
ar
X

iv
:2

30
6.

14
86

9v
2 

 [
nl

in
.S

I]
  2

2 
Ja

n 
20

24

Open Communications in Nonlinear Mathematical Physics ]ocnmp[ Special Issue 1, 2024 pp 1–14

This article is part of an OCNMP Special Issue

in Memory of Professor Decio Levi

Hamiltonian and recursion operators for a

discrete analogue of the Kaup-Kupershmidt

equation

Edoardo Peroni and Jing Ping Wang

School of Mathematics, Statistics & Actuarial Science, University of Kent, UK

Received July 5, 2023; Accepted November 29, 2023

Abstract

In this paper we study the algebraic properties of a discrete analogue of the Kaup-
Kupershmidt equation. This equation can be seen as a deformation of the modified
Narita-Itoh-Bogoyavlensky equation and has the Kaup-Kupershmidt equation in its
continuous limit. Using its Lax representation we explicitly construct a recursion
operator for this equation and prove that it is a Nijenhuis operator. Moreover, we
present the bi-Hamiltonian structures for this equation.

1 Introduction

In a recent paper [1], Mikhailov, Novikov and Wang formulated necessary integrability
conditions for evolutionary differential-difference equations (D∆Es) using the perturbative
symmetry approach and obtained a family of new integrable D∆Es:

ut = (1 + u2)(up

p−1
∏

k=1

√

1 + u2k − u−p

p−1
∏

k=1

√

1 + u2−k), p ∈ N, (1)

where u = u(n, t) is a complex function of one discrete variable n ∈ Z and one continuous
independent variable t. Here we use the standard notations

ut = ∂t(u), uk = Sku(n, t) = u(n + k, t), k ∈ Z

and S is the shift operator. Equation (1) can be viewed as an inhomogeneous deformation
of the Narita-Itoh-Bogoyavlensky (NIB) equation [2]. Indeed, after the re-scaling

uk → ε−1uk, t → εp+1t (2)
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and in the limit ε → 0 it turns into

ut = u2(

p
∏

k=1

uk −
p
∏

k=1

u−k). (3)

The authors of [1] have proved the integrability of (1) for any p ∈ N by constructing
its Lax representation and provided the r matrix approach to produce the hierarchy of
commuting symmetries. They showed that equation (1) possesses a Lax representation
Lt = [A,L] with a rational (pseudo-difference) operator L = Q−1P , where

Q = u− u1wS−1, P = (uw1S − u1)Sp−1, w =
√

1 + u2, (4)

and a skew-symmetric difference operator A = L+ − (L+)†. Here L+ denotes the polyno-
mial part of the Laurent series for the rational operator L and † denotes the adjoint of an
operator. The hierarchy of commuting symmetries for (1) can be generated by

Ltl = [π+(Ll), L], π+(Ll) =
(

Ll
)

+
−
(

(

Ll
)

+

)†

, l ∈ N, (5)

where t1 = t corresponds to the equation itself.
For every member p of the family (1), if we use the substitution

u(n, t) =
2
√
p

p + 1
i − (p − 1)2

12(p + 1)

√
p iǫ2U

(

x + A(p)ǫt, τ + B(p)ǫ5t
)

, x = ǫn,

A(p) = −2p

(

p− 1

p + 1

)p

, B(p) =
p3(p2 − 1)

180

(

p− 1

p + 1

)p

,

(6)

where i2 = −1 is the imaginary unit, we always obtain the Kaup-Kupershmidt equation

Uτ = 5U2Ux +
25

2
UxUxx + 5UUxxx + Uxxxxx

for a function U(τ, x) as ǫ → 0. This is analogous to what happens for the NIB family,
whose members have a continuous limit in the Korteweg-de Vries equation.

This paper is devoted to the study of recursion operators and Hamiltonian structures
of the equation (1) for the case when p = 2, that is,

ut = (1 + u2)(u2

√

1 + u21 − u−2

√

1 + u2−1), (7)

which was first obtained in the symmetry classification of a class of five-point differential-
difference equations [3]. Its integrability was established in [4], where Garifullin and
Yamilov constructed a Lax representation for (7), which is in a different form from (4)
when p = 2 (see Remark 3 in [1] for the comparison). As shown also in [4], the continuous
limit of (7) is the Kaup-Kupershmidt equation using the substitution

u(n, t) =
2
√

2

3
i − i

18
√

2
ǫ2U

(

x− 4

9
ǫt, τ +

2

135
ǫ5t

)

, x = ǫn,

which is the case of (6) when p = 2.
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From the formulas (5), we are able to explicitly compute its second member of the
hierarchy for p = 2, namely,

ut2 = w2(u4w1w
2
2w3 + u1u2u3w1w2 + uu22w

2
1 + u−1u1u2ww1

− u−2u−1u1w−1w − u2−2uw
2
−1 − u−3u−2u−1w−2w−1 − u−4w−3w

2
−2w−1),

(8)

which can also be obtained via ut2 = R (ut). Here R is defined by

R = R
(1) + R

(3), (9)

R
(1) = w2

(

(

u1 − S−1u
) (

Sw − wS−1
)−1

(uS + u1) + SwS + S−1wS−1
) 1

w2
;

R
(3) = w2

(

(

u1 − S−1u
) (

Sw − wS−1
)−1

(uS − u1) + SwS − S−1wS−1
)

u
(

S2 + S + 1
)

(S2 − 1)−1 u

w2

In this paper we are going to prove that the operator R is a Nijenhuis recursion operator
for (7). Note that under the same rescaling (2) and the limit in ǫ, the operator (9) goes to

u2S−1
(

S3 − 1
)

u
(

Su− uS−1
)−1

u
(

1 − S−3
)

Su
(

S2 + S + 1
) (

uS2 − u
)−1

,

which is the recursion operator of (3) for p = 2 in [5] reflecting the fact that equation
(7) is its inhomogeneous deformation. The derivation of R is based on the structures
of Lax representations for the symmetry hierarchy proposed in [6] for partial differential
equations. This approach was soon adapted for D∆E in [7] and further developed in
[5, 8] taking into account the reduction groups of Lax representations [9]. The detailed
derivation will be described in Section 3, where we also prove that the operator R is
Nijenhuis since it can be written as a rational operator of a preHamiltonian pair [10, 11].
In the same section, we represent the recursion operator in a new form involving the action
of the reflection operator T , which is also an automorphism defined by T un = u−n, that
is,

R
′ = w2 (1 − T )

[

u1
(

Sw − wS−1
)−1

(

(uS + u1)
1

u

(

S2 − 1
)

+ uu1
(

S3 − 1
)

)

+

+ w1S2

(

1

u

(

S2 − 1
)

+ u
(

S2 + S + 1
)

)

]

(S2 − 1)−1 u

w2
.

(10)

The presence of the operator (1 − T ) in the expression above reveals that all the symme-
tries in the hierarchy are odd with respect to T . Mathematically, operators R and R

′ are
not equal while they give the same values on the image of (1 − T ). Thus they generate
the same hierarchy of symmetries starting from the equation itself (7).

In section 4, we explicitly present a Hamiltonian operator

H = w2
(

SwS − S−1wS−1
)

w2 + w2
(

u1 − S−1u
) (

Sw −wS−1
)−1

(uS − u1)w2. (11)

Equation (7) is Hamiltonian with respect to it. To prove that H is Hamiltonian in theorem
4.1, we apply the formalism of rational and pre-Hamiltonian operators described in [10, 12].
Combining the expression of the Hamiltonian operator H and the Nijenhuis recursion
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operator R we show that K = RH is also a Hamiltonian operator compatible with H.
Recursively we can prove the same result for all RkH, k ∈ N. To increase the readability,
we begin with recalling some basic definitions such as symmetries, recursion operators
and Hamiltonian operators for integrable D∆Es, and end with a short discussion on the
relevant open problems.

2 Basic definitions for differential-difference equations

In this section we will give the definitions for some basic concepts such as symmetries,
recursion operators and Hamiltonian operators for integrable D∆Es. By no means this is
a complete overview of it. We only mention the properties and theorems that we are going
to use later. More details on these concepts and related theories for both differential and
differential-difference equations can be found in [13, 14] and a recent book [15].

Let u be a function of a discrete variable n ∈ Z and of a continuous variable t. An
evolutionary differential-difference equation of dependent variable u is of the form

ut = f(up, . . . , uq), p ≤ q, p, q ∈ Z. (12)

It is an abbreviated form to encode the infinite sequence of ordinary differential systems
of equations

∂tu(n, t) = f(u(n + p, t), . . . , u(n + q, t)), n ∈ Z.

For convenience we drop the subscript when it is zero as u0 = u. We say function f is of
order (p, q) if ∂upf 6= 0 and ∂uqf 6= 0. The difference between p and q, q− p, is referred to
as the total order of f . For example, equation (7) is of order (−2, 2) with total order 4.

All such functions, depending on a finite number of shifts of u, form a difference ring
denoted A with the shift operator S as its automorphism defined by

S : a(up, · · · , uq) 7→ a(up+1, · · · , uq+1), S : α 7→ α; a ∈ A, α ∈ C.

The reflection T of the lattice Z defined by

T : a(up, · · · , uq) 7→ a(u−p, · · · , u−q), T : α 7→ α; a ∈ A, α ∈ C (13)

is another automorphism of A. The composition ST ST = Id is the identity map.

On a difference ring A we can define derivations. A derivation (vector field) is said
to be evolutionary if it commutes with the shift operator S. Such vector field is com-
pletely determined by a function g ∈ A. We call it the characteristic of the vector field.
Evolutionary equation (12) corresponds to an evolutionary vector field of characteristic f .

For any two evolutionary vector fields with characteristics f and g, we define a Lie
bracket as follows

[f, g] = g∗(f) − f∗(g),

where f∗ =
∑

j∈Z
∂f
∂uj

Sj is the Fréchet derivative of a function f . We say that an evolu-

tionary vector field with characteristic g ∈ A is a symmetry of equation (12) if and only
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if [f, g] = 0. If an equation possesses infinitely many commuting higher order symmetries,
it is said to be integrable.

Often the symmetries of integrable equations can be generated by recursion operators
[16]. Roughly speaking, a recursion operator is a linear operator R mapping a symmetry
to a new symmetry. For an evolutionary equation (12), it satisfies

R∗[f ] = [f∗,R], (14)

where R∗[f ] is the Fréchet derivative of R along the evolutionary vector field of charac-
teristic f .

Recursion operators for nonlinear integrable equations are often Nijenhuis operators,
that is,

[Ra,Rb] −R[Ra, b] −R[a,Rb] + R
2[a, b] = 0, for all a, b ∈ A. (15)

The Nijenhuis property ensures that recursion operators generate commuting symmetries.
We now introduce briefly the concept of Hamiltonian operators for D∆E. For any

element h ∈ A, we define an equivalent class (or a functional)
∫

h by saying that two
elements h, g ∈ A are equivalent if h− g ∈ Im(S − 1). The space of functionals is denoted
by A′, which does not inherit a ring structure of A. For any functional

∫

h ∈ A′ (simply
written h ∈ A′ without confusion), we define its difference variational derivative (Euler
operator) denoted by δuf as

δuf =
∑

i∈Z

S−i ∂

∂ui
f.

We say an evolutionary equation (12) is a Hamiltonian equation if there exists a Hamil-
tonian operator H and a Hamiltonian h ∈ A′ such that

ut = H δuh.

A difference operator H is called a Hamiltonian if the bracket defined on A′ by {
∫

f,
∫

g} =
∫

δuf Hδug is a Lie bracket, that is, the bracket is skew-symmetric and satisfies the Jacobi
identity. Often Hamiltonian operators are rational instead of local. We will follow the
pre-Hamiltonian formalism developed in [10, 12] to give the definition.

A difference operator A is said to be pre-Hamiltonian if there exists a two form on A
denoted by ωA such that

A∗[Aa](b) −A∗[Ab](a) = A(ωA(a, b)), for all a, b ∈ A. (16)

The Fréchet derivative of a difference operator A(·) is a bi-difference operator A∗[·](·), by
convention we indicate with round parenthesis the argument of the operator itself and with
square bracket the direction of the Fréchet derivative determined by the characteristic of
the evolutionary vector field.

Let H = AB−1 be a skew-symmetric rational operator, where both A and B are
difference operators. We say that H is Hamiltonian if A is pre-Hamiltonian with ωA

determined by (16) and B satisfies

B∗[Aa](b) −B∗[Ab](a) + B∗(a)†[Ab] + A∗(a)†[Bb] = B(ωA(a, b)), (17)
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where A† is the adjoint of the difference operator A. Given two pre-Hamiltonian operators
A,B they form a pre-Hamiltonian pair (A,B) if any linear combination A + ζB of them
is a pre-Hamiltonian operator for any number ζ ∈ C.

Pre-Hamiltonian operators are also closely linked with Nijenhuis operators. It has
been proven in [10, 11] that any Nijenhuis operator that can be written in a minimal
rational decomposition R = AB−1 with B pre-hamiltonian generates a pre-Hamiltonian
pair (A,B) and, vice-versa, any pre-hamiltonian pair (A,B) generates a Nijenhuis operator
as R = AB−1. This provides an efficient way to prove that a certain rational operator is
Nijenhuis by checking if its factors form a pre-Hamiltonian pair, instead of vanishing of
the Nijenhuis torsion (15).

3 Construction of recursion operators

For an integrable evolutionary equation, if it is known its Lax representation, there is a
powerful approach to construct its recursion operator [6]. This idea has been extended for
Lax pairs that are invariant under the reduction groups [5, 8]. In this section, we use the
same idea to construct a recursion operator of an equation (7) from its Lax representation.

We rewrite the scalar Lax representation (4) for p = 2 in the matrix form with the
auxiliary system

SΦ = U(λ)Φ Φt = V (λ)Φ,

where λ ∈ C is the spectral parameter and

U(λ) =





u1

uw1

λ
w1

−λu1w
uw1

1 0 0
0 1 0



 (18a)

V (λ) =







λ + u2w1

u
−uu1 −

(

w + λu2ww1

u

)

u1w
2

u
+ 1

λ
u
−1w
u

λ− 1
λ

−
(

u
−1w

2

u
+ λu1w

u

)

w + 1
λ
u
−2ww

−1

u
uu−1 −

(

1
λ

+ u
−2w−1

u

)






. (18b)

The compatibility condition of U(λ) and V (λ), simply writing as U and V , leads to

Ut = S(V )U − UV.

Notice that matrices U(λ) and V (λ) are invariant with respect to the transformation:

V (λ) = −J T V (λ−1)T J , S−1U−1(λ)S = JT U(λ−1)T J , (19)

where the reflection operator T is defined by (13). The symbol J stands for a “reflected”
identity matrix

J =





0 0 1
0 1 0
1 0 0



 ,

which is sometimes called the backward identity or exchange matrix. The transformation
(19) reflects the symmetry T (ut) = −ut of the equation (7). The primitive automorphic
function of the group generated by the transformation λ 7→ λ−1 is

µ(λ) = λ + λ−1 (20)
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For a given matrix U , we can build up a hierarchy of nonlinear systems by choosing a
matrix V ′ with the degree of λ from −l to l. The way to construct a recursion operator
directly from a Lax representation is to relate the different operators V̄ ′ using the ansatz

V̄ ′ = µ(λ)V ′ + B

and then to find the relation between the two flows corresponding to V̄ ′ and V ′. Here B

is the remainder and we assume that it has the same symmetry as V , and thus is of the
form:

B =







b
(1)
11 b

(1)
12 b

(1)
13

b
(1)
21 b

(1)
22 b

(1)
23

b
(1)
31 b

(1)
32 b

(1)
33






λ+







b
(0)
11 b

(0)
12 b

(0)
13

b
(0)
21 b

(0)
22 −T b

(0)
21

−T b
(0)
13 −T b

(0)
12 −T b

(0)
11






−







T b
(1)
33 T b

(1)
32 T b

(1)
31

T b
(1)
23 T b

(1)
22 T b

(1)
21

T b
(1)
13 T b

(1)
12 T b

(1)
11






λ−1

(21)

We need to stress that, due to the action of the reduction group, there is one more relation
we should consider

b
(0)
22 = −T b

(0)
22 . (22)

Assume that V ′ associates to the symmetry flow uτ and V̄ ′ to the flow ut. The compati-
bility condition leads to

Ut = µ(λ)Uτ + S(B)U − UB. (23)

When we apply these assumptions to (23), we get a over-determined system counting
34 equations of 14 parameters. We proceed considering some of these equations to find
a representation of R and at the same time checking the others as the compatibility
conditions to ensure the existence of a solution, which leads to the following statement:

Theorem 3.1. A recursion operator of the equation (7) is given by (9).

Proof. We consider the ansatz in (21) and apply it to (23). The result is a matrix system
involving the spectral parameter λ, that allow us to decompose it even further considering
that every coefficient of λ needs to be equal to zero independently. By inspection, some
of these relations are trivial. We notice that two parameters are directly zero

b
(1)
21 = 0 b

(1)
31 = 0 (24)

and some are connected with one to one relations, such as

b
(1)
11 = Sb(1)22 b

(1)
21 = Sb(1)32 = 0. (25)

We consider (23) as the matrix equation ∆ij = 0. Notice that, because of the structure of
U , all the equations coming from i = 2, 3 and j = 1, 2, 3 do not involve t-derivative and
they can be used to reduce the number of parameters.

First we express all parameters in B in terms of 4 parameters, namely, b
(1)
11 , b

(1)
12 , b

(1)
33

and b
(0)
22 , and we have

b
(1)
11 = (S−2 − 1)−1 u

w2
uτ . (26)
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We then find b
(1)
33 and b

(1)
12 in terms of b

(1)
11 as follows:

b
(1)
33 = −

(

1

u2
(S2 − 1) + S2 + S

)

S−2b
(1)
11 (27)

(

Sw −wS−1
)

b
(1)
12 = uu1

(

(S + 1)
1

u2

(

S2 − 1
)

+
(

S3 − 1
)

)

S−2b
(1)
11 (28)

Finally, we analyse the equations involving ut and get

1

w2
ut = − u

(

S2 + S + 1
)

S−1b
(0)
22 −

(

(

SwS + S−1wS−1
)

u−1
(

S2 − 1
)

+

+
(

SwS − S−1wS−1
)

u
(

S2 + S + 1
)

)

S−2b
(1)
11 −

(

u1 − S−1u
)

b
(1)
12 ,

(29)

where the only unknown parameter left is b
(0)
22 satisfies

((

S2 + S + 1
)

u2 + S2 − 1
)

b
(0)
22 =

u1w

u
S−1

(

Sw − wS−1
)

b
(1)
12

−u1w

u
S−1

(

u1u

(

Sw2

u2
− w2

u2
S−2

)

+

(

u1

u
− u

u1
S−1

))

b
(1)
11 . (30)

Substituting (28) into (30), we obtain its right-handed side equals zero, which leads to

b
(0)
22 = 0.

We now substitute it together with (26) and (28) into (29), which leads to the recursion
operator (9) as stated. �

The recursion operator (9) can be written in a form involving the reflection operator T :
we start with an equation for ut containing the T -reflection operator, different from (29)
and we then solve all the other equations in the same way as before. In this way, we obtain
the following form which is equivalent to (9):















ut = w2(1 − T )u1

(

b
(1)
12 + u2w1

u1

(

1
u2

2

(

S2 − 1
)

+ S2 + S + 1
)

b
(1)
11

)

b
(1)
12 =

(

Sw − wS−1
)−1

uu1
(

(S + 1) 1
u2

(

S2 − 1
)

+ S3 − 1
)

S−2b
(1)
11

b
(1)
11 = (S−2 − 1)−1 u

w2uτ

which leads to (10). It is obvious that the whole hierarchy is anti-symmetric (odd) under
T operator as R = w2(1 − T )R̂, where R̂ is a rational operator of S. The presence of T
prevents us from directly exploiting a series of theorems proved for rational operators of
S in [10]. On the other hand, this alternative and more compact form for the recursion
operator shows an important property of the symmetries that they are all odd with respect
to T .

One of important properties of recursion operators is to generate an infinite hierarchy
of commuting symmetries, which is guaranteed by their Nijenhuis property (15). To show
that R defined by (9) is a Nijenhuis operator, instead of directly checking the vanishing
of the Nijenhuis torsion, we use the pre-Hamiltonian formalism, in particular Theorems 3
in [10]: if two difference operators A and B form a preHamiltonian pair, then their ratio
AB−1 is Nijenhuis.



]ocnmp[ Hamiltonian and recursion operators discrete Kaup-Kupershmidt 9

Theorem 3.2. The recursion operator R in (9) is a Nijenhuis operator

Proof. The recursion operator in (9) can be rewritten as follows:

R = w2
(

A + BC−1D
)

E−1 1

w2
, (31)

where each symbol above corresponds to a difference operator

A =

(

(

SwS + S−1wS−1
) 1

u

(

S2 − 1
)

+
(

SwS − S−1wS−1
)

u
(

S2 + S + 1
)

)

B =
(

u1 − S−1u
)

C =
(

Sw − wS−1
)

D = uu1

(

(S + 1)
1

u2

(

S2 − 1
)

+ S3 − 1

)

E =
1

u

(

S2 − 1
)

(32)

From this setting, it is possible to rearrange the terms such that the recursion operator
appears as a rational operator R = MN−1. In doing so we need first to simplify C−1D

and we convert it into a right fraction. We know from [10] that the ring of difference
operators satisfies the Ore condition, by consequence we have

C−1D = (uu1)−1 (u−1u1wS2 + uu2w1S
)

+ C−1 ((u1u2 − uu3w1w2)S − (u−1u− u−2u1w−1w))

= (uu1)−1 (u−1u1wS2 + uu2w1S
)

+ GI−1(u1u−1)
−1S

where operators G and I are given by

G = p1 (p2 (p1w1 − p3w2)S − p (p1w − p−1w−1)) p = uu−1 − u1u−2ww−1

I = p2w (p3w2 − p1w1)S +
(

p−1p2w−1w1 − pp1w
2
)

+ p−1w (p−2w−2 − pw−1)S−1
(33)

This leads to

M = w2
(

AI + B (uu1)−1 (u−1u1wS2 + uu2w1S
)

I + BG
)

, N = w2ES−1u1u−1I.

We now prove that M and N form a preHamiltonian pair by checking that the operator
M + λN is preHamiltonian for any constant λ using computer algebra Mathematica,
similar to what we did for Theorem 7 in [10]. Here we only present how we prove that the
operator N is a preHamiltonian operator. We notice that the first part of N given by

w2

u

(

S2 − 1
)

S−1u1u−1 (34)

is a very simple pre-Hamiltonian operator, which we recognise via (16) defining an associate
bi-difference operator

ω(a, b) =
u−3u1w

2
−1ab−2 − u−3u1w

2
−1a−2b + u−1u3w

2
1a2b− u−1u3w

2
1ab2

u−1u1
.
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According to Lemma 3 in [12], given a generic pre-Hamiltonian difference operator P

with associated bi-difference operator ωP , then the operator PQ, where Q is a difference
operator, is itself pre-Hamiltonian if and only if the following expression is in the image
of the operator Q, i.e.,

Q∗[P (Q(a))](b) −Q∗[P (Q(b))](a) + ωP (Q(a), Q(b)) ∈ Im (Q)

Using computer algebra Mathematica, we verify this property on operators (34) and I

given by (33). Thus prove that the operator N is a preHamiltonian operator. �

4 Hamiltonian operator

In this section we will show that (7) is a Hamiltonian equation via the pre-Hamiltonian
theory [10, 12]. Let

H = w2
(

SwS − S−1wS−1
)

w2 + w2
(

u1 − S−1u
) (

Sw −wS−1
)−1

(uS − u1)w2. (35)

Note that (7) can be written as ut = Hδu ln(w). We are going to prove that (35) is a
Hamiltonian operator.

Theorem 4.1. The operator H given by (35) is a Hamiltonian operator.

Proof. We prove the statement by a direct computation. For simplicity, we write H as
follows:

H = w2
(

F −BC−1B†
)

w2, (36)

where operators B,C are defined by (32) and F is defined as

F = SwS − S−1wS−1. (37)

To show that H is a Hamiltonian operator, we will use the definition given in Section
2: in particular, we are going to verify identities (16) and (17). We first note that H
is skew-symmetric since H + H† = 0. We then need to express H in (35) as a rational
operator. Note that

C−1B† = GI−1 p = u−1uw1 − u1u2w

G = u−1ww
2
1w2p1S − u2w−1w

2w1p−1

I = w2
1w2p1S + w−1w1

(

u2w−1w1 − u−2u2w
2
)

− w−2w
2
−1p−2S−1

As we did in theorem 3.2, due to the Ore property of the ring of the difference operators
[10], we obtain

H = MN−1, M = w2 (FI + BG) ; N = w−2I.

We now prove that the operator M is pre-Hamiltonian using (16). The calculations are
straightforward though not so neat. The two form ωM is skew-symmetric and of order
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(−5, 5) for any a, b ∈ A. Here we explicitly write down the terms in ωM (a, b) involving
fifth order shifts for both a and b:

ω
(5)
M (a, b) = −u1ww

2
2w3w

2
4w

2
5w6 (u6u7w5 − u4u5w6) (a5b− ab5)

u1u2w − u−1uw1

The last step is straightforward to verify (17) by substituting the expressions of M , N

and ωM into it, which is verified by using computer algebra Mathematica. �

By now we have obtained a recursion operator R (9), which is Nijenhuis and a Hamiltonian
operator H (35) for equation (7). We will go further looking for Hamiltonian operators
compatible with H. Similar to pre-Hamiltonian operators, two Hamiltonian operators
H,K are said to be compatible and form a Hamiltonian pair (H,K) if any their linear
combination H + λK is a Hamiltonian operator for any constant λ. Theorem 4 in [12]
states that the operator K = RH obtained from Nijenhuis recursion operator R in (9) and
the Hamiltonian operator H in (35), is also Hamiltonian and compatible with H if K is
skew-symmetric.

Corollary 4.1. The operator K = RH obtained from the recursion operator in (9) and
the Hamiltonian operator in (35) is a Hamiltonian operator and it is compatible with H.

Proof. From (31) and (36) we have

K = RH = w2
(

A + B†C−1D
)

E−1
(

F −BC−1B†
)

w2, (39)

where we use the same definitions for operators involved as in (32) and in (37). It follows
from Theorem 4 in [12] that we only need to check that the operator K is skew-symmetric to
show that it is a Hamiltonian operator compatible with H, that is, to show that K+K† = 0.
The expression (39) contains C−1, we split the skew-symmetry condition, according to the
positions of C−1, into four parts denoted by J (i), i = 1, · · · , 4 as follows:

K + K† = J (1) + J (2) + J (3) + J (4) (40a)

J (1) = 2w2BC−1
(

w2 − w2
1

)

C−1B†w2 (40b)

J (2) = 2w2BC−1
(

u1w1S2 − uwS−1
)

w2 (40c)

J (3) = 2w2
(

u1w1S − u−1w−1S−2
)

C−1B† (40d)

J (4) = 2w4
(

w2
−1 − w2

1

)

(40e)

Let us define the operators B̄ and C̄ similarly to B and C in (39)

B̄ = u1 + S−1u; C̄ = Sw + wS−1.

Then we obtain the following identities

u1w1S2 − uwS−1 =
1

2

(

CB̄† − C̄B†
)

;

u1w1S − u−1w−1S−2 =
1

2

(

BC̄ + B̄C
)

,
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Substituting them into J (2) (40c) and J (3) (40d), respectively, (40a) becomes

K + K† = w2BC−1

(

w2 − w2
1 +

1

2

(

CC̄ − C̄C
)

)

C−1B†w2

which, by direct computation is zero, proving that K is skew-symmetric. Thus operator
K is a Hamiltonian operator compatible with H defining a Hamiltonian pair (H,K). �

An immediate consequence of this result is that the operator RnH is a Hamiltonian op-
erator for all n ∈ Z. Thus every symmetry in the hierarchy for equation (7) is also
Hamiltonian. Indeed, we can write its next symmetry (8) as

ut2 = Hδuu1u−1w = RHδu ln(w).

5 Discussion and Further Work

The main focus of this paper is to study the algebraic properties of the integrable equation
(7), that is,

ut = w2 (u2w1 − u−2w−1) , w =
√

1 + u2.

We construct its recursion operator (9) based on its Lax representation, and show that
it is a Hamiltonian system with Hamiltonian operator H defined by (35). Moreover, we
obtain a hierarchy of Hamiltonian operators compatible to H following from the Nijenhuis
property of the recursion operator.

There are the verifiable conditions to guarantee that a weakly nonlocal operator gen-
erates a local hierarchy starting from a proper seed [17]. The recursion operator (9) is not
weakly nonlocal. We have not proven that it produces local symmetries even though the
straightforward computation shows that starting from the equation itself, that is true for
finite steps. A similar study as in [10] is required in this case.

As mentioned in Introduction, the operator (10) involving the reflection operator T can
be used to produce the hierarchy of infinite symmetries starting from equation itself just
as the recursion operator (9). This is true for other scalar integrable differential-difference
equations. For instance, for the Volterra chain

ut = u(u1 − u−1),

its recursion operator is

R = uS + u1 + u + uS−1 + u(u1 − u−1)(S − 1)−1 1

u
.

The corresponding R′ is

R′ = u(1 − T )(S + 1)uS(S − 1)−1 1

u
.

We’ll explore more to uncover whether there are any advantages to present in this form.
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The equation (1) can be written in a rational form

vt = (1 + v2)

(

p−1
∏

k=1

1 + v2k
1 − v2k

vp

1 − v2p
−

p−1
∏

k=1

1 + v2−k

1 − v2−k

v−p

1 − v2−p

)

, p ∈ N

via a point transformation [18]1

u =
2v

1 − v2
.

All results obtained in terms of the variable u including the Lax representation, recursion
operators and Hamiltonian structures can be naturally passed to the variable v.

In principle, the methods developed in this paper can be used to construct a recursion
operator for the entire family of integrable equations (1). For any fixed p, we can write
down the recursion operator although it is formed by more parts comparing to (9). We
have also done it for p = 3, 4. Until now we are not able to present it in a neat way as it
has been done for the Narita-Itoh-Bogoyavlensky lattice in [5].
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