted by the KdV interacting soliton equation,
introduced by Fuchssteiner [24] is proved. Furthermore, recent results concerned about operator
equations which represent the non-Abelian counterpart of the scalar equations are reconsidered.
A wide net of Bäcklund transformations, we termed Bäcklund chart [14, 9, 8, 11], relates the KdV
equation, the potential Korteweg-de Vries (pKdV), the modified Korteweg-de Vries (mKdV), the
KdV eigenfunction (KdV eig.) to the KdV singularity manifold equation (KdV sing.) [46]. The
constructed Bäcklund chart represents a key tool to show invariances enjoyed by the equations it
connects as well as to construct solutions they admit. Third order nonlinear evolution equations
of KdV type are considered. Specifically, they are all connected via Bäcklund transformations. A
Bäcklund chart, depicts the many links which connect the different nonlinear evolution equations
under investigation. The latest Bäcklund chart is illustrated in [11]; its construction is directly
related to results in [25, 5] further developped. Generalisations, in the case of noncommutative
nonlinear evolution equations are comprised [14, 15, 9, 8] while a comparison between the two
different cases Abelian and non-Abelian, respectively, is studied in [11].

The opening Section 2 is focussed on the KdV interacting soliton equation, as it was termed by
Fuchssteiner [24]: it is, now, proved to admit a non trivial invariance which seems to be new. As
a consequence, via such an invariance, we construct a family of stationary solutions, again new,
admited by the KdV interacting soliton equation.

The subsequent Section 3, is devoted to the non-Abelian Bäcklund chart, constructed in [14, 9,
8], and, in particular, the matrix mKdV equation. Some solutions it admits are shown. Specifically,
a general theorem obtained in [15] is applied to derive solutions in the case of the 2 × 2 matrix
mKdV equation according to the results in [12, 17, 18].

In the closing Section 4 some perspectives and open problems are mentioned.

2 The KdV interacting soliton equation

This Section is devoted to the KdV interacting soliton equation, denoted, for short, as int. sol.
KdV, is introduced by Fuchssteiner in [24]. This equation was then, in [25], connected to the KdV,
mKdV and KdV sing. and, more recently, [5, 11] also to the KdV eigenfunction equation [32, 7].
Bäcklund transformations as well known can be applied to reveal new symmetry properties, as well
as to construct solutions of non-linear evolution equations they connect. Both these viewpoints
are adopted in the present short note. Hence, first of all the definition of Bäcklund transformation
is recalled. Then, the connections among third order non-linear evolution equations are retrieved
and, finally, an invariance, enjoyed by the int. sol. KdV equation, is readily constructed. Notably,
such an invariance as well as the corresponding solution seem to be new. Indeed, the enjoyed
invariance allows to construct a non trivial solution of the int. sol. KdV equation.

According to [25], the int. sol. KdV equation 1 equation is connected via Bäcklund transforma-
tions to the Korteweg deVries (KdV), the modified Korteweg deVries (mKdV), and the Korteweg
deVries singuarity manifold (KdV sing.), introduced by Weiss in [46] via the Painlevè test of inte-
grability.

1The int. sol. KdV equation appears also in [2] where third order nonlinear evolution equations and
their linearizability are studied.
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2.1 Invariance

In this subsection an invariance property enjoyed by the int.sol.KdV equation is proved. It can
be trivially checked to be scaling invariant since on substitution of αs,∀α ∈ C, to s it remains
unchanged. Remarkably, on application of results in [5, 11], the following further nontrivial invari-
ances can be proved.

Proposition 2.1

The int.sol.KdV equation st = sxxx − 3
sxsxx
s

+
3

2

sx
3

s2
is invariant under the transformation

I : ŝ =
as(cD−1(s) + d)d− cs(aD−1(s) + b)

(cD−1(s) + d)2
, a, b, c, d ∈ C s.t. ad− bc ̸= 0, (1)

where D−1 is chosen such that D ◦D−1 is the identity.2

The proof, according to [5], is based on the invariance under the Möbius group of transforma-
tions

M : φ̂ =
aφ+ b

cφ+ d
, a, b, c, d ∈ C such that ad− bc ̸= 0. (2)

enjoyed by the KdV singularity manifold equation

φt = φx{φ;x}, where {φ;x} :=

(
φxx

φx

)
x

− 1

2

(
φxx

φx

)2

. (3)

Combination of such an invariance with the connection between the KdV eigenfunction and the
KdV singularity manifold equation allows to prove the proposition. Indeed, let

M : φ̂ =
aφ+ b

cφ+ d
, ∀a, b, c, d ∈ C| ad− bc ̸= 0 (4)

then, the Bäcklund chart in Fig. 1, where the Bäcklund transformations B and B̂ are, respectively:

φt = φx{φ;x}
B

–––––– s2st = s2sxxx − 3ssxsxx +
3

2
sx

3

↕ M ↕ I

φ̂t = φ̂x{φ̂;x}
B̂

–––––– ŝ2ŝt = ŝ2ŝxxx − 3ŝŝxŝxx +
3

2
ŝ3x

Figure 1. Induced invariance Bäcklund chart.

B : s− φx = 0 and B̂ : ŝ− φ̂x = 0 ,

shows how the invariance I is constructed. Indeed, such an invariance follows via combination of
the Möbius transformation M with the two Bäcklund transformations B and B̂. An application of
the invariance I indicates how to construct solutions of the KdV interacting soliton equation.

2Often one assumes that s(x, t) belongs to the Schwartz space S of rapidly decreasing functions for each
fixed t. Here S(Rn) := {f ∈ C∞(Rn) : ||f ||α,β < ∞, ∀α, β ∈ Nn

0 }, where ||f ||α,β := supx∈Rn

∣∣xαDβf(x)
∣∣,

and Dβ := ∂β/∂xβ ; throughout this article n = 1. Then one may define D−1 by D−1 :=

∫ x

−∞
dξ. In

calculations other choices may be useful.
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2.2 An admitted explicit solution

An example of a new solution admitted be the KdV interacting soliton equation is readily obtained
starting from its invariance proved in the previous subsection. To construct it, it is easy to check
that s(x, t) = k,∀k ∈ R\{0}, represents a solution of the KdV interacting soliton equation

st = sxxx − 3
sxsxx
s

+
3

2

sx
3

s2
. (5)

When, in the Möbius group we let the parameters be

a = d = 0, b = c = 1, (6)

it follows, from the invariance I, that a further solution of the KdV interacting soliton equation
is represented by

ŝ(x, t) = − 1

kx2
, ∀k ∈ R\{0} . (7)

Further solutions can be obtained in the same way. Notably, the same way of reasoning allows
to constrcut solutions also in the non-Abelian corresponding case.

3 Non-Abelian case: solutions of mKdV equation

This section is devoted to non-Abelian equations. In [14, 15], operator equations, which can be con-
sidered as non-Abelian counterparts of third order nonlinear evolution equations of KdV type are
studied and an extended Bäcklund chart is constructed [8]. The comparison between the Abelian
and the non-Abelian Bäcklund chart [11] shows a richer structure in the non-commutative case. In
particular, we consider the special case when the operator is finite dimensional so that it admits a
matrix representation. Thus, the aim is to emphasise the importance of Bäcklund transformations
also when solutions admitted by non-Abelian soliton equations are looked for. Solutions admitted
by the matrix equations are a subject of interest in the literature. The study presented, based on
previous results [14, 15] further developed in [12, 17], is consistent with multisoliton solutions of the
matrix KdV equation obtained by Goncharenko [26], via a generalisation of the Inverse Scattering
Method. Accordingly, Theorem 3 in [15] represents a generalisation of Goncharenko’s multisoliton
solutions. Solutions of the matrix mKdV equation obtained in [17] (motivated by [12]), where the
solution formula in the case of a d × d-matrix equation is presented, are reconsidered. Note that
this is a particular case of the operator formula obtained in [15]. For further matrix solutions we
refer to [21, 26, 36, 43, 44, 29, 42].

As an example, some 2×2-matrix solutions of the mKdV equation are recalled from [17]. They
are contructed on application of the following theorem.

Theorem 3 ([13], see also [17])
For N ∈ N, let k1, . . . , kN be complex numbers such that ki+kj ̸= 0 for all i, j, and let B1, . . . , BN

be arbitrary d× d-matrices.
Define the Nd×Nd-matrix function L = L(x, t) as block matrix L = (Lij)

N
i,j=1 with the d× d-

blocks

Lij =
ℓi

ki + kj
Bj ,

where ℓi = ℓi(x, t) = exp(kix+ k3i t).
Then

V =
(
B1 B2 . . . BN

) (
INd + L2

)−1

 ℓ1Id
...

ℓNId


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Figure 2. The solution depicted in the case d = 2, k1 = 1 + i, k2 = k1 = 1 − i, B1 =(
i −2

1 + i 2− i

)
, B2 = B1, −5 ≤ x ≤ 5 and 0 ≤ t ≤ 2, plot range (−3.5, 3.5).

is a solution of the matrix modified KdV equation

Vt = Vxxx + 3{V 2, Vx} , where {V 2, Vx} := V 2Vx + VxV
2 (anticommutator)

with values in the d× d-matrices on every domain Ω on which det(INd + L2) ̸= 0.

Various kinds of solutions are obtained when complex parameters are considered. According to
what happens in the case of the scalar mKdV equation, where the input data k, k, b, b produce
a breather3, a bound state of a soliton and an antisoliton [47], also the matrix mKdV equation
admits breather solutions.

Example 1 First examples are obtained when we set k = 1 + i. For the corresponding scalar
breather this implies velocity = 2, and hence the plots are drawn for (x+2t, t) giving a stationary
picture.

To give an idea of some significant solutions admitted by matrix mKdV equation in the case
d = 2, in Fig. 2 and Fig. 3 the solution is depicted for the matrix parameters

a) Figure 2 B1 = B =

(
i −2

1 + i 2− i

)
, B2 = B,

b) Figure 3 B1 = B =

(
i −2i

3i− 1 −1

)
, B2 = B.

Next we turn to the 2-soliton case with real input data k1, k2, b1, b2.

Example 2 Here we focus on the input data N = 2, k1 = 1, k2 =
√
2 in Theorem 3.

3Here k denotes the complex conjugate of k.
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Figure 3. The solution depicted in the case d = 2, k1 = 1 + i, k2 = k1 = 1 − i, B1 =(
i −2i

3i− 1 −1

)
, B2 = B1, −5 ≤ x ≤ 5 and −1 ≤ t ≤ 1, plot range (−5.5, 5.5).

For comparison, first of all we depict, in Fig. 4, the scalar 2-soliton (i. e. the case d = 1 in
Theorem 3) generated with b1 = b2 = 1.

Then we turn to the case d = 2, where in Fig. 5 and Fig. 6. the solutions are depicted generated
with the matrix parameters

a) Figure 5 B1 =

(
1 1
1 1

)
, B2 =

(
1 −1

−1 1

)
,

b) Figure 6 B1 =

(
1 0
0 1

)
, B2 =

(
0 1
1 0

)
.

Comments and observations:

• Obviously, solutions which correspond to the choice k1, . . . , kN ∈ R and B1 = . . . = BN =: B
(up to a common real multiple) where B is real, are real-valued.

• For N = 1, Theorem 3 gives

V =
(
Id +

( 1

2k
ℓB
)2)−1

ℓB,

where Id denotes the d-dimensional identity matrix.

An example of a solution with a real spectral matrix B which has complex Jordan form is
given in [17]. Specifically, B is the rotation by the angle −π

4 ,

B =

(
1√
2

1√
2

− 1√
2

1√
2

)
.
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Figure 4. d = 1 with the input data N = 2, k1 = 1, k2 =
√
2, and b1 = b2 = 1 in Theorem 3

Figure 5. The solution depicted represents the case d = 2, k1 = 1, k2 =
√
2, B1 =

(
1 1
1 1

)
,

B2 =

(
1 −1

−1 1

)
, when −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5, plot range (−

√
2,
√
2).

• The solutions depicted in Fig. 2 - Fig. 3 and Fig. 5 - Fig. 6 provide only some examples of
the wide variety of solutions which are covered by Theorem 3.

• In [18] first steps towards an asymptotic study of solutions from Theorem 3 are given in the
case N = 2, see also [45].

4 Conclusions and perspectives

To complete our work we mention some of the themes which deserve to be further investigated.
In particular, as we already pointed out, the interest on Bäcklund transformations is twofold since
they allow to reveal new connections among equations, as well as they indicate a way to construct
new solutions. A natural extension of the connections via Bäcklund transformations is represented
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Figure 6. The solution depicted in the case d = 2, k1 = 1, k2 =
√
2, B1 =

(
1 0
0 1

)
,

B2 =

(
0 1
1 0

)
, when −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5, plot range (−

√
2,
√
2).

by the extension to hierarchies. This aspect relies on the knowledge of the recursion operator
admitted by at least one of the equations which appear in the Bäcklund chart. Then, according to
[25] also in the non-Abelian case [14, 9, 8, 11], it follows that all the equations in the Bäcklund chart
admit a recursion operator: it can be obtained from the known recursion operator via Bäcklund
transformations. Hence, the same Bäcklund chart follows to link the hierarchies generated by the
recursion operator applied to the considered nonlinear evolution equations. Indeed, the algebraic
properties which characterise a hereditary recursion operator are preserved under Bäcklund trans-
formations as well known [23, 22]. Notably, the involved algebraic properties are preserved via
Bäcklund transformations also when non-Abelian nonlinear evolution equations are studied [14].

Indeed, promising perspectives as well as open problems can arise in the study of higher order
nonlinear evolution equations.

Notably, the Bäcklund chart connecting 3rd oder (scalar) nonlinear evolution equations as
well as the corresponding hierarchies [25], admit a non-Abelian counterpart. Such a non-Abelian
Bäcklund chart is in [14, 15] with extensions in [9, 8]. As testified by the study on non-Abelian
Burgers equation [33, 28, 30, 16, 10], no matter which is the order of the nonlinear evolution
equations, the links established for the base members naturally extend to the corresponding whole
hierarchies. In particular, the non-Abelian Burgers Bäcklund chart exhibits a structure which is
richer than the corresponding Abelian one.

A Bäcklund chart [38, 6], connects the Caudrey-Dodd-Gibbon-Sawata-Kotera and Kaup-Kuper-
shmidt hierarchies [20, 41, 31]. All the involved equations are 5th order nonlinear evolution equa-
tions; notably, the Bäcklund chart linking them all shows an impressive resemblance to the one
connecting KdV-type equations. Again, such Bäcklund chart can be extended to the corresponding
whole hierarchies [38, 6]. Some preliminary results are given in [19].
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[9] S. Carillo, M. Lo Schiavo, C. Schiebold, Bäcklund TransformationsandNon Abelian Nonlinear
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Caudrey-Dodd-Gibbon-Sawata-Kotera and Möbius induced invariance properties, in progress,
2024.

[20] P. J. Caudrey, R. K. Dodd, J. D. Gibbon, A new hierarchy of Korteweg-de Vries equations,
Proc. Roy. Soc. London, A 351 (1976), 407–422.

[21] X. Chen, Y. Zhang, J. Liang, R. Wang. The N-soliton solutions for the matrix modified
Korteweg-de Vries equation via the Riemann-Hilbert approach. Eur. Phys. J. Plus , 135,
(2020), 574–582.
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