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Abstract

We study complexity in terms of degree growth of one-component lattice equations
defined on a 3 × 3 stencil. The equations include two in Hirota bilinear form and
the Boussinesq equations of regular, modified and Schwarzian type. Initial values are
given on a staircase or on a corner configuration and depend linearly or rationally on a
special variable, for example fn,m = αn,mz + βn,m, in which case we count the degree
in z of the iterates. Known integrable cases have linear growth if only one initial
values contains z, and quadratic growth if all initial values contain z. Even a small
deformation of an integrable equation changes the degree growth from polynomial to
exponential, because the deformation will change factorization properties and thereby
prevent cancellations.

Dedicated to the memory of Decio Levi.

1 Introduction

The concept of integrability is associated with the dynamics being regular (as opposed to
chaotic), without being simple. Since the equations are nonlinear, regularity means there
must be some underlying “controlling” mathematical structures. For example, solutions
to integrable equations are often associated with elliptic functions. Since many different
types of (nonlinear) equations can show regular behavior there cannot be a strict all-
encompassing definition of integrability.

It is more fruitful to consider “indicators” of integrability, each with their own range
of applicability. For example, the three-soliton condition (3SC) is a good indicator of
integrability for partial differential or partial difference equations in Hirota bilinear form,
while the Painlevé property is applicable more widely for differential equations but not so
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easily for difference equations. These two are algorithmic ways to prove integrability, that
is, following a given procedure one can prove or disprove integrability; usually it is easier
to disprove. Certain other integrability indicators require the construction of additional
structures, such as conserved quantities, or Lax pairs, or Bäcklund transformations etc.
Such constructions may require a lot of ingenuity.

In this paper, we only consider integrability in the context of partial difference equations
(for an overview, see [1, 2]). For them one algorithmic and powerful method is the study
of the growth of complexity under iterations, characterized by “algebraic entropy” [3, 4,
5, 6, 7, 8, 9, 10]. We will briefly discuss this in Section 2.

Growth properties of 2D one-component equations defined on a single quadrilateral of
the Z

2 lattice have been studied by several authors, see e.g. [11, 12, 13, 14, 15, 16]. If the
starting configuration is on the quadrilateral (0, 0)− (1, 1) of the Cartesian lattice and the
evolution is to the NE direction, then one can look for factorization and cancellation first
at the point (2, 2) (and this was used as a condition in the search for possible integrable
equations in [17]). As for lattice equations defined on a larger than 2 × 2 stencil, some
results exist for the Toda lattice, defined on a star shaped 5-point stencil [18].

The main results of this paper concern the numerical analysis of degree growth for
partial difference equations defined on a 3 × 3 stencil. The methodology is discussed in
Section 4. In Section 5, we will first study two equations in Hirota bilinear form, one
integrable and one non-integrable, which depend on seven point of the 3×3 stencil. These
equations are relatively simple and we can study integrability from various points of view,
in order to establish the validity of the computational method. Then in Section 6 ,we
analyze one-component equations of Boussinesq type, which involve all nine points in the
3× 3 stencil.

2 Degree growth and cancellations

When one studies discrete dynamics (maps), one way to quantify the idea of “regularity”
is to study the complexity of their iterates. This association was made already in the
1990’s by Veselov [3] and others. When a rational map is iterated, its complexity can be
quantified as the degree of the computed numerator (or denominator) with respect to the
initial values. In general, the degrees grow exponentially with the number of iterations n
but the growth will be reduced if the numerator and denominator have a common factor
which can be canceled. This was analyzed in detail in [4, 5, 6, 7, 8, 9] and it was found
that for integrable maps the cancellations are strong enough to convert the exponential
degree growth to polynomial growth with respect to n. In fact the conjecture relating
degree growth (after cancellations) to integrability is as follows:

• If the degree growth is linear in n then the equation is linearizable.

• If the degree growth is polynomial in n then the equation is integrable.

• If the degree growth is exponential in n then the equation is chaotic.

In order to observe the cancellations, it is best to formulate a higher order map as a
multi-component first order map in projective space. Then, instead of a rational expres-
sion, we have multi-component polynomial maps, and cancellations take place when, after
some number of iterations, the components have a nontrivial common factor.
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The existence of a common factor after n iterations means also that the initial values,
for which the common factor vanishes, are singular points, because starting from those
points the iterations eventually lead outside the projective space. Thus cancellations and
singularities are two sides of the same phenomenon.

Associated to this is also the method of “singularity confinement” [19, 20, 21]. In this
method one studies the singularity further by starting from a point infinitesimally close
to the singular point and checking whether after passing the singularity the dynamics
becomes regular eventually. This is a very effective method and been used extensively in
order to de-autonomize discrete maps.

Still another approach is to study the singularity itself using methods from algebraic
geometry, namely “resolution of singularities” [22, 23].

3 Lattice equations and their initial data

Among the integrable partial differential equations we have first order evolution equations
like the Korteweg – de Vries (KdV) equation and also second order equations like the
Boussinesq (BSQ) equation. The main difference is the amount of initial data needed to
define evolution, say one function at t = 0 for KdV, or one function and its derivative
w.r.t time for BSQ. This has its analogue for partial difference equations.

3.1 Initial data configuration

For equations defined on the Z
2 lattice there are several possibilities. If the equation is

defined on the elementary quadrilateral of the lattice, such as the discrete versions of the
KdV equation, we need initial data on a line, for example on a corner or on a staircase as
illustrated in Figure 1. (For more exotic initial data see [15].)

a) b)

Figure 1. Two ways to give initial data for an equation defined on the elementary 2× 2 quadri-

lateral. Here a) gives the corner configuration and b) the staircase configuration. The initial data

is given on the vertices marked by solid black circles and the values on vertices marked by open

circles are to be computed. The points involved in the first step of computations are bounded by

the dashed line.

Some equations are defined on a 2 × 3 stencil, for example the discrete KdV equation
in Hirota bilinear form. Two possible ways to give initial data are shown in Figure 2.

In this paper, we study one component equations defined on a 3 × 3 stencil on the Z
2

lattice. For them two lines of initial data is necessary, as seen in Figure 3.
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a) b)

Figure 2. Initial data required for equations defined on a 2 × 3 stencil, a) for corner and b) for

staircase. In both cases, one can say that now the initial data needs to be given on “1.5 lines”.

a) b)

Figure 3. Initial data required for equations defined on a 3 × 3 stencil, a) for corner, b) for

staircase. In this case, the initial data needs to be given on 2 infinite lines. For the staircase the

two lines can be defined by 0 ≤ n+m ≤ 3.

3.2 The equations under study

The first pair of equations are in the Hirota bilinear form. We use the short-hand notation
of writing only the shift with respect to (n,m) thus fn+1,m ≡ f1,0 etc. The two equations
considered are:

• Four-term seven point integrable equation in Hirota bilinear form (see Figure 4a))

2f2,2f0,0 + 2f1,2f1,0 − f2,1f0,1 − 3f2
1,1 = 0. (1)

• Four-term seven point non-integrable equation in Hirota bilinear form (see Figure
4b))

12 f2,2f0,0 − 3 f2,0f0,2 + 16 f1,2f1,0 − 25 f2
1,1 = 0. (2)

The numerical values of the parameters in (1) and (2) have no effect on integrability; they
have been chosen for convenience of integrability analysis using the three-soliton-condition
(3SC), done in the Appendix. There are also integrable three-term Hirota bilinear equa-
tions depending on 5 points of the 9 point stencil. They are related to the Toda lattice
and we will not discuss them here.

The second set of equations consist of one-component equations of Boussinesq type.
(For a comprehensive review see [24].) Their original three-component forms are defined
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a) b)

Figure 4. a): Graph of the integrable 4-term 7-point equation (1) b): Graph of the non-integrable

4-term 7-point equation (2). The (0,0) point at is the lower left black disk.

on the elementary quadrilateral and on its boundaries and are known to be integrable by
Consistency-Around-the-Cube method [25]. By eliminating two variables one obtains these
one-component forms on a larger stencil. For them no independent proof of integrability
has been given so far. In order to get a non-integrable version of these equations we will
add a multiplier (6= 1) to the x0,0 terms. In the following P,Q are the lattice parameters.

• The regular lattice Boussinesq equation in one-component form

(P −Q)

(

1

x2,0 − x1,1
−

1

x1,1 − x0,2

)

+ b0(x0,1 − x1,0 + x2,1 − x1,2)

−(x2,2 − x0,1)(x2,1 − x1,2)− (x0,0 − x2,1)(x1,0 − x0,1) = 0. (3)

This was first given in [26], except for the parameter b0 found in [25]. 1

• The modified lattice Boussinesq equation in one-component form was first given in
[26], we use its reversed form with x2,2 in the numerator

(

P x1,1 −Qx2,0
x2,0 − x1,1

)

x1,0
x2,1

−

(

P x0,2 −Qx1,1
x1,1 − x0,2

)

x0,1
x1,2

=
x2,2
x1,2

−
x2,2
x2,1

−
x1,0
x0,0

+
x0,1
x0,0

. (4)

• The Schwarzian Boussinesq equation in one-component form

(x2,2 − x1,2)(x0,2 − x1,1)(x0,1 − x0,0)

(x2,2 − x2,1)(x1,1 − x2,0)(x1,0 − x0,0)
=

(x1,1 − x0,2)(b0 x0,1 + b1) + (x1,2 − x0,2)(x0,1 − x1,1)P − (x1,2 − x1,1)(x0,1 − x0,2)Q

(x2,0 − x1,1)(b0 x1,0 + b1) + (x2,1 − x1,1)(x1,0 − x2,0)P − (x2,1 − x2,0)(x1,0 − x1,1)Q
. (5)

This was first given in [28] except for the parameters b0, b1 found in [25].

1It turns out that the b0 term in (3) can be eliminated by the transformation xn,m → xn,m+ 1

3
b0(n+m).

However, the parameter b0 cannot be eliminated from the three-component form and in fact has effects on
the solutions[27].
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4 Degree growth computations

4.1 Limits of analytical computations

For precise degree growth analysis one could in principle use analytical computations. In
order to get an idea of its feasibility, let us consider the integrable equation (4). For
computations we write equation (4) for CP 2 with a pair of polynomial maps. Defining
polynomials y, a by

xn,m =
yn,m
an,m

,

we get the maps

yn,m = [(an−2,m yn−1,m−1Q− an−1,m−1 yn−2,m P )×

(an−1,m−1 yn,m−2 − an,m−2 yn−1,m−1) an−1,m−2 an−1,m yn−2,m−1 yn,m−1

−(an−1,m−1 yn,m−2Q− an,m−2 yn−1,m−1 P )×

(an−2,m yn−1,m−1 − an−1,m−1 yn−2,m)an−2,m−1 an,m−1 yn−1,m−2 yn−1,m]yn−2,m−2

+(an−1,m−1 yn,m−2 − an,m−2 yn−1,m−1) (an−2,m yn−1,m−1 − an−1,m−1 yn−2,m)×

(an−2,m−1 yn−1,m−2 − an−1,m−2 yn−2,m−1) an−2,m−2 yn−1,m yn,m−1,

an,m = (an−2,m yn−1,m−1 − an−1,m−1 yn−2,m) (an−1,m−1 yn,m−2 − an,m−2 yn−1,m−1)×

(an−1,m yn,m−1 − an,m−1 yn−1,m) an−2,m−1 an−1,m−2 yn−2,m−2.

We take the staircase configuration and as initial values all xn,m for n+m = 0, 1, 2, 3 are
free parameters. In practice, we take yn,m = fn,m, an,m = 1, when n+m = 0, 1, 2, 3. The
first computed values at n +m = 4, for example y2,2, a2,2, will respectively be of degrees
5 and 4 in f , and will have 16 resp. 8 terms,

Continuing with n +m = 5, we get y3,2 and a3,2 of degrees 13 and 12 (with 1184 and
528 terms), respectively. But there are cancellations. We find

GCD(y3,2, a3,2) = (f3,0 − f2,1)(f2,1 − f1,2)(f2,0 − f1,1)f2,1,

and consequently after cancellation the final degrees are 9 and 8, respectively (with 220 and
112 terms). The GCD also clearly indicates that initial values with fn,m − fn−1,m+1 = 0
form singular lines in the initial value space coordinatized by fn,m, n+m = 0, 1, 2, 3.

Getting data for points with n+m = 6 is already very demanding, but with judicious
choices in the order of computations we eventually find that GCD(y3,3, a3,3) is a product
of various fn,m − fn−1,m+1 terms and when they are divided out y3,3, a3,3 will have 4672
and 2592 terms of degrees 14 and 13, respectively. Thus with some effort we have found
the beginning part of the degree growth sequence to be (c.f. Section 6.2)

1, 5, 9, 14, . . .

It is now clear that with full analytical computations we cannot hope to get a sufficient
number of data points for growth analysis. And for the more complicated (5) the situation
is worse still. Thus, we must resort to other techniques.
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4.2 Computational method

In the following, we will compute numerically the degree growth for the equations men-
tioned in Section 3.2. We take the equations in Hirota bilinear form as test cases, because
for them we have an independent integrability test. Thus, from these equations we get an
indication on how the computed degrees can be used to distinguish between integrable and
non-integrable models. We then go on to compute degrees for the Boussinesq equations.

As we saw a full analytic computation not feasible, but for longer growth data even the
numerical computations must be streamlined:

• We must reduce the number of variables that are tracked for determining the degree.
It is not necessary to keep all initial values as independent variables, instead one can
introduce one dedicated variable, say z, for this purpose and give the initial data in
terms of that variable, for example:

1. Use the dedicated variable at one point only, say f0,0 = z, all other initial values
being random numbers.

2. Set all initial values as linear functions of the dedicated variable z:

fn,m = αn,mz + βn,m, (6)

with random integer coefficients α, β. Then we take yn,m = fn,m, an,m = 1.

3. Set all initial values as rational functions of z [12]

fn,m =
αn,mz + βn,m
γn,mz + δn,m

. (7)

For polynomial computations we set yn,m = αn,mz + βn,m, an,m = γn,mz + δn,m.

• During iterations the expressions start to contain huge numbers as coefficients and
this can be made manageable using modular arithmetic with respect to a large prime
p. It is best to use random numbers for all constants (such as those appearing in the
equation P,Q, bj , as well as those appearing in initial conditions αn,m, βn,m, . . . ).
The necessary operations of polynomial algebra, including computation of GCD,
have been implemented for modular arithmetic. The programming language C++
provides tools for this purpose through its NTL package. In principle, there could be
spurious zeroes if by accident some number is congruent to 0 mod p. In a suspicious
situation one could redo computations with a different prime.

• Initial value geometry. The choices we will use here, corner and staircase, were
already illustrated in Figures 2 and 3. We do not consider exotic geometries such as
those used in [15].

5 Degree growth for Hirota bilinear equations

Integrability analysis of equations (1) and (2) based on the three-soliton-condition has
been done in the Appendix. In this section we study the degree growth. We will consider
different geometries and distributions of z.
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. . . . . . ◦ ◦ ◦ ◦ 0 0 0 0 0 0 0 0

. . . . . ◦ ◦ ◦ ◦ 0 0 0 0 0 0 0 0 0

. . . . ◦ ◦ ◦ ◦ 0 0 0 0 0 0 0 0 0 0

. . . ◦ ◦ • ◦ 0 0 0 0 0 0 0 0 0 0 0

. . ◦ ◦ ◦ ◦ 2 2 2 2 2 2 2 2 2 2 2 2

. ◦ ◦ ◦ ◦ 0 2 4 5 5 5 5 5 5 5 5 5 5

◦ ◦ ◦ ◦ 0 0 2 5 6 8 8 8 8 8 8 8 8 8

◦ ◦ ◦ 0 0 0 2 5 8 10 11 11 11 11 11 11 11 11

◦ ◦ 0 0 0 0 2 5 8 11 14 14 14 14 14 14 14 14

◦ 0 0 0 0 0 2 5 8 11 14 18 18 18 18 18 18 18

0 0 0 0 0 0 2 5 8 11 14 18 22 22 22 22 22 22

0 0 0 0 0 0 2 5 8 11 14 18 22 26 26 26 26 26

0 0 0 0 0 0 2 5 8 11 14 18 22 26 30 30 30 30

0 0 0 0 0 0 2 5 8 11 14 18 22 26 30 34 34 34

0 0 0 0 0 0 2 5 8 11 14 18 22 26 30 34 38 38

0 0 0 0 0 0 2 5 8 11 14 18 22 26 30 34 38 42

Figure 5. Degrees for equation (1). The variable z is only at (1, 1). The corner configuration is

within the dashed lines. For n,m > 5 the degrees are deg
n,m

= 4min(n,m)− 10.

5.1 Only one tracking variable among the initial value

The integrable case (1). First we will consider the integrable equation (1) and put the
tracking variable z in only one initial value.2

In Figure 5, we have the staircase configuration with the initial value z at (1, 1), it is
marked by a black disk. The other initial values are random numbers and marked by open
circles. We have also displayed the stencil relevant to this equation using larger circles.
The displayed numbers give the degree of the numerator of xn,m, i.e., the degree of yn,m
in z. For n,m > 5 the degrees are given by

degn,m = 4min(n,m)− 10, (8)

and therefore grow linearly.
In the same figure, we have indicated the corner configuration with dashed lines. The

degrees are the same, because from staircase of initial values we can compute numerical
values for all points for which (n < 2, m > 2) or (n > 2,m < 2), and this way create the
initial values (random numbers) for the corner situation.

2This method was first used in [15] where it was found that for the Liouville equation the degrees are
then bounded, for the integrable KdV equation the degrees grow linearly, while in a non-integrable version
of KdV the degrees were found to grow asymptotically as 4n.
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. . . . ◦ ◦ ◦ ◦ 0 0 0 0 0 0 0 0

. . . ◦ ◦ ◦ ◦ 0 0 0 0 0 0 0 0 0

. . ◦ ◦ • ◦ 1 0 1 0 1 0 1 0 1 0

. ◦ ◦ ◦ ◦ 2 2 2 2 2 2 2 2 2 2 2

◦ ◦ ◦ ◦ 1 2 4 4 5 4 6 4 7 4 8 4

◦ ◦ ◦ 0 1 2 5 8 11 14 15 18 19 22 23 26

◦ ◦ 0 0 1 2 6 12 22 30 40 46 57 62 75 78

◦ 0 0 0 1 2 7 16 34 56 84 110 140 168 200 232

0 0 0 0 1 2 8 20 47 88 151 224 312 400 507 610

0 0 0 0 1 2 9 24 61 126 241 402 619 868 1167 1492

0 0 0 0 1 2 10 28 76 170 355 652 1103 1694 2451 3338

0 0 0 0 1 2 11 32 92 220 494 982 1802 3010 4702 6864

0 0 0 0 1 2 12 36 109 276 659 1400 2755 4956 8324 13030

0 0 0 0 1 2 13 40 127 338 851 1914 4002 7682 13778 23034

Figure 6. Non-integrable equation (2) with initial single z at point (1, 1).

If we set the initial value z at (0, 0), the degree growth is slower. For example, the
degree at the first calculated point (2, 2) is zero, because the variable z only appears in
the denominator. For n,m > 2 the degrees are in that case given by

degn,m = 2min(n,m)− 4. (9)

In all cases, when there is only one z-dependent initial value the growth is linear for the
integrable case.

The non-integrable case (2). For the non-integrable case (2) the degrees in Figure 6
are for the initial value z only at (1, 1), in a staircase configuration. A longer list of values
on the diagonal (dashed line in Figure 6) is given by

0, 1| 2, 4, 8, 22, 56, 151, 402, 1103, 3010, 8324, 23034, 64171, 179096, 501810, 1408760, . . .

This is approximately 0.726 × 2.813n. The first few columns in the figure show regular
growth but is still unlikely that the numbers can be given by some formula, especially
since the equation itself is asymmetric.

5.2 All initial values contain z

Next we consider cases in which all initial values depend on z, either linearly, i.e., αn,mz+
βn,m or rationally (αn,mz + βn,m)/(γn,mz + δn,m), where αn,m, βn,m, γn,m, δn,m are some
random numbers. We will mostly use the staircase configuration extending from upper
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left to lower right. As indicated in Figure 3, the initial values will be given on points for
which 0 ≤ n+m ≤ 4. Due to translational invariance along the staircase the degrees only
depend on n+m and therefore the results can be given by one sequence of values.

Integrable/linear. In the staircase configuration the degrees for (1) are given by

degk=n+m>3 = k2 − 7k + 14. (10)

We also computed the degrees without canceling common factors, and got (for k > 3)

2, 4, 10, 28, 81, 237, 697, 2053, 6050, 17832, 52562, 154936, 456705, 1346233, 3968305, . . . ,

leading to growth rate 2.94771k , showing once more the essential influence of cancellations.
For the corner configuration and with linear initial data the degrees of the numerator

follow the rule

degn,m = 2nm− 3(n +m) + 6. (11)

On the diagonal where m = n, we have k = 2n and we can compare staircase and corner
degrees: degstr = 4n2 − 14n + 14 versus degcor = 2n2 − 6n + 6, i.e., in the staircase the
growth is about twice as fast. This is because in the corner case the degrees on the corner
boundaries (cf. Figure 3 a)) are those of the initial values (i.e. = 1) while for the staircase
the degrees at the corresponding points are computed.

Integrable/rational. In Figure 7, we have rational initial data for the corner configu-
ration. In the region above and to the right of the dashed line the degrees are given by

degn,m = 6mn− 13(n +m) + 4max(n,m) + 2δn,m + 32. (12)

Asymptotically these are three times bigger than in the linear case (11).
For the staircase we have the degrees starting at k = 4 as 7, 13, 26, 43, 62, 91, 122 and

then for k > 10,

degk=n+m = 3k2 − 26k + 84, (13)

again about three times bigger than in (11).

Non-integrable/linear For the staircase configuration we have the degrees for k :=
n+m, starting with k = 0, as

1, 1, 1, 1, |2, 3, 7, 12, 22, 36, 61, 101,174, 295, 508, 864, 1478, 2513, 4289, 7303, 12463,

21241, 36237, 61771, 105346, 179593, 306252, . . . .

This is approximately ∝ 1.705k or on the n = m diagonal as ∝ 2.908n = 1.7052n.

Non-integrable/rational For the staircase the degree sequence is

1, 1, 1, 1, |7, 11, 24, 38, 64, 102,176, 294, 514, 870, 1498, 2539, 4341, 7376, 12600,

21456, 36631, 62419, 106488, 181496, 309541, . . . .

The is about the same as for linear initial data
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• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

• • 10 20 29 38 47 56 65 74 83 92 101 110 119 128 137 146 155 164

• • 13 29 42 57 72 87 102 117 132 147 162 177 192 207 222 237 252 267

• • 16 38 57 74 94 115 136 157 178 199 220 241 262 283 304 325 346 367

• • 19 47 72 94 118 143 170 197 224 251 278 305 332 359 386 413 440 467

• • 22 56 87 115 143 174 205 238 271 304 337 370 403 436 469 502 535 568

• • 25 65 102 136 170 205 242 279 318 357 396 435 474 513 552 591 630 669

• • 28 74 117 157 197 238 279 322 365 410 455 500 545 590 635 680 725 770

• • 31 83 132 178 224 271 318 365 414 463 514 565 616 667 718 769 820 871

• • 34 92 147 199 251 304 357 410 463 518 573 630 687 744 801 858 915 972

• • 37 101 162 220 278 337 396 455 514 573 634 695 758 821 884 947 1010 1073

• • 40 110 177 241 305 370 435 500 565 630 695 762 829 898 967 1036 1105 1174

• • 43 119 192 262 332 403 474 545 616 687 758 829 902 975 1050 1125 1200 1275

• • 46 128 207 283 359 436 513 590 667 744 821 898 975 1054 1133 1214 1295 1376

Figure 7. Degrees for equation (1) with rational initial data.

Summary. Depending on the initial data from which the degrees are computed, we have
slightly different growth rates. In the integrable case of (1) a single z dependent initial
data point gives linear growth, while linear and rational initial data give quadratic growth.
For the chosen example of non-integrable equation in Hirota bilinear form (2) the growth
is always exponential, about 2.8n or 2.9n. Thus, we see that the computationally simplest
case of only one initial z-dependent point is enough to differentiate between integrable
and non-integrable equations.

6 Degree growth of lattice Boussinesq equations

We now turn to the lattice Boussinesq equations (3), (4), and (5). These equations involve
all points of the 3 × 3 stencil. The non-integrable versions are obtained by changing the
coefficient of the x0,0 term.

From the results for Hirota equations (1) and (2) we have observed first of all that
a single non-numeric initial value is enough to differentiate between integrable and non-
integrable equations. Furthermore, we found that even for equations defined on a larger
stencil, the integrable case with linear and rational z dependence have quadratic degree
growth, while for the non-integrable case the growth is typically 2.8n. One may expect
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similar overall results for the Boussinesq equations since they are integrable.
However we may expect differences in the details. One difference is due to the observa-

tions that Boussinesq equations are in many ways associated with threefold symmetry, for
example the solutions often involve cubic roots of unity. In the following, this manifests
itself in the degree sequences where we need an indicator function for divisibility by 3,
which we define as

Dn(m) =

{

1 when n|m,
0 otherwise.

6.1 Regular lattice Boussinesq equation (3)

For numerical computations we use P −Q = 3, b0 = 1. The value of b0 seems to have no
effect. Unless mentioned otherwise, we only consider the staircase configuration.

• Single z in the initial values. If initial value has a single z at (0, 0) we get for the
integrable case degrees for the corner configuration as given in Figure 8,3

degn,m = min(n− 1,m− 1, ⌊(n +m− 1)/3⌋) (14)

The same degrees are obtained for the staircase configuration. In Figure 9, we have degrees
for a case which is non-integrable due to a different coefficient for x0,0.

• Linear initial values:
In the integrable case the degrees in the staircase configuration are

1, 1, 1, 1 | 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92,106, 121, 137, 154, 172, 191, 211,

232, 254, 277, 301, ...

Here and in the following, the first 4 degrees are initial values at (0, 0), (0, 1), (1, 1), (1, 2)
The above sequence is given by

degk=n+m>3 =
1
2(k

2 − 3k + 4). (15)

In the non-integrable case with “2x0,0” instead of “x0,0” we have instead

1, 1, 1, 1 | 4, 7, 13, 24, 47, 93, 180, 353, 695,1358, 2655, 5206, 10192, 19942,

39048, 76447, 149634, 292944, 573525, . . .

with growth rate 0.112 · 1.958k . First difference with respect to the integrable case is at
(3, 3): 13 vs. 11.

• Rational initial values
Integrable case we have degrees

1, 1, 1, 1 | 9, 16, 26, 41, 55, 73, 97, 118, 144, 177,205, 239, 281, 316, 358, 409,

451, 501, 561, 610, 668, 737, 793, . . .

This is fitted with

degk=n+m>3 =
1
3 [4k

2 − 13(k − 1) + (k − 2)D3(k − 1)−D3(k)]. (16)

3⌊x⌋ = “floor” of x = ignore decimals of x.
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• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

◦ ◦ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

◦ ◦ 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3

◦ ◦ 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4

◦ ◦ 1 2 3 3 3 4 4 4 5 5 5 5 5 5 5

◦ ◦ 1 2 3 3 4 4 4 5 5 5 6 6 6 6 6

◦ ◦ 1 2 3 4 4 4 5 5 5 6 6 6 7 7 7

◦ ◦ 1 2 3 4 4 5 5 5 6 6 6 7 7 7 8

◦ ◦ 1 2 3 4 5 5 5 6 6 6 7 7 7 8 8

◦ ◦ 1 2 3 4 5 5 6 6 6 7 7 7 8 8 8

◦ ◦ 1 2 3 4 5 6 6 6 7 7 7 8 8 8 9

◦ ◦ 1 2 3 4 5 6 6 7 7 7 8 8 8 9 9

◦ ◦ 1 2 3 4 5 6 7 7 7 8 8 8 9 9 9

◦ ◦ 1 2 3 4 5 6 7 7 8 8 8 9 9 9 10

◦ ◦ 1 2 3 4 5 6 7 8 8 8 9 9 9 10 10

Figure 8. Degrees for Boussinesq equation (3) with one z at (0,0). The degrees are given by

min(n− 1,m− 1, ⌊(n+m− 1)/3⌋). As an example, the dashed lines border the area with degree

5.

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ 1 1 1 1 1 1 1 1 1

◦ ◦ 1 2 4 6 8 10 12 14 16

◦ ◦ 1 4 9 17 29 45 65 89 117

◦ ◦ 1 6 17 39 78 141 236 371 554

◦ ◦ 1 8 29 78 179 367 691 1215 2019

◦ ◦ 1 10 45 141 367 842 1758 3406 6206

◦ ◦ 1 12 65 236 691 1758 4032 8526 16873

◦ ◦ 1 14 89 371 1215 3406 8526 19547 41733

◦ ◦ 1 16 117 554 2019 6206 16873 41733 95644

Figure 9. Degrees for a non-integrable case. First difference with respect to the integrable case

displayed in Figure 8 is at point (3, 3).



14 ]ocnmp[ J Hietarinta

Note the period-3 components.

For the non-integrable case with “2x0,0” instead of “x0,0” we get

1, 1, 1, 1 | 9, 17, 33, 63, 123,243, 473, 927, 1823, 3567, 6977, 13675, 26777,

52403, 102599, 200863, 393179, 769723, 1506935, . . .

The growth is about 0.29 · 1.958k . With the x0,0 term replaced by “0x0,0” we get slightly
smaller degrees

1, 1, 1, 1 | 8, 15, 29, 55, 108,213, 414, 813, 1598, 3125, 6115, 11985, 23464,

45923, 89915, 176023, 344559, 674551, 1320600, . . .

with about the same growth: 0.26 · 1.958k. Although the degrees start slower in the last
case they exceed the integrable case already at k = 6.

6.2 Modified lattice Boussinesq equation (4)

In general the degrees are close to those of the regular Boussinesq equation, sometimes
even the same. In computations we use p = 1, q = 3.

• Single z in the initial values. The degrees are the same as for the regular Boussi-
nesq equation, given in (14) and Figure 8.

• Linear initial values:

For the integrable case we get

1, 1, 1, 1, | 5, 9, 14, 21, 29, 38, 49, 61, 74, 89, 105, 122, 141, 161, 182, 205,

229, 254, 281, 309, 338, 369, 401, ...

This is fitted with

degk=n+m>3 =
1
3 [2k

2 − 6k + 7−D3(n)]. (17)

For the non-integrable case

1, 1, 1, 1, | 5, 10, 21, 49, 112, 255, 582,1329, 3035, 6930, 15824, 36134,

82511, 188411, 430231, 982420, 2243327, ...

The asymptotic degree growth is approximately 0.151 · 2.283n.

• Rational initial values

For the integrable case

1, 1, 1, 1, | 9, 17, 27, 41, 57, 75, 97, 121, 147, 177, 209, 243, 281, 321, 363,

409, 457, 507, 561, 617, 675, 737, 801, ...

This is fitted with

degk=n+m>3 =
1
3 [4k

2 − 12k + 11− 2D3(k)]. (18)
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This bears some similarity to (16). Indeed we have

deg(16)− deg(18) = (D3(n− 1)− 1)⌊(n − 1)/3⌋ (19)

which means that every third degree value is the same.

The non-integrable case gives

1, 1, 1, 1, | 9, 18, 38, 90, 206, 469, 1071, 2446, 5586, 12755,

29125, 66507, 151867, 346783, 791869, ...

Now the growth is approximately 0.279 · 2.283n.

6.3 Schwarzian lattice Boussinesq equation (5)

It turns out that in the integrable case the degrees are the same as for the modified
Boussinesq equation. Degrees for the non-integrable cases are different, however.

6.3.1 A generalization

In [29] a generalization for the Schwarzian lattice Boussinesq equation was given in the
form

Qp,q(x0,1, x1,1, x0,2, x1,2)

Qp,q(x1,0, x2,0, x1,1, x2,1)
=

(Qax0,0 −Qbx0,1) (Pax1,2 − Pbx2,2) (QaPbx1,1 − PaQbx0,2)

(Pax0,0 − Pbx1,0) (Qax2,1 −Qbx2,2) (QaPbx2,0 − PaQbx1,1)
,

(20)

in which Qp,q(x0,1, x1,1, x0,2, x1,2) and Qp,q(x1,0, x2,0, x1,1, x2,1) can be obtained from

Qp,q(x0,0, x1,0, x0,1, x1,1) := PaPb(x0,0x0,1 + x1,0x1,1) (21)

−QaQb(x0,0x1,0 + x0,1x1,1)−G(p, q)(x0,1x1,0 + x0,0x1,1) ,

by m and n shifts, respectively. Furthermore, the parameters P,Q,G are given by

P 2
a = g(p)−g(a), P 2

b = g(p)−g(b), Q2
a = g(q)−g(a), Q2

b = g(q)−g(b), G(p, q) = g(p)−g(q),

(22)

where g(x) = x3 − α2x
2 + α1x. Actually the form of the function g is irrelevant, because

only parameters P,Q,G enter in the equation, and due to their additive definition they
can be considered free, except for the following constraints

P 2
a − P 2

b = Q2
a −Q2

b , G(p, q) = P 2
a −Q2

a. (23)

In numerical computations we took Pa = 40, Pb = 32, Qa = 24, Qb = 7. We found that
this equation has the same degrees as the standard Schwarzian lattice Boussinesq equation.

If P 2
a = P 2

b , Q
2
a = Q2

b (20) reduces to (5) with b0 = b1 = 0.
It was surmised in [29] that from (20) one can obtain the other one-component lattice

Boussinesq equations by suitable transformations and limits, but no rigorous proofs have
been presented. If such connections exist they are not simple. For example (20) is ho-
mogeneous and scale invariant while the b1 term in (5) breaks that. Furthermore the bi
terms in (3) and (5) arise from the αi terms in g(x) but in (20) the αi terms are entirely
hidden in P,Q,G.
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7 Discussion

The lattice Boussinesq equations are usually given as three component equations residing
on a single lattice plaquette and on its boundaries. By eliminating certain variables in
favor of others one can obtain [24] several one component representation of the three kinds
of Boussinesq equations. It turns out [24] that a particular one-component equation can
represent different variables in different equations, but in any case only three different one
component equations remain.

The degree growth computations in the present 3 × 3 stencil case confirm the many
results that have been obtained for equations defined in the 2 × 2 and 2 × 3 stencil and
stated in Section 2. One additional observation is that it is enough to have just one non-
numeric initial value to differentiate between integrable and non-integrable equations: for
integrable equations the growth is linear in this case.
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Appendix

Integrability by the three-soliton condition

For the two Hirota bilinear cases we can study integrability by computing multi-soliton
solutions. It is well known that all one-component Hirota bilinear equations have one-
and two-soliton solutions, but the existence of three-soliton solutions, without additional
constraints, is possible only for integrable equations.

The parameters in equations (1) have been chosen so that we have simple one-soliton
solutions: Defining the plane wave factor (corresponding to ekx+ωt) by

ρn,m(k) := ck

(

k − 1

k + 1

)n( k

k − 1

)m

, (24)

we have the one-soliton solution

τn,m = 1 + ρn,m(k1),

and the two-soliton solution

τn,m = 1 + ρn,m(k1) + ρn,m(k2) +A1,2 ρn,m(k1)ρn,m(k2),

where the phase factor is

Aki,kj :=
(ki − kj)

2

k2i + kikj + k2j − 1
. (25)
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The denominator is typical to Boussinesq type equations. One can then verify that (1)
has the three-soliton solution4

τn,m =1 + ρn,m(k1) + ρn,m(k2) + ρn,m(k3)

+A1,2 ρn,m(k1)ρn,m(k2) +A2,3 ρn,m(k2)ρn,m(k3) +A3,1 ρn,m(k3)ρn,m(k1)

+A1,2A2,3A3,1 ρn,m(k1)ρn,m(k2)ρn,m(k3),

without any additional restrictions on kj .
Turning now to the non-integrable case (2) with the given coefficients, we have the

plane-wave factors

ρn,m(k) := ck

(

−k + 3

9k + 3

)n(−k − 1

k − 1

)m

,

and then the one-and two-soliton are solutions as above, but with the phase factor

Ai,j =
−3(ki − kj)

2

[kikj + 1][3k2i k
2
j − 8kikj(ki + kj)− 3(k2i + kikj + k2j )]

.

After these an attempt for a three-soliton solution yields the condition

k1k2k3 + k1 + k2 + k3 = 0,

and thus the three line-solitons cannot be in general position. This is typical for the
non-integrable case.
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