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Abstract

In this paper, we establish a relation between two seemingly unrelated concepts for
solving first-order hyperbolic quasilinear systems of partial differential equations in
many dimensions. These concepts are based on a variant of the conditional symmetry
method and on the generalized method of characteristics. We present the outline of
recent results on multiple Riemann wave solutions of these systems. An auxiliary result
concerning a modification of the Frobenius theorem for integration is used. We apply
this result in order to show that the conditional symmetry method can deliver larger
classes of multiple Riemann wave solutions, through a simpler procedure, than the
one obtained from the generalized method of characteristics. We demonstrate that
solutions can be interpreted physically as a superposition of k single waves. These
theoretical considerations are illustrated by examples of hydrodynamic-type systems
in (n+ 1)-dimensions.

1 Introduction

This work is dedicated to the memory of professor Decio Levi (University of Roma Tre),
a friend and collaborator whose support and knowledgeable and generous advice I could
always count on during the many years of our aquaintance. The subject of the present
article was inspired by Decio Levi’s encouragement, which resulted in a series of lectures
that I gave at the University of Roma Tre in the spring of 2016.
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Over the last two centuries, a number of authors (e.g. [1, 2, 3, 4, 5] and references
therein) have undertaken a systematic study of the group invariant solutions of nonlinear
partial differential equations (PDEs). This study has often required a detailed analysis of
the subgroup structures of a given Lie group which arises as a symmetry group of some
system of PDEs. A number of attempts to generalize this subject and to develop its
applications can be found in the literature (see e.g. [5, 6, 7] and references therein). Of
particular interest from a physical point of view has been the development of the theory
of conditional symmetries which is involved in the process of extending the classical Lie
theory of symmetries of PDEs. This approach consists essentially of augmenting the initial
system of PDEs with certain first-order differential constraints (DCs) for which a symmetry
criterion is applied. This leads to an overdetermined system of PDEs that can admit, in
some cases, a larger family of Lie point symmetries than the initial system. Such Lie point
symmetries can be used to find and construct particular types of solutions of the original
system of PDEs [6, 7, 8, 9, 10, 11, 12]. If, in an attempt to obtain larger classes of solutions,
one adds DCs giving rise to a first-order system of PDEs in a form which is compatible (in
a sense which will be explained in the next sections) with the initial system of PDEs, then
one obtains the conditional symmetry formalism [11, 12]. In this formalism, the DCs are
described through a Lie algebra of vector fields, whose elements are Lie point symmetries
of the initial system of PDEs leading to solutions satisfying the imposed DCs. To obtain
an easily applicable formalism, Lie algebras of conditional symmetries are assumed to
obey some assumptions, e.g. one considers Abelian Lie algebras admitting a basis of a
particular type [8, 9].

In this paper, we focus on the investigation and construction of multiple Riemann wave
solutions obtained via the conditional symmetry method and a comparison of these results
with the ones obtained through the generalized method of characteristics established in
[13, 14, 15].

The method of characteristics is used to find a certain class of solutions of nonlinear
hyperbolic systems of PDEs and to investigate the existence and construction of the Rie-
mann wave and Riemann k-wave solutions. The single wave solution was first introduced
by S. Poisson in 1808 in connection with PDEs describing an ideal compressible isothermal
fluid flow. He constructed a solution assuming that it had an implicit form between the
dependent and independent x variables with the freedom of one arbitrary function F , i.e.
u = F ((u+ u0)t− x). This idea was substantially generated by B. Riemann in 1858 who
was investigating the mathematical correctness of the problem of the propagation and
superposition of waves admitted by this fluid dynamics system of PDEs [16]. Since then,
the problem of the superposition of waves has been investigated by many authors (see e.g.
[17, 18, 19, 20, 21, 22, 23]). A number of attempts to generalize the Riemann invariants
method and its various applications can be found in the recent literature of the subject
(see e.g. [24, 25, 26, 27, 28, 42, 43] and references therein).

The results obtained from the conditional symmetry method and the generalized method
of characteristics for constructing multiple Riemann wave solutions are so promising that
it seems to be worthwhile to compare these methods and check their effectivness for the
case of Riemann k-wave solutions. This is, in short, the aim of this paper.
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2 Rank 1 solutions

Consider a properly determined homogeneous hyperbolic system of q PDEs in p indepen-
dent variables written in the matrix form

Ai(u)ui = 0, ui =
∂u

∂xi
, i = 1, ..., p

x =
(

x1, ..., xp
)

∈ D ⊂ R
p, u =

(

u1, ..., uq
)

∈ U ⊂ R
q,

(2.1)

where A1, ..., Ap are q × q matrix functions of u. Here, we use the summation convention.
All considerations here are local. It suffices to search for solutions defined on a neigh-
borhood of x = 0. All functions are assumed to be smooth. The form of the system
(2.1) is invariant under linear transformations of the independent variables and arbitrary
transformations of the dependent variables.

Let us classify the solutions of the system (2.1) according to their rank. For example,
u(x) has rank 0 if and only if u is constant and it is a trivial solution of (2.1). This fact
is needed for the study of rank one solutions and of more general cases of multi-wave
solutions.

Let us consider a wave vector which is a non-zero vector function λ(u) = (λ1(u), ..., λp(u))
such that ker

(

λiA
i
)

6= 0. The scalar function r : Rp+q → R given by

r(x, u) = λi(u)x
i (2.2)

is called the Riemann invariant associated with the wave vector λ. The implicit equation

u = f (r(x, u)) (2.3)

defines a unique function u(x) on a neighborhood of x = 0 for any function f : R → Rq

and the matrix of derivatives of u has the factorized form

∂uα

∂xi
(x) = φ(x)−1λi (u(x)) f

′α (r(x, u)) , f ′α =
dfα

dr
, (2.4)

where the scalar function φ(x) is given by

φ(x) = 1− ∂r

∂uα
(x, u(x))f ′α(r(x, u(x))) 6= 0, (2.5)

for which we assume that (2.4) does not admit a gradient catastrophe. Note that u(x) has

rank at most equal to 1

(

i.e. rank
∂uα

∂x
≤ 1

)

.

If the (p− 1) vector fields

ξa(u) =
(

ξ1a(u), ..., ξ
p
a(u)

)

a = 1, .., p − 1 (2.6)

satisfy the orthogonality conditions

λiξ
i
a = 0, (2.7)

(i.e. the vector fields λ, ξ1, . . . , ξp−1 form a base in R
p), then

ξia(u(x))
∂uα

∂xi
(x) = 0.
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so u1(x), . . . , uq(x) are invariants of the vector fields ξia(u(x))
∂

∂xi
on Rp. Hence, the p-

dimensional submanifold {(x, u(x))} is invariant under the vector field

Xa = ξia(u)
∂

∂xi
a = 1, . . . , p − 1, (2.8)

on Rp×Rq space. Conversely, if u(x) is a q-component function on a neighborhood of x = 0
such that the graph of the solution {(x, u(x))} is invariant under all vector fields (2.8),
where λiξ

i
a = 0, then u(x) is the solution of (2.3) for some function f . This geometrically

characterizes the solutions of the implicit equation (2.3). Now, if u(x) is the solution of
(2.3), then we get

Ai(u(x))ui = φ(x)−1λi(u(x))A
i(u(x))f ′(r(x, u(x))). (2.9)

Thus u(x) is a solution of the initial system (2.1) if and only if the system of first-order
ordinary differential equations (ODEs) for f

λi(f)A
i(f)f ′ = 0, f ′ =

df

dr
, (2.10)

is satisfied, i.e. if and only if f ′ takes values in ker(λiA
i). Note that (2.10) is an under-

determined system of first-order ordinary differential equations (ODEs) for f . The extent
to which (2.10) constrains f depends on the size of ker(λiA

i). For example, if λiA
i = 0,

then there is no constraint on f at all. In any case, this exhibits a class of solutions u(x)
of (2.1). The rank of u(x) is at most equal to 1 and the graph of a solution {(x,u(x))} is
invariant under the vector fields (2.8), where λiξ

i
a = 0. Note that rescaling the wave vector

λ produces the same solutions. Note also that vector fields of the form (2.8) commute, i.e.
form an Abelian distribution.
Example: Consider the system

ut +A(u)ux = 0 (2.11)

in two independent variables t and x, and q dependent variables u1, . . . , uq. The wave
vectors are the nonzero multiples of

λ = (−α(u), 1),

where α(u) is an eigenvalue function of u associated with the q × q matrix function A. A
function u(t, x) defined on a neighborhood of t = 0 satisfies an equation

u = f(x− α(u)t)

for some f : R → R
q if and only if the graph of the solution {(t, x, u(t, x))} is invariant

under the vector field

X =
∂

∂t
+ α(u)

∂

∂x
, (2.12)

and such a function u(t, x) is a solution of (2.11) if and only if the system of ODEs

A(f)f ′ = α(f)f ′, f ′ =
df

dx̄
, (2.13)
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holds. The functions

t̄ = t, x̄ = x− α(u)t, ū1 = u1, . . . , ūq = uq

are coordinates on R
2 × R

q. It allows us to rectify the vector fields (2.12)

X =
∂

∂t̄
.

The transverse surfaces invariant under X are defined by equations of the form

ū = f(x̄),

where f : R → R
q is arbitrary, i.e. ū(t̄, x̄) = f(x̄) is the general solution of the invariant

condition

ūt̄ = 0.

Augmenting the system (2.11) with the invariant condition produces the overdetermined
system

(A(ū)− α(ū)I)ūx̄ = 0, ūt̄ = 0,

with general solution

ū(t̄, x̄) = f(x̄),

where f : R → Rq satisfies (2.13), which reproduces the classical result.

3 Generalized method of characteristics

The generalized method of characteristics [13, 14] for constructing multiple Riemann wave
solutions of quasilinear systems (2.1) can be summarized as follows :

Consider an overdetermined system composed of a system (2.1) which is subjected to
differential constraints such that all first-order partial derivatives of the unknown functions
uα are decomposable (with scalar functions ξs(x) 6= 0)

∂uα

∂xi
=

k
∑

s=1

ξs(x)γαs (u)λ
s
i (u), (3.1)

where we assume that there exist kp-valued real wave functions λsi : R
q → R and kq-valued

real functions γαs : Rq → R which satisfy the algebraic equation (called the wave relation)

(

Aiβ
α (u)λsi

)

γαs = 0, s = 1, ..., k, β = 1, ..., q. (3.2)

Note that u(x) given by (3.1) has rank equal to k

(

i.e. rank
∂uα

∂xi
≤ k

)

. We require that

every triple wave vector λs1 , λs2 , λs3 for s1 < s2 < s3 = 1, ..., k be linearly independent.
We also assume that we have k linearly independent vector functions γs and we identify
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them with vector fields on U -space. The algebraization of the PDEs (2.1), given by (3.1)
and (3.2), allows us to construct a more general class of solutions than the one given by
(2.3). We have postulated a form of solution u(x) for which the tangent map du(x) consists
of the linear combinations of simple elements γs ⊗ λs, with non-vanishing functions ξs(x)
at any point x ∈ D , namely

duα =

k
∑

s=1

ξs(x)γαs (u)λ
s
i (u)dx

i. (3.3)

We verify whether the system of one-forms (3.3) is in involution for any function ξs(x) 6=
0. Here u1, ..., uq , ξ1, ..., ξk are considered to be unknown functions of x1, ..., xp. The
involutivity conditions in the Cartan sense [30] for the tangent map du require that the
commutators for each pair of vector fields γi and γj are spanned by these fields [21]

[γi, γj ] ∈ span {γi, γj}, i 6= j = 1, ..., k (3.4)

and that the Lie derivatives of the wave vector λi along the vector field γj be

Lγjλ
i ∈ span {λi, λj}, i 6= j = 1, ..., k. (3.5)

The conditions (3.4) and (3.5) are necessary and sufficient conditions for the existence
of solutions of the one-forms (3.3) [14]. In practical applications, it is recommended to
choose a holonomic system for the vector fields {γ1, ..., γk} by requiring a proper length
for each pair of vector fields γi and γj such that the rescaled vector fields γ̃1, ..., γ̃k form
an Abelian distribution.

[γ̃i, γ̃j ] = 0, i 6= j = 1, ..., k. (3.6)

Here, we are interested in rescaling the vector fields {γ1, ..., γk} by functions of u, which
ensures that the rescaled vector fields still satisfy (3.2). Note that the Frobenius theorem
is not sufficient to prove the existence of an appropriate rescaling of these vector fields
{γ1, ..., γk} leading them to commute among themselves. The existence of k-wave solutions
requires a more restrictive condition on the form of the commutator between the vector
fields γi and γj than the one assumed by the Frobenius theorem (see e.g. [31]). This
fact requires a modification of this theorem for integration which is useful for the purpose
of constructing and investigating k-wave superpositions expressed in terms of Riemann
invariants in R

p-space.
Theorem 1. (the modified Frobenius theorem by rescaling [33].)
Suppose that a family of vector fields γ1, ..., γk is defined on a q-dimensional manifold

N such that

i) γ1 ∧ ... ∧ γk 6= 0,

ii) [γi, γj ] = hiijγi + hjijγj, (no summation convention)
(3.7)

for certain functions hiij ∈ C∞(N) with i, j, l = 1, ..., k. Then there exists a set of func-
tions f1, ..., fk ∈ C

∞(N) such that the rescaled vector fields γ1, ..., γk form an Abelian
distribution

[fiγi, fjγj] = 0, i, j = 1, ..., k (3.8)
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for all i, j = 1, ..., k.
The proof uses the induction hypothesis and the above result is demonstrated in detail

in [33].
Suppose now, according to Theorem 1, that the normalized k-dimensional distribution

{γ1, ..., γk} is Abelian (i.e. that the conditions (3.8) hold). This means that we can
determine a k-dimensional manifold S on Rq obtained by integrating the nonlinear system
of kq PDEs

∂fα

∂rs
= γαs (f

1, ..., f q), s = 1, ..., k (3.9)

with a solution defined by

S : u =
(

f1(r1, ..., rk), ..., f q(r1, ..., rk)
)

. (3.10)

Hence the vector fields γs = γαs
∂

∂uα
are Frobenius integrable and, due to the independence

condition (3.7i), these vector fields determine a foliation of R
q given by k-dimensional

leaves. Note that a solution of the system of one-forms (3.3) also satisfies the original
system of PDEs (2.1). Hence the system (3.3) can be parametrized in terms of the variables
r1, ..., rk if S admits a coordinate system (3.10). The matrix of derivatives of (3.10) takes
the form

∂uα

∂xi
=

k
∑

s=1

∂uα

∂rs
∂rs

∂xi
. (3.11)

Assume that the wave functions λsi (u) are pulled back to the manifold S ⊂ U . Then the
kp wave functions λsi (u) become functions of a coordinate system r1, ..., rk on S. From
the linear independence of the vector fields γ1, ..., γk , and comparing (3.3) with (3.11), we
obtain the Pfaffian system of one-forms

drs = ξs(x)λsi (r
1, ..., rk)dxi, s = 1, ..., k (with ξs(x) 6= 0). (3.12)

Note that the elimination of the functions ξ1, ..., ξk in the Pfaffian system (3.12) leads
to an overdetermined system of PDEs. Hence, it is convenient from the computational
point of view to impose on the wave vectors λ1, ...λk the involutivity conditions which
guarantee the existence of a certain class of solutions of the Pfaffian system (3.12) with
the freedom of k arbitrary functions of one variable. Under the above assumption, the
conditions (3.5) on the one-forms λs can be written in terms of r1, ..., rk and has to satisfy
the linear first-order system of PDEs [14]

∂λs

∂rp
= αs

pλ
s + βspλ

p (no summation) (3.13)

for all s 6= p = 1, ..., k, where αs
p and βsp are functions of r1, ..., rk. Next, after an appro-

priate normalization of each wave vector λs such that λs =
(

1, λs2, ..., λ
s
p

)

, the involutivity
conditions (3.13) can be written

∂λsµ
∂rl

= αs
l

(

λsµ − λlµ

)

,
∂λlµ
∂rs

= βls

(

λlµ − λsµ

)

, s 6= l, µ = 1, ..., p. (3.14)
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Cross-differentiating the equations (3.14), we obtain a linear hyperbolic system of kp
second-order equations for each component of the wave function λsµ, that is [34]

∂2λsµ
∂rs∂rl

+ α̃s
l

∂λsµ

∂r(s)
+ β̃sl

∂λsµ

∂r(l)
= 0, µ = 1, ..., p (3.15)

for s 6= l = 1, ..., k (no summation over the indices s and l), where α̃s
l and β̃

s
l are functions

of r1, .., rk. Equation (3.15) always admits a solution by the method of characteristics (it
is a Darboux problem). We look for the most general solution of the linear second-order
PDEs (3.15) which allows us in turn to determine the solution of the Pfaffian system (3.12)
which has the implicit form [21, 34]

λsi (r
1, ..., rk)xi = ψs(r1, ..., rk). (3.16)

The quantities r1, ..., rk constitute Riemann invariants as they are implicitly defined as
functions of x1, ..., xp by the relation (3.16) in the space Rp. Thus, the construction of the
k-wave solution is determined by the implicit relations

u =
(

f1(r1, ..., rk), ..., f q(r1, ..., rk)
)

,

λsi (r
1, ..., rk)xi = ψs(r1, ..., rk), s = 1, ..., k.

(3.17)

This completes the factorization of the problem of constructing k-wave solutions by the
generalized method of characteristics. This approach has produced many new analytic
solutions of hydrodynamic-type systems (equations appearing in continuous media, e.g.
classical and relativistic hydrodynamics (see e.g.[35, 36, 37] and references therein) and in
nonlinear field equations (see e.g. [38, 39, 40] and references therein)).

4 The elastic superposition of two waves

Let us now demonstrate that certain classes of solutions of the Pfaffian system (3.12)
describe the elastic superposition of two waves. For the sake of simplicity this statement
is illustrated for a quasilinear system with two independent variables (time t and one space
variable x)

ut +A(u)ux = 0, (4.1)

where A is a q × q matrix function of u =
(

u1, ..., uq
)

. We assume that the double wave
solutions of (3.3) exist (for k = 2) and that, in the initial conditions for time t = t0, the
non-vanishing dependent variables, ξ1(t0, x) and ξ

2(t0, x), are different from zero.

It was proved in [41, 19] that if the initial data are sufficiently small at t = t0, then
there exists a time interval [t0, T ] in which the gradient catastrophe for the derivatives of

the solutions
∂rs

∂x
, s = 1, 2, of the Pfaffian system (3.12) does not occur. Each function

rs(t, x), s = 1, 2 is constant along the appropriate family of characteristics

C(s) :
dx

dt
= νs

(

r1(t, x), r2(t, x)
)

, s = 1, 2 (4.2)
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of the system obtained from the Pfaffian system (3.12) by the elimination of the variables
ξs

∂rs

∂t
+ νs

(

r1(t, x), r2(t, x)
) ∂rs

∂x
= 0, (4.3)

where the wave vectors λs have been normalized to λs =
(

νs(r
1, r2),−1

)

and νs are
the eigenvalues associated with the matrix A. If we choose, in the space of independent

variables R2, the initial data at t = t0 in such a way that the derivatives
∂rs

∂x
have compact

and disjoint supports

1) t = t0 : supp
∂rs

∂x
(t0, x) ⊂ [as, bs],

2) t = t0 : supp
∂r1

∂x
(t0, x) ∩ supp

∂r2

∂x
(t0, x) = φ,

(4.4)

where as, bs ∈ R, s = 1, 2, and a1 < b1 < a2 < b2, then, for an arbitrary time t0 < t < T ,

the supports supp
∂rs

∂x
(t, x) are contained in the strips between appropriate characteristics

of the families C(s) passing through the ends of the intervals [as, bs]. It was proved [19, 42]
that the initial data at t = t0 are sufficiently small and also satisfy the eigenvalue condition

∃ c > 0 ∀ (t0, x), (t0, x
′) ∈ [t0, T ]× R : ν1(r(t0, x))− ν2(r(t0, x

′)) ≥ c, (4.5)

for any x′ < x, where r =
(

r1, r2
)

. This means that every characteristic of the same

family (C(1)) has an inclination (measured with respect to the positive direction of the
x axis) which is smaller than the slope of any charateristic of the other family C(2). In

this case the strips containing supp
∂rs

∂x
(t, x) divide the remaining part of the space of

independent variables R
2 into four disjoint regions, say I-IV respectively. In the region

B : R2
r{supp ∂r1

∂x
(t, ·)∪ supp

∂r2

∂x
(t, ·)} the solution rs(t, x) of the Pfaffian system (3.12)

is constant i.e. rs = rs0.

Let us denote by t1 and t2 the times in which supp
∂r1

∂x
(t, x) and supp

∂r2

∂x
(t, x) have

only one common point. For times t ∈ [t0, t1] we have

supp
∂r1

∂x
(t, x) ∩ supp

∂r2

∂x
(t, x) = φ, t < t1 (4.6)

Therefore, the solution can be interpreted as the propagation of two separate (non-
interacting) simple waves. For the times t ∈ [t1, t2], the characteristics of the families

C(1) and C(2) containing supp
∂rs

∂x
(t, x) s = 1, 2 cross each other, i.e.

supp
∂r1

∂x
(t, x) ∩ supp

∂r2

∂x
(t, x) 6= φ, t ∈ [t1, t2] (4.7)

We interpret this phenomenon as a superposition of two simple waves. They constitute a
double wave solution of (3.12). For time t ∈ [t2, T ], making use of the conditions (4.4) and
(4.5), the strips containing the supports of the simple waves separate again. So, we again



10 ]ocnmp[ A M Grundland

have the situation for which (4.6) holds. This means that the double wave solution decays
in an exact way into two separate simple waves of the same type as imposed in the initial
data for t = t0. Therefore, the number and type of simple waves is conserved. Therefore,
we can speak of the elastic superposition of simple waves.

In general, in the case of more than two simple waves (k > 2), the superposition of waves
is analogous but more involved, because the region B ⊂ R

2 is divided by the supports

supp
∂rs

∂x
, s = 1, ..., k into 2k subregions.

5 Conditional symmetry method

There now arises the question of what additional results, if any, can be achieved by applying
symmetry group analysis to the problem of the construction of Riemann k-waves. Let us
consider a fixed set of k linearly independent wave vectors λ1, ..., λk, 1 ≤ k ≤ p with
corresponding Riemann invariants

r1(x, u) = λ1i (u)x
i, ..., rk(x, u) = λki (u)x

i. (5.1)

The implicit equation

u = f
(

r1(x, u), ..., rk(x, u)
)

(5.2)

defines a unique function u(x) on a neighborhood of x = 0, for any function f : Rk → R
q.

For all i and α, the decomposition of the matrix of derivatives of u has the factorized form

∂uα

∂xi
(x) =

(

φ(x)−1
)l

j
λji (u(x))

∂fα

∂rl
(r(x, u(x))), (5.3)

where φ(x) is an invertible k×k matrix function of x (we assumed no gradient catastrophe)

φ(x)ij = δij −
∂ri

∂uα
(x, u(x))

∂fα

∂rj
(f(x, u(x))),

∂ri

∂uα
=
∂λij
∂uα

xj . (5.4)

Note that the form of the matrix of derivatives (5.3) is more general than the one obtained
from the method of characteristics (3.1), where we assumed that ξi(x) are scalar functions.

The rank of u(x), given by (5.3), is at most equal to k

(

i.e. rank
∂uα

∂xi
≤ k

)

. If the (p−k)
vector fields

ξa(u) =
(

ξ1a(u), ..., ξ
p
a(u)

)T
, a = 1, ..., p − k (5.5)

satisfy the orthogonality conditions

λji ξ
i
a = 0, j = 1, ..., k (5.6)

then the p-dimensional manifold {(x, u(x))} is invariant under the (p− k) vector fields

Xa = ξia(u)
∂

∂xi
, a = 1, ..., p − k (5.7)
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on Rp×Rq. Conversely, if u(x) is a q-component function on a neighborhood of x = 0 such
that the graph {(x, u(x))} is invariant under the (p− k) vector fields (5.7) for which (5.6)
holds, then u(x) is the solution of (5.2) for some f because {rq, ..., rk, u1, ..., uq} constitutes
a complete set of invariants of the Abelian algebra of vector fields (5.7). If u(x) is the
solution of the implicit equation (5.2), then the system (2.1) reduces to the system of q
PDEs written in the matrix form

Ai(u(x))
∂uα

∂xi
(x) =

(

φ(x)−1
)l

j
λji (u(x))A

i(u(x))
∂fα

∂rl
(r(x, u(x))) = 0, (5.8)

where the matrix function φ(x) is given by (5.4). Comparing the result (5.3) with (3.1),
we observe that we cannot generally expect a reduction analogous to (5.8) because φ is no
longer a scalar function.

A change of variables illuminates the construction of k-wave solutions of (2.1). Let us
consider a coordinate transformation and let us fix k linearly independent wave vectors
λ1, ..., λk . Consider the p × k matrix whose columns are the vectors λ1, ..., λk and then
assume that there exists a k × k invertible submatrix function of u given by

Λ(u) =
(

λjl (u)
)

. i, j = 1, ..., k (5.9)

Then the (p− k) independent vector fields

Xa =
∂

∂xa
−

k
∑

l,j=1

(

Λ(u)−1
)l

j
λja

∂

∂xl
, a = k + 1, ..., p (5.10)

have the form (5.7) with the orthogonality property (5.6). The sets of functions

x̄1 = r1(x, u), ..., x̄k = rk(x, u), x̄k+1 = xk+1, ..., x̄p = xp, ū = u1, ..., ūq = uq, (5.11)

are coordinates on Rp × Rq. This allows us to rectify the vector fields (5.10)

Xk+1 =
∂

∂x̄k+1
, ...,Xp =

∂

∂x̄p
. (5.12)

The p-dimensional manifold {(x, u(x))} is invariant under (5.12) and is defined by the
equation

ū = f
(

x̄1, ..., x̄k
)

, (5.13)

where f : Rk → R
q is an arbitrary function of x̄1, ..., x̄k . This means that the expression

(5.13) is the general solution of the invariance conditions

ūk+1 = ... = ūp = 0. (5.14)

The initial system of PDEs (2.1) can be described in terms of the new coordinates (5.11),
i.e. in terms of x̄, ū by

Āi(x̄, ū, ūx̄)ūi = 0, (5.15)
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where

Ā1 =
Dr1

Dxi
Ai, ..., Āk =

Drk

Dxi
Ai, Āk+1, ..., Āp = Ap

and

Dri

Dxj
|ūk+1=...=ūp=0 =

(

φ−1
)i

l
λlj , φij = δij −

∂ri

∂uα
ūαj .

So, subjecting (5.15) to the invariant conditions (5.14), we obtain the overdetermined
system of PDEs which defines Riemann k-wave solutions of the initial system (2.1)

k
∑

i,j=1

p
∑

l=1

(

φ−1
)i

j
λjlA

lūi = 0, where
(

φ−1
)i

j
= δij −

∂ri

∂uα
ūαj ,

ūk+1 = ... = ūp = 0, i, j = 1, ..., k.

(5.16)

As one can observe, this approach is a variant of the conditional symmetry method.
Numerous examples of new Riemann k-wave solutions of hydrodynamic-type systems

in (n + 1) dimensions have been obtained through this approach. This approach was
found to have an advantage over the method of characteristics, resulting mainly from the
relaxing of the second-order differential constraints (3.15) for the wave functions λs. It
delivers larger classes of solutions expressed in terms of Riemann invariants through a
simpler procedure (see e.g. [45, 46, 48, 47] and references therein).

6 Examples

We provide some examples to illustrate the construction of solutions which are expressible
in terms of Riemann invariants.

6.1 Barotropic fluid flow in (n+ 1) dimensions

We present a simple example to illustrate the construction introduced in section 5. Con-
sider the barotropic system (i.e. a properly determined hyperbolic system of PDEs)

ut + (u · ∇)u = 0, ρt +∇(ρu) = 0, ρ > 0, (6.1)

which describes an inviscid fluid flow at constant pressure in the (n+1)-dimensional space.
These equations represent momentum and mass conservation. There are (n+1) dependent
variables

(

u1, ..., un, ρ
)

. The functions

λ1 =
(

−u1, 1, 0, ..., 0
)

, ..., λn = (−un, 0, ..., 0, 1)

are wave vectors and the corresponding vector fields

X1 =
∂

∂t
+ u1

∂

∂x1
, ...,Xn =

∂

∂t
+ un

∂

∂xn
(6.2)

span an Abelian distribution A . Augmenting (6.1) with A -invariance conditions produces
the overdetermined system

∇ · u = 0, ut + (u · ∇)u = 0, ρt + (u · ∇)ρ = 0, ρ > 0. (6.3)
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Thus, a solution of (6.1) is A -invariant if and only if the velocity field is divergence-
free. We will now derive the general solution of (6.1), as well as the class of A -invariant
solutions. The system (6.1) is described in the coordinates

t̄ = t, x̄1 = x1 − u1t, . . . , x̄n = xn − unt, ū1 = u1, . . . , ūn = un, ρ̄ = ρ (6.4)

by

ūt̄ = 0, ρ̄t̄ + ρ̄ tr
(

(1+ tūx̄)
−1 ūx̄

)

= 0, ρ > 0, where ūx̄ =
∂(u1, ..., un)

∂(x1, ..., xn)
. (6.5)

The general solution of ūt̄ = 0 is

ū = f(x̄),

where f : Rn → Rn is arbitrary. Then, using the Abel identity, we get

tr

(

(

1+ t̄
∂ū

∂x̄
(x̄)

)

−1 ∂ū

∂x̄
(x̄)

)

=
∂

∂t̄
ln (det (1+ tDf(x̄))) , where Df(x̄) =

∂(f1, ..., fn)

∂(x̄1, ..., x̄n)
.

So the condition on ρ̄(t̄, x̄) is

∂

∂t̄
ln (ρ̄ (t̄, x̄) det (1+ t̄Df(x̄))) = 0.

Thus, the general solution (u(t, x), ρ(t, x)) of (6.1) is given implicitly by [48]

u(t, x) = f(x− ut), ρ(t, x) =
g(x − u(t, x)t)

det (1+Df(x− u(t, x)t))
,

where g : Rn → R is an arbitrary positive function.
The (p − n) vector fields (6.2) can be rectified under the coordinate transformation

(6.4). Then, we get one vector field

X =
∂

∂t̄
. (6.6)

The general solution of the invariance conditions ūt̄ = ρ̄t̄ = 0, is

ū(t̄, x̄) = f(x̄), ρ̄(t̄, x̄) = g(x̄), (6.7)

where f : Rn → R
n, and g : Rn → R are arbitrary functions. Augmenting the system

(6.5) with the invariance conditions (6.7) produces the system

tr
(

(1+ t̄ūx̄)
−1 ūx̄

)

= 0, ūt̄ = ρ̄t̄ = 0, ρ̄ > 0,

and using the Abel identity, we get

∂

∂t̄
det (1+ t̄Df(x̄)) = 0, g > 0.

This implies that the A -invariant solutions of the barotropic flow (6.1) are described
implicitly by

u(x, t) = f(x− ut), ρ(x, t) = g(x− u(t, x)t) > 0, (6.8)

where g : Rn → R is an arbitrary positive function and f : Rn → R
n has a nilpotent

differential Df
(

i.e. (Df)k = 0, k = 1, ..., n
)

. In this case, for any degree of nilpotency
of the differential Df(x), the obtained equations correspond to the hypersurfaces immersed
in Rn+1 which have zero Gaussian curvature.
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6.2 The magnetohydrodynamic equations

We consider an ideal compressible conductive and isothermal fluid flow in (3+1)-dimensions
placed in the presence of a magnetic field. Under these assumptions, the system of equa-
tions forms an evolutionary hyperbolic first-order system of eight PDEs in four independent
variables (time t and three space variables x =

(

x1, x2, x3
)

). The magnetohydrodynamics
(m.h.d.) system takes the form [32, 49]

d

dt
ρ+ ρ∇ · v̄ = 0,

ρ
dv̄

dt
+∇p+ 1

4π
H̄ ×

(

∇× H̄
)

= 0,

∂

∂t
H̄ −∇×

(

v̄× H̄
)

= 0, ∇ · H̄ = 0,

d

dt

(

p

ργ

)

= 0,
d

dt
=

∂

∂t
+ (v̄ · ∇) .

(6.9)

Here, we have used the following notation : ρ is the density of the fluid, p is the pressure of
the fluid, v̄ is the vector field of the fluid velocity, H̄ is the vector of the magnetic field and
γ is the polytropic exponent. We also assume that the inductive capacity µ is equal to one.
The system (6.9) represents the mass and momentum conservation of the field equation,
the Gauss law for the magnetic field, and conservation of the entropy, respectively. The
unknown functions are u =

(

ρ, p, v̄, H̄
)

∈ R8. The Lie subgroup analysis of the symmetry
groups of the m.h.d. equations (6.9) was established in [50].

In this paper, we look for Alfvénian wave solutions admitted by the m.h.d. equations
(6.9) involving Riemann invariants. The corresponding simple Alfvén elements A2(ε)
associated with the Alfvén wave velocity δ|λ̄| (i.e. the eigenvalue corresponding to the
matrix associated with the m.h.d. system (6.9))

δ|λ̄| = εH̄ · λ̄√
4πρ

, ε = ±1,

(where λi = (δ|λ̄|− v̄ · λ̄i, λ̄i), i = 1, 2 are linearly independent wave vectors) take the form
[35]

γi =

(

0, 0,
εh̄i√
4πρ

, h̄i

)

, λi =
(

0, ᾱi
× h̄i

)

, H̄ih̄i = 0, i = 1, 2, (6.10)

where h̄i = ∂H̄/∂ri, i = 1, 2 are arbitrary vectors orthogonal to H̄ and ᾱi are arbitrary
linearly independent vectors in R3. These simple elements A2(ε) satisfy the following
system of PDEs

ρ = ρ0, p = p0, |H̄
(

x̄1, x̄2
)

|2 = const., ρ0, p0 ∈ R,

∂v̄

∂t̄
=

1

4πρ0
(H̄ · ∇)H̄,

∂v̄

∂t̄
= ε

(H̄ · ∇)v̄√
4πρ0

, ∇ · v̄ = 0,

∂H̄

∂t̄
= (H̄ · ∇)v̄,

∂H̄

∂t̄
= ε

(H̄ · ∇)H̄√
4πρ0

, ∇ · H̄ = 0.
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Using the generalized method of characteristics, we search for a special class of double
wave solutions (3.3) for which the tangent map du(x) is the sum of two simple Alfvén
elements (6.10)

du(x) =ξ1(x)γ1 ⊗ λ1 + ξ2(x)γ2 ⊗ λ2

=ξ1(x)

(

0, 0,
εh̄1√
4πρ

, h̄1

)

⊗
(

0, ᾱ1
× h̄1

)

+ξ2(x)

(

0, 0,
εh̄2√
4πρ

, h̄2

)

⊗
(

0, ᾱ2
× h̄2

)

, H̄ · h̄i = 0, i = 1, 2

(6.11)

The compatibility conditions (3.8) require that the vector fields γ1 and γ2 form an Abelian
distribution (3.8). This means that there exists a two-dimensional manifold S in R8

obtained by integrating the system of 16 PDEs (3.9) taking the form

∂ρ

∂r1
= 0,

∂p

∂r1
= 0,

∂v̄

∂r1
=

εh̄1√
4πρ

,

∂H̄

∂r1
= h̄1,

∂ρ

∂r2
= 0,

∂p

∂r2
= 0,

∂v̄

∂r2
=

εh̄2√
4πρ

,

∂H̄

∂r2
= h̄2,

H̄ · h̄i = 0, i = 1, 2 (6.12)

where r1 and r2 are a coordinate system on S. The wave vector fields λ1 and λ2 have to
satisfy the linear system (3.13) of 8 PDEs,

∂λ10
∂r1

= 0,

∂λ̄1

∂r1
= β1

(

ᾱ1
× h̄1

)

+ β2
(

ᾱ2
× h̄2

)

,

∂λ20
∂r2

= 0,

∂λ̄2

∂r2
= β3

(

ᾱ1
× h̄1

)

+ β4
(

ᾱ2
× h̄2

)

,

(6.13)

where β1, ..., β4 are some functions of r1 and r2. The double Alfvén wave solution of the
system (6.12) and (6.13) written in terms of Riemann invariants takes the form [35]

ρ = ρ0 p = p0, |H̄
(

r1, r2
)

|2 = const., v̄ =
εH̄√
4πρ0

, ε = ±1, (6.14)

where H̄ is an arbitrary vector with constant length and ρ0, p0,H0 are some constants.
The Riemann invariants r1 and r2 are determined from (3.13), which leads to the following
conditions on the Riemann invariants r1 and r2, i.e.

∂H̄

∂r1
· ∇r1 = 0,

∂H̄

∂r2
· ∇r2 = 0, |H̄

(

r1, r2
)

|2 = const. (6.15)

Note that the Alfvén double wave solution is a known solution (e.g. [35]) and are a
stationary wave solution.

Let us now derive the double Alfvén wave solution of the mhd equation (6.9) obtained
from the conditional symmetry method as described in Section 5. The corresponding
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vector field X, given by (5.7), associated with the Alfvén wave vectors λ1 and λ2 (given
by (6.10)) and satisfying the orthogonality conditions (5.6), takes the normalized form

X1 =
∂

∂t
+ µ1h̄

i
1

∂

∂xi
, X2 =

∂

∂t
+ µ2h̄

i
2

∂

∂xi
, (6.16)

where µ1 and µ2 are arbitrary functions of u. Under a change of variables of the form
(5.11)

t̄ = t, x̄1 = (ᾱ1 × h̄1)ix
i, x̄2 = (ᾱ2 × h̄2)ix

i,

ρ = ρ0, p = p0, v̄ =
εH̄√
4πρ0

, ε = ±1, ρ0, p0 ∈ R,
(6.17)

the vector fields (6.16) can be rectified to get one vector field

X = ∂/∂t̄,

taking µ1 and µ2 equal to zero. The m.h.d. equations (6.9) are reduced to the following
overdetermined system of PDEs

ρ = ρ0, p = p0, |H̄
(

x̄1, x̄2
)

|2 = const.,

(v̄ · ∇)v̄ =
1

4πρ
(H̄ · ∇)H̄, (v̄ · ∇)v̄ =

ε√
4πρ

(H̄ · ∇)v̄, ∇ · v̄ = 0, v̄t̄ = 0,

(v̄ · ∇)H̄ = (H̄ · ∇)v̄, (v̄ · ∇)H̄ =
ε√
4πρ

(H̄ · ∇)H̄, ∇ · H̄ = 0, H̄t̄ = 0.

(6.18)

Solving (6.18), we determine a double Alfvén wave solution

ρ = ρ0, p = p0, v̄ =
εH̄
(

x̄1, x̄2
)

√
4πρ0

, |H̄
(

x̄1, x̄2
)

|2 = const. (6.19)

The Riemann invariants x̄1 and x̄2 have to satisfy weaker conditions

∂H̄

∂x̄1
· ∇x̄1 + ∂H̄

∂x̄2
· ∇x̄2 = 0, |H̄

(

x̄1, x̄2
)

|2 = const. (6.20)

than the ones found by the method of characteristics (6.15). This fact is a consequence
of the fact that the conditional symmetry method does not require the compatibility
conditions (3.13). Hence, a larger class of double Alfvén wave solutions of the m.h.d.
equations (6.9) is obtained through the use of this method.

7 Final remarks

In this paper, we have established a relation between two approaches for the construction
of Riemann k-wave solutions of first-order qusilinear hyperbolic systems, namely the con-
ditional symmetry method and the generalized method of characteristics. In the papers
[13, 14, 15], the involutivity conditions for the existence of k-wave solutions obtained from
the generalized method of characteristics were formulated. This method required the aug-
mentation of the initial system of PDEs (2.1) with particular differential constraints for
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which the matrix of derivatives of u(x) is equal to a linear combination of simple elements
ξsγs ⊗ λs, given by (3.1), where ξs are scalar functions of x. In the present paper, we
derive the criterion for the existence of k-wave solutions of (2.1) through the conditional
symmetry method. We supplement the initial system (2.1) with more general differential
constraints for which the matrix of derivatives of u(x) has the form (5.3), where simple
elements are multiplied by the non-singular k× k matrix φ of x. A comparison with (3.1)
suggests that we cannot generally expect a reduction analogue to (5.3) because φ is no
longer a scalar given by (5.4). Note that if k ≥ 2 then (5.3) is more involved than its
analogue (3.1) due to the presence of the matrix φ. As a consequence of direct computa-
tions, we have shown that the conditional symmetry method possesses an advantage over
the generalized method of characteristics, mainly due to relaxing one of the involutivity
conditions (3.4) and (3.5), namely the second-order differential condition (3.15), on the
wave functions λs. Hence, the conditional symmetry method in the version presented in
this paper can provide larger classes of k-wave solutions of a quasilinear systems of PDEs
of form (2.1) written in terms of Riemann invariants through a simpler procedure.

In the past, three decades ago, an interesting and significant development took place,
namely the study of the Poisson structure in the connection with hydrodynamic-type sys-
tems of the form (2.1). This approach was first formulated by Tsarev [26], Dubrovin and
Novikov [24, 25]. Next, several non-local generalizations of the Poisson bracket with more
independent variables were formulated (see e.g. [26, 27, 28, 29]). Several new classes of
multiple Riemann wave solutions were constructed. However, the problem of interrela-
tions between the proposed two approaches and the Hamiltonian formalism still remains
open. It is worth noticing that these methods seem to be complementary. The method of
Hamiltonian formalism for hydrodynamic-type systems is mainly devoted to the form of
quasilinear systems of PDEs, which admit a Poisson structure for the problem of k-waves.
On the other hand, the generalized method of characteristics and the proposed version
of the conditional symmetry method are mainly focused on the construction of specific
classes of k-wave solutions for these types of systems. Such an analysis could allow us to
interpret the connection between these approaches and acquire a better understanding of
the physical relevance of k-wave superpositions in hydrodynamic-type systems expressible
in terms of Riemann invariants.
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