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Abstract

We study reductions of the Volterra lattice corresponding to stationary equations for
the additional, noncommutative subalgebra of symmetries. It is shown that, in the
case of general position, such a reduction is equivalent to the stationary equation for
a sum of the scaling symmetry and the negative flows, and is written as (m + 1)-
component difference equations of the Painlevé type generalizing the dP1 and dP34

equations. For these reductions, we present the isomonodromic Lax pairs and derive
the Bäcklund transformations which form the Zm lattice.

1 Introduction

The Volterra lattice

un,x = un(un+1 − un−1) (1)

is, along with the Toda lattice, one of the oldest integrable models with discrete variables
[1, 2], the study of which significantly expanded the scope of the inverse scattering method.
Great merit in the development of the theory of differential-difference equations belongs to
Decio Levi. In his pioneering work [3] it was shown that such equations can be naturally
interpreted as the Bäcklund transformations for partial differential equations. The lattice
equation (1) admits the symmetry

un,t = un(un+1(un+2 + un+1 + un)− un−1(un + un−1 + un−2)) (2)
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(which means that this pair of equations is consistent). Due to equation (1), all variables
un±i can be expressed in terms of a pair of neighboring variables u = un, v = un+1 and
their x-derivatives, hence equation (2) turns out to be equivalent to some PDE system for
u and v, namely,

ut = −uxx + (2uv + u2)x, vt = vxx + (2uv + v2)x. (3)

Since n is arbitrary, the mapping (un, un+1) 7→ (un+1, un+2) defined by equation (1), serves
as the simplest Bäcklund transformation for this system. A number of works by Levi and
his coauthors were devoted to classification of integrable lattice equations, description
of the algebra of their higher and classical symmetries, methods for constructing exact
solutions, and connections with other classes of integrable equations; we only mention the
papers [4, 5] and the book by D. Levi, P. Winternitz and R. Yamilov [6] which summed
up their many years of work in the field of discrete equations.

In this paper, we consider the problem of constructing reductions of the Volterra lat-
tice, that is, the constraints which are consistent with the shift operator T : n 7→ n+1. In
particular, we demonstrate that equations (1) and (2) admit a family of finite-dimensional
non-autonomous reductions defined by the following (m+ 1)-component system of differ-
ence equations:

{
un(y

j
n+1 + yjn)(y

j
n + yjn−1) = αj(yjn)

2 + (−1)nβjyjn + γj , j = 1, . . . ,m,

4tun(un+1 + un + un−1) + 2xun + n− δ + (−1)nε = y1n + · · · + ymn
(4)

where αj , βj , γj , δ and ε are arbitrary constants. Here the first m equations play the
role of definition of the auxiliary non-local variables y1n, . . . , y

m
n , and the last equation

defines the constraint for un. The main proposition is that this system is compatible with
derivations with respect to the parameters x and t defined by (1), (2) and the consistent
rules for differentiating yjn (given by equations (19), (20) in the next section).

For the simplect particular case m = 0 studied in [7], the system (4) consists of a single
equation for un

4tun(un+1 + un + un−1) + 2xun + n− δ + (−1)nε = 0, (5)

which coincides up to dilations with the discrete Painlevé equation dP1 [8, eq. (51)], while
the evolution with respect to the parameter x is governed by the continuous P4 equation.
For the case m = 1 and t = 0 studied in [9], un is expressed in terms of yn from the second
equation (4) and the first one takes the form

(y1n+1 + y1n)(y
1
n + y1n−1) = 2x

α(y1n)
2 + (−1)nβy1n + γn

y1n − n+ δ − (−1)nε
. (6)

This is equivalent to the discrete Painlevé equation dP34 [8, eqs. (13), (45)], while the
evolution with respect to x is governed by P5 for α 6= 0 and P3 for α = 0. Non-Abelian
versions of (5) and (6) were proposed in [10].

Both equations (5) and (6), as well as the general system (4) belong to the so-called
string equations, that is, stationary equations for non-autonomous symmetries of the
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Volterra lattice. In particular, it is easy to see that (5) is obtained by integrating from
the stationary equation for the classical scaling symmetry which is defined as

un,τ1 = 2tun,t + xun,x + un.

Similarly, in [9] it was shown that equation (6) can be obtained from the stationary
equation for the master-symmetry of the lattice equation (1) which is of the form [11, 12,
13, 6]

un,τ2 = xun,t + un((n + 3)un+1 + un − nun−1),

although here the passage to (6) is less obvious and requires some change of variables. Our
goal in this article is to generalize this change for the string equations of arbitrary order.

Let us outline the content of the work. The main results are obtained in Section 3,
where it is shown that the system (4) (and its further extensions) is equivalent in the case
of general position to the stationary equation for higher non-autonomous symmetries. On
the other hand, the system (4) defines the stationary equation for the sum of the scaling
symmetry and the negative symmetries of the Volterra lattice, which are defined in terms
of the variables yjn. We mention papers [14, 15, 16] where similar results were obtained
for the Korteweg–de Vries (KdV) equation.

The negative flows are introduced in Section 2 based on the notion of the recursion
operator [12, 17]. Many of the formulas in this section are fairly standard and easy to
find in the literature, in particular, in the books [18, 6]. Negative symmetry can be
interpreted as a generating function for higher symmetries, and the same is true for the
corresponding matrices from the Lax representations. This idea itself is not new and
goes back to [19], where the flows of the KdV hierarchy are derived from the resolvent of
the Sturm–Liouville operator by expansion with respect to the spectral parameter. At the
same time, the author is not aware of works where the definition of the negative symmetry
for the Volterra hierarchy would be given in the general form. Note that our Definition 2
includes, as a special case, the negative flow studied in [20, 21, 22].

The final Section 4 contains the Darboux–Bäcklund transformations, in the form of
involutive rational mappings that preserve the form of the system (4) and are consistent
with the x- and t-evolution.

2 Negative flows of the Volterra lattice

Let us recall that the hierarchy of the Volterra lattice

un,x = un(un+1 − un−1) (7)

is generated by the recursion operator (see e.g. [12, 17])

R = un + un(un+1T
2 − un−1T

−1)(T − 1)−1 1

un
, (8)

where T : n 7→ n+ 1 is the shift operator. Applying R to the right hand side of (7) gives
the first higher symmetry

un,t = un(un+1(un+2 + un+1 + un)− un−1(un + un−1 + un−2)), (9)
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up to the addition of the term cun,x, where c is an arbitrary constant of integration arising
from the non-empty kernel of the operator T − 1. Further application of R generates an
infinite sequence of derivations Di defined by equations

un,ti = Ri−1(un,x) = un(T − T−1)(h(i)n ), i = 1, 2, . . . . (10)

For uniformity, we use the notation x = t1 and t = t2 here and below. Equations (10)
are local (that is, the right-hand sides are expressed in terms of un variables) and are

consistent with each other. More precisely, one can prove that h
(i)
n are polynomials of

degree i in un−i+1, . . . , un+i−1, homogeneous if one choose zero integration constants at
each step, and satisfying the identities

h
(j)
n,ti

= h
(i)
n,tj

(11)

which imply the property [Di,Dj ] = 0.

Negative symmetries are defined by inverting the operator R − α with an arbitrary
constant α (which is natural, since such an operator is also a recursion operator), that is,
as a flow of the form

un,ξ = (R− α)−1(un,x). (12)

Unlike higher symmetries, this equation is nonlocal: to write it explicitly, it is necessary
to expand the set of dynamic variables. Let us show how this can be done. Let gn be the
right hand side of (12), that is

(R − α)(gn) = un(un+1 − un−1). (13)

To be able to apply R, we set gn = un(zn+1 − zn); this gives

u2n(zn+1 − zn) + un(un+1zn+2 − un−1zn−1)− αun(zn+1 − zn) = un(un+1 − un−1)

and after canceling the factor un we come to

(T + 1)(unzn+1 − un−1zn−1 − un + un−1)− α(zn+1 − zn) = 0. (14)

For the second term to lie in the image of T + 1, we set zn − 1 = yn + yn−1, then the
equation is integrated once:

un(yn+1 + yn)− un−1(yn−1 + yn−2)− α(yn − yn−1) + (−1)nβ = 0 (15)

(note that exactly the same equation is obtained if we start from (13) with zero right hand
side and apply the substitution zn = yn + yn−1 instead, which amounts to changing the
integration constant in R(gn)). Equation (15) can be integrated once again, noting that
after multiplication by yn + yn−1 the left hand side belongs to the image of T − 1. As a
result, we arrive at the following definition.

Definition. The negative symmetry of the Volterra hierarchy is a flow of the form

un,ξ = un(yn+1 − yn−1) (16)
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where the non-local variable yn satisfies the following equations:

un(yn+1 + yn)(yn + yn−1) = αy2n + (−1)nβyn + γ (17)

with constants α, β and γ which do not vanish simultaneously, and

yn,ti = h
(i)
n,ξ (18)

where h
(i)
n are homogeneous polynomials from (10).

The rule (18) defines the prolongation of derivations Di to the variables yn in a way
consistent with the commutativity property of the flows (10) and (16). For instance,

derivations D1 = Dx and D2 = Dt correspond to h
(1)
n = un and h

(2)
n = un(un+1 + un +

un−1), hence the extensions of the flows (7) and (9) are defined by equations

yn,x = un(yn+1 − yn−1), (19)

yn,t = un
(
un+1(yn+2 − yn) + (un+1 + 2un + un−1)(yn+1 − yn−1) + un−1(yn − yn−2)

)
.

(20)

The relation (11) implies that Di and Dj remain commutative on the extended variable
set. For the correctness of the Definition 2, it is also necessary that Di be consistent with
the difference equation (17). The check of consistency for D1 = Dx and D2 = Dt can be
done by direct calculation.

Proposition 1. Equation (17) is consistent with derivations Dx and Dt defined by (7),
(19) and (9), (20).

Proof. Denote Fn = un(yn+1 + yn)(yn + yn−1) − αy2n − (−1)nβyn − γ and let Gn =
Fn − Fn−1

yn + yn−1
be the left hand side of (15). It is verified by direct calculation that

Fn,x = un(yn + yn−1)Gn+1 + un(yn+1 + yn)Gn, (21)

Fn,t = unun+1(yn + yn−1)Gn+2

+ un
(
un−1(yn−1 + yn−2) + 2(un+1 + un)(yn + yn−1)

)
Gn+1

+ un
(
un+1(yn+2 + yn+1) + 2(un + un−1)(yn+1 + yn)

)
Gn

+ unun−1(yn+1 + yn)Gn−1. (22)

The right hand sides vanish if Fn = 0 for all n, as required. �

Note that when checking the commutativity property [Di,Dj ] = 0, the equation (17)
is not used. Moreover, commutativity is also preserved for more general extensions of the

form yn,ti = h
(i)
n,ξ + δ

(i)
n where δ

(i)
n+2 = δ

(i)
n are “blinking” constants. However, for such

flows, compatibility with (17) is satisfied only for δ
(i)
n = 0. For the examples of Dx and

Dt, this can be verified directly, similar to the above proof.
One application of the negative symmetry is that the expansion (R − α)−1 = α−1(1 +

R/α+R2/α2+. . . ) allows interpreting the flow (16) as a generating function for the higher
symmetries (10):

un,ξ =
1

α
un,t1 +

1

α2
un,t2 +

1

α3
un,t3 + . . . . (23)
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In particular, this leads to the following assertion, which implies the locality property of
flows (10) formulated above (note that their commutativity can also be proved from the
consistency property of negative symmetries with different parameters α, but we will not
delve into this).

Proposition 2. Homogeneous polynomials h
(i)
n (un−i+1, . . . , un+i−1) defining the higher

symmetries (10) are calculated as the coefficients of the formal series

yn =
1

2
+

h
(1)
n

α
+

h
(2)
n

α2
+ . . . (24)

satisfying the equation

un(yn+1 + yn)(yn + yn−1) = αy2n −
α

4
, (25)

which is equivalent to the explicit recurrent relations

h(i+1)
n = un

i∑

s=0

(
h
(s)
n+1 + h(s)n

)(
h(i−s)
n + h

(i−s)
n−1

)
−

i∑

s=1

h(s)n h(i+1−s)
n , h(0)n =

1

2
. (26)

The parameters β and γ, which enter the defining equation (17) as integration constants,
are less important than α. Notice, that equations (16)–(18) keep their form under the
change yn 7→ yn+(−1)nc with constant c. If α 6= 0, this makes possible to set β = 0, while
the parameter γ can be rescaled, as is done is equations (25). If α = 0 and β 6= 0, then it
is possible to set γ = 0. Thus, all negative symmetries belong to one of three types:

α 6= 0, β = 0; α = γ = 0, β 6= 0; α = β = 0, γ 6= 0,

moreover, the last two types contain actually one equation each, up to the scaling.
Since negative symmetries form a family, more complicated flows can be constructed

by adding derivations un,ξj = un(y
j
n+1 − yjn−1) where, for each j, the variables yjn satisfy

equations (17) with parameters αj , βj and γj . We use this possibility in the next section
when constructing reductions of the Volterra hierarchy. In such combined flows, one can
assume that αi 6= αj for i 6= j, since the flows corresponding to one value of α form a
linear space. Indeed, let us consider a linear combination of such flows:

un,ξ = c1un,ξi + c2un,ξj = un(yn+1 − yn−1), yn = c1y
i
n + c2y

j
n;

since yin and yjn satisfy equation (15) with the same α = αi = αj (βi and βj may be
different), hence yn also satisfies equation (15) with the same α and multiplying by the
integrating factor yn+1 + yn brings to equation of the form (17).

Remark 1. The case α = β = 0 was studied in the literature, in different notations. In
this case we do not need the change zn = yn + yn−1 + 1 applied after equation (14). Let
us set γ = 1, without loss of generality, then we have the following equations for zn:

un,ξ = un(zn+1 − zn), un(zn+1 − 1)(zn − 1) = 1.

The change zn − 1 = 1/pn−1 brings this to the flow

un,ξ = pn−1 − pn, un = pn−1pn

introduced in the paper [20], see also [21, 22].
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Remark 2. Equation (17) can be solved with respect to un, which makes possible to
write (19) as the lattice equation for the variables yn only:

yn,x = −(αy2n + (−1)nβyn + γ)

(
1

yn+1 + yn
−

1

yn + yn−1

)
. (27)

Similarly, (20) is rewritten as a higher symmetry of this equation. For β = 0 (which can
be achieved in the generic case α 6= 0, as shown above), equation (27) is a special case
of the V2 type of the Yamilov classification [23, 24, 6], and if β 6= 0 then the additional
change yn 7→ (−1)nyn brings it to a special case of the V3 type. For β = 0, let us set
α = −4a2 and γ = c2, then equation (17) is equivalent to a composition of two discrete
substitutions of the Miura type

un = (fn+1 − a)(fn + a), fn =
ayn − ayn−1 + c

yn + yn−1
, (28)

moreover, the intermediate variable fn satisfies the modified Volterra lattice (type V1 of
the Yamilov classification, as well as the Volterra lattice itself)

fn,x = (f2
n − a2)(fn+1 − fn−1).

Thus, the relation (17) between un and yn is quite well known in the theory of the Volterra
type lattices. The only new (to the author’s knowledge) assertion is that the extension of
the set of dynamical variables un with the help of this relation allows one to extend the
symmetry algebra by the flow (16).

Remark 3. For comparison, we write down formulae for the negative symmetry of the
KdV equation

ut = uxxx − 6uux.

Comparing to the Volterra lattice, here the notation of independent variables is changed:
t plays the role of x and x plays the role of n. The analogs of equations (16), (17) and
(19) are, respectively, of the form

uξ = yx, yxx =
y2x − c2

2y
+ 2(u− α)y, yt = yxxx − 6uyx.

These equations are consistent, that is, satisfy the identities (ut)ξ = (uξ)t and (yxx)t =
(yt)xx. It is also possible to define the rules for derivatives of y in virtue of higher sym-
metries of KdV. The analog of the lattice (27) is obtained by elimitation of u from the
equation for yt:

yt = yxxx −
3yxyxx

y
+

3yx(y
2
x − c2)

2y2
− 6αyx,

which is the rational form of the degenerate Calogero–Degasperis equation [25, 26]. The
equation for yxx, solved with respect to u, defines the differential substitution from this
equation to KdV. It is decomposed into two Miura type substitutions, with the interme-
diate variable satisfying the modified KdV equation:

u = fx + f2 + α, f =
yx + c

2y
, ft = fxxx − 6(f2 + α)fx.
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These negative symmetries can be used to construct multifield Painlevé equations which
define the KdV reductions [16].

Remark 4. The passage from the lattice equations (1) and (2) to the Levi system (3)
is easily generalized for the negative symmetry. Indeed, equation (17) makes possible to
express all yn±k in terms of yn = p, yn+1 = q and un = u, un+1 = v at two arbitrary
neighboring lattice sites. By expressing yn−1 and yn+2 in terms of these variables and
denoting β̂ = (−1)nβ, we arrive to the hyperbolic system

uξ = px = u(p+ q)−
αp2 + β̂p+ γ

p+ q
, vξ = qx = −v(p+ q) +

αq2 − β̂q + γ

p+ q
, (29)

which defines the negative symmetry directly for the Levi system.

To conclude this section, we present zero curvature representations for the equations
under study, restricting ourselves, as before, to explicit formulae for the flows Dx and
Dt. These representations are defined as the compatibility conditions for auxiliary linear
equations with matrix coefficients

Ψn+1 = LnΨn, Ψn,ti = U (i)
n Ψn, Ψn,ξ = YnΨn. (30)

The compatibility condition for the shift of n and derivations with respect to ti are

Ln,ti = U
(i)
n+1Ln − LnU

(i)
n , U

(i)
n,tj

− U
(j)
n,ti

= [U (j)
n , U (i)

n ]. (31)

In particular, the lattice (7) and its symmetry (9) are equivalent to the first equation (31)
for i = 1, 2, with the matrices of the form

Ln =

(
1 −un/λ
1 0

)
, U (1)

n =

(
un −un
λ un−1 − λ

)
, (32)

U (2)
n =

(
un(λ+ un+1 + un + un−1) −un(λ+ un+1 + un)

λ(λ+ un + un−1) −λ2 − λun + un−1(un + un−1 + un−2)

)
, (33)

while the second equation (31) is fulfilled identically. One can check that the negative
symmetry corresponds to the matrix

Yn =
1

λ− α


−αyn − (−1)n β

2

αy2n + (−1)nβyn + γ

yn + yn−1

−λ(yn + yn−1) λ(yn + yn−1)− αyn−1 + (−1)n β
2


 , (34)

which participate in the remaining compatibility conditions for (30):

Ln,ξ = Yn+1Ln − LnYn, Yn,ti = U
(i)
n,ξ + [U (i)

n , Yn]. (35)

Proposition 3. For the negative symmetry, equations (16) and (17) are equivalent to the
first equations (35); equations (19) and (20), which define the extensions of derivations
Dx and Dt on the variables yn, are equivalent to the second equation (35) for i = 1, 2.

The calculation of the U
(i)
n matrices corresponding to higher symmetries (10) amounts

to recurrent relations which are equivalent to the recursion operator (8). This calculation
turns out to be quite simple by using the expansion established in the Proposition 2.
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Proposition 4. The matrices U
(i)
n from equations (30) are of the form

U (i)
n = λi−1H(0)

n + λi−2H(1)
n + · · ·+H(i−1)

n , i = 1, 2, . . . (36)

where H
(i)
n are the matrices (also depending on λ)

H(i)
n =

(
h
(i+1)
n −un

(
h
(i)
n+1 + h

(i)
n

)

λ
(
h
(i)
n + h

(i)
n−1

)
−λ
(
h
(i)
n + h

(i)
n−1

)
+ h

(i+1)
n−1

)
(37)

with the polynomials h
(i)
n defined by relations (26).

Proof. We use the interpretation of the negative symmetry as the generating function
for the flows Di. Let yn be the formal solution (24) of equation (25) with β = 0 and
γ = −α/4. Changing the entry (1, 2) of the matrix (34) in virtue of this equation yields

Yn = −
1

λ− α

(
αyn −un(yn+1 + yn)

λ(yn + yn−1) −λ(yn + yn−1) + αyn−1

)
.

Expanding this in a series in α, we obtain, using the notation (37),

Yn = −
1

λ− α

(
α

2
I +H(0)

n +
1

α
H(1)

n +
1

α2
H(2)

n + . . .

)

which is equivalent to

Yn +
α

2(λ− α)
I =

1

α
U (1)
n +

1

α2
U (2)
n + . . . .

The term with the unit matrix I plays no role, since it is canceled in equations (35), and
the comparison with (23) completes the proof. �

3 Construction of the non-autonomous reductions

Recall, that if the equation un,η = gn is an arbitrary symmetry of the lattice equation
(7) then the stationary equation gn = 0 defines a constraint consistent with this equation.
Indeed, the definition of a symmetry implies

Dx(gn) = (un(un+1 − un−1))η = un(gn+1 − gn−1) + (un+1 − un−1)gn,

and this vanishes in virtue of equations gn = 0. In particular, the stationary equation for
a linear combination of flows Di (10) leads to constraints of the form

P (R)(un,x) = 0

where P (R) is a polynomial with constant coefficients on the recursion operator R. If the
degree of P is equal to r − 1, then this constraint involves the first r flows Di and leads
to a (2r − 1)-point difference equation of the form

µrh
(r)
n + µr−1h

(r−1)
n + · · ·+ µ1h

(1)
n = δ − (−1)nε,
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where the integration constants on the right hand side belong to the kernel of the operator
T − T−1. Such equations serve as a discrete analogue of the Novikov equations from the
KdV theory and define finite-gap solutions of the Volterra lattice.

One can add negative symmetries to the linear combination, but this gives nothing
new, since stationary equations of the form

(
P̃ (R) + ν1(R− α1)−1 + · · ·+ νm(R − αm)−1

)
(un,x) = 0, (38)

where νj and αj are arbitrary constants, can be brought to the form P (R)(un,x) = 0 by
applying the operator product of R− αj .

The situation becomes different for the Painlevé type reductions that include symme-
tries from the additional subalgebra. These symmetries are generated by the recursion
operator from the classical scaling symmetry

un,τ = un +
∑

itiun,ti = un(T − T−1)
(n
2
+
∑

itih
(i)
n

)
(39)

where the polynomials h
(i)
n are assumed to be homogeneous of degree i. In this formula,

the sum is taken over an arbitrary finite subset of the flows Di, for which one wish to keep
the commutativity property. With some inaccuracy in the notation, we use independent
variable τ for the flow corresponding to any such subset. For example, if we are only
interested in the derivatives (7) with respect to x = t1 and (9) with respect to t = t2, then
the scaling symmetry is defined as

un,τ = un + xun,x + 2tun,t

= un(T − T−1)
(
2tun(un+1 + un + un−1) + xun +

n

2

)
.

(40)

The most general constraints that can be obtained by use of the full symmetry algebra
are stationary equations for linear combinations of the flows (10) and the flows

un,τi = Ri−1(un,τ ), i = 1, 2, . . . , (41)

that is, equations of the form

P (R)(un,x) +Q(R)(un,τ ) = 0 (42)

with polynomials P and Q. The problem, however, is that the additional flows (41) are
more complicated than (10). The only local flows are the scaling symmetry (39) itself and
the next flow corresponding to the master-symmetry:

un,τ2 = un((n+ 3)un+1 + un − nun−1) +
∑

itiun,ti+1
.

It is easy to see that the right hand side of the latter equation does not lie in the image
of un(T − 1), therefore the flow un,τ3 is not local. More generally, it can be shown that
further application of R leads to the need to introduce a new nonlocality at each step,
which makes it difficult to use these symmetries. The main idea of this paper is that it
might be more convenient to bring equation (42) to the form

P (R)Q−1(R)(un,x) + un,τ = 0.
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Here the first term can be expanded into simple fractions, and in the case of general
position (polynomial Q without multiple roots), we arrive to a constraint of the form

(
P̃ (R) + ν1(R− α1)−1 + · · ·+ νm(R − αm)−1

)
(un,x) + un,τ = 0, (43)

which differs from (38) by adding the scaling term, that is, the simplest non-autonomous
symmetry. Of course, equation (43) is nonlocal to the same extent as (42), but in this
version all nonlocalities are moved to terms corresponding to the negative symmetries and
therefore they can be defined in already familiar and uniform manner. In (43), all terms
lie in the image un(T − T−1) and after integration we obtain an equation of the form

r1∑

i=1

µih
(i)
n +

r2∑

i=1

itih
(i)
n +

1

2
(n− δ + (−1)nε) + ν1y

1
n + · · ·+ νmymn = 0.

Moreover, some further simplifications are possible. First, the coefficients µi and ti differ
only in that we consider the former to be constant and the latter to be variable. However,
this is only a matter of interpretation. Therefore, both sums can be combined by choosing
r2 ≥ r1 and replacing ti 7→ ti − µi/i. In the case when we are not interested in the de-
pendence on ti, then it should simply be considered as fixed parameter and differentiation
with respect to it should not be considered. Secondly, all coefficients νj can be changed
arbitrarily, since multiplication of yj by a constant only leads to a change of parameters
βj and γj in the equation for this variable.

As a result, we arrive at the following wide family of the constraints:





un(y
j
n+1 + yjn)(y

j
n + yjn−1) = αj(yjn)

2 + (−1)nβjyjn + γj , j = 1, . . . ,m,

2

r∑

i=1

itih
(i)
n + n− δ + (−1)nε = y1n + · · ·+ ymn

(44)

where h
(i)
n are homogeneous polynomials on un−i+1, . . . , un+i−1 defined by recurrent rela-

tions (26). As it was noticed in the previous section, we can assume that αi 6= αj for i 6= j
and βj = 0 if αj 6= 0 (the cancellation of βj by the changes yjn 7→ yjn − (−1)nβj/(2αj)
results only in the change of the parameter ε).

Thus, equations (44) define the stationary equation un,η = 0 for the sum of the scaling
and negative symmetries

un,η = 2un,τ − un,ξ1 − · · · − un,ξm. (45)

By construction, the following property is fulfilled.

Proposition 5. The system (44) is consistent with the derivations with respect to the
parameters t1, . . . , tr, defined by equations

un,ti = un(h
(i)
n+1 − h

(i)
n−1), yjn,ti = h

(i)
n,ξj

, un,ξj = un(y
j
n+1 − yjn−1). (46)

These derivations are mutually commutative.
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It is easy to see that the system (44) has a total order of 2(r +m− 1) with respect to
the shifts of n, that is, it is equivalent to some non-autonomous (depending on n) mapping
on C

2(r+m−1). Accordingly, the non-autonomous (depending on ti) systems of ODEs that
arise when the flows D1, . . . ,Dr are restricted due to the constraint equations have the
same order. Notice that the order drops by 2 on the hyperplane tr = 0 which is special
for these flows (in the simplest case r = m = 1 this leads to an explicit solution [9], see
also [28], where such a reduction of dimension was considered for the KdV case).

Notice that the matrices Ln and U (i) from the representations (31) are homogeneous
assuming that the spectral parameter λ has the same weight as un. This means that under
the scaling, λ is transformed in the same way as un, and at the level of linear problems
we have the equation

Ψn,τ + λΨn,λ = VnΨn, Vn =
∑

itiU
(i)
n .

From here, it follows that the scaling symmetry admits the zero curvature representation
with the derivative with respect to the spectral parameter:

Ln,τ + λLn,λ = Vn+1Ln − LnVn, U (i)
n,τ + λU

(i)
n,λ = Vn,ti + [Vn, U

(i)
n ].

The isomonodromic Lax representation for our constraint is obtained by summation of
the matrices corresponding to the flows involved in (45).

Proposition 6. The following matrix relations are fulfilled by virtue of the system (44)
and derivations Di with respect to the parameters t1, . . . , tr:

2λLn,λ = Wn+1Ln − LnWn, Wn,ti = 2λUn,λ + [U (i)
n ,Wn] (47)

where

Wn = 2
r∑

i=1

itiU
(i)
n +

m∑

j=1

W j
n

λ− αj
, (48)

W j
n =



αjyjn + (−1)n βj

2 −
αj(yjn)2 + (−1)nβjyjn + γj

yjn + yjn−1

λ(yjn + yjn−1) −λ(yjn + yjn−1) + αjyjn−1 − (−1)n βj

2


 ,

and the matrices U
(i)
n are defined in the Proposition 4.

It should be clarified that the converse is not true: equations (47) do not give the system
(44) itself, but only a consequence from it, which is explained by the fact that the matrix
(48) contains (according to formulae (36), (37) and (26)) variables un−r, . . . , un+r−1 which
are not independent as one can see from the last equation (44). However, this is easy
to fix: in order to obtain a matrix representation which is exactly equivalent to (44), we
only need to transform Wn by eliminating the variables un−r and un+r−1 by use of this
equation. We restrict ourselves to an example for the system (4) from the Introduction,
which corresponds to r = 2. For it, the transformed matrix Wn is of the form

Wn =

(
4tλun − n− 1− (−1)nε 4tun(un−1 − λ) + n− δ + (−1)nε)
4tλ(λ+ un + un−1) + 2λx −4tλ(un + λ)− 2xλ− n+ (−1)nε

)
+

m∑

j=1

W j
n

λ− αj
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where

W j
n =



λyjn + (−1)n βj

2 −(λ− αj)yjn −
αj(yjn)2 + (−1)nβjyjn + γj

yjn + yjn−1

λ(yjn + yjn−1) −λyjn − (−1)n βj

2


 .

A direct calculation proves that equations (47) with this matrix are equivalent to the
system (4) and the equations (7), (19) and (9), (20) for x- and t-derivatives.

4 Darboux–Bäcklund transformations

In this section we consider the generic case αj 6= 0 which makes possible to set βj = 0. In
addition, we apply the change γj = −αj(ωj)2, so that our constraint takes the form





un(y
j
n+1 + yjn)(y

j
n + yjn−1) = αj

(
(yjn)

2 − (ωj)2
)
,

2
r∑

i=1

itih
(i)
n + n− δ + (−1)nε = y1n + · · ·+ ymn .

(49)

Let us show that this system admits the Bäcklund transformations, which allow one to
change any of the parameters ωj by an integer. The transformation Bk changes only one
parameter ωk and ε (other parameters ωj, as well as αj , δ and ti do not change):

Bk :





ω̃k = 1− ωk, ε̃ = −ε,

ũn = un
(ykn+1 − ωk)(ykn−1 + ωk)

(ykn)
2 − (ωk)2

,

ỹjn =
1

αj − αk

(
(αj + αk)yjn − αk(ykn + ωk)

yjn+1 + yjn

ykn+1 + ykn

− αk(ykn − ωk)
yjn + yjn−1

ykn + ykn−1

)
, j 6= k,

ỹkn = −
∑

j 6=k

ỹjn + 2

r∑

i=1

itih
(i)
n (ũn−i+1, . . . , ũn+i−1) + n− δ − (−1)nε.

(50)

In addition, there are transformations which act trivially on the varables un and yjn, and
only change the sign of a single parameter:

Ak : ω̃k = −ωk.

It is easy to see that AkBk : ωk 7→ ωk − 1 and BkAk : ωk 7→ ωk + 1.

Proposition 7. The transformations Ak and Bk preserve the form of the system (49),
are consistent with the derivations (46) and satisfy the commutation relations

A2
k = id, AjAk = AkAj , B2

k = id, BjBk = BkBj, AjBk = BkAj, j 6= k. (51)

The group generated by A1, B1, . . . , An, Bn is isomorphic to Z
n
2 × Z

n.
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The formal proof is rather tedious, and we outline only the main steps. To derive the
Bk transformations, we start from the general Darboux transformation for the Volterra
lattice. It is defined as

Ψ̃n = ρ(λ)MnΨ, Mn =




λ −λµfn

−
1

fn − 1

λfn
fn − 1




where ρ(λ) is an arbitrary scalar factor. The compatibility condition with the basic equa-
tion Ψn+1 = LnΨn reads L̃nMn = Mn+1Ln and it is equivalent to relations

un = −µ(fn+1 − 1)fn, ũn = −µfn+1(fn − 1). (52)

The compatibility condition with equation 2λΨn,λ = WnΨn is

2λMn,λ + 2λ
ρλ
ρ
Mn = W̃nMn −MnWn. (53)

Here Wn is the matrix of the form (48). By using the relations (34) and (36), (37) for the
matrices involved in Wn, as well as the last equation of the system (44), it is easy to prove
that trWn is independent of the field variables and therefore it does not change under the
transformation. Hence it follows that it should be (det ρMn)λ = 0, which means that the
normalization factor at Mn should be chosen equal to

ρ(λ) = λ−1/2(λ− µ)−1/2.

Under this choice, the left hand side of (53) contains a pole at the point λ = µ, and since
the poles in the right hand side are exhausted by the points α1, . . . , αm, it follows that the
parameter µ must coincide with one of them. Let µ = αk, then it follows, by comparing
relations (52) with the first equation (49), that fn can be taken equal to

fn =
ykn − ωk

ykn + ykn−1

,

and this also gives the expression for ũn (in fact, these are the same discrete Miura trans-
formations as in (28), up to a linear change of fn). Further, calculating the residues at
the points αj brings to the relations

(
W̃ j

nMn −MnW
j
n

)∣∣∣
λ=αj ,µ=αk

= 0, j 6= k,
(
αkMn + W̃ k

nMn −MnW
k
n

)∣∣∣
λ=µ=αk

.

For j 6= k, solving these equations gives formulae for ỹjn and also shows that ωj does
not change. The relation for j = k turns out to be degenerate: from it we only find
ω̃k = 1− ωk, but ỹkn cannot be expressed. However, since the transformation formulae for
all other variables are already established, ỹkn is found from the assumption that the last
equation (49) is not changed. After this, it remains only to check (and this is the most
difficult part of calculations) that the whole equation (53) turns into identity when ε̃ = −ε
is chosen. Consistency with the continuous evolutions and the group identities are also
verified by direct calculations at the level of the corresponding matrix representations.
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5 Conclusion

In this paper we analyzed, for the Volterra hierarchy, the reductions of the string equa-
tions type (42), that is, the stationary equations involving symmetries from the additional
subalgebra. It was demonstrated that in the generic case (polynomial Q without multi-
ple roots), such reductions are uniformly written by using nonlocalities corresponding to
negative symmetries of the lattice equation. Negative symmetry is itself a very interest-
ing object, at least from the point of view of the study of symmetry algebra, but it is
possible that it is also important as an independent integrable equation (recall that the
negative symmetry of the KdV equation is point equivalent to the famous Camassa–Holm
equation).

The case of multiple roots, omitted in the paper, is probably less interesting, but it
requires a separate study. Within the framework of the proposed approach, it correspond
to higher negative symmetries of the form (R−α)−i(un,x), however it is not clear whether
this gives any advantage comparing with the original form of the equation (42).

We have not touched upon the questions of the analytic properties of the solutions of
the constructed reductions. Small-dimensional examples studied in [7, 9], as well as similar
results on string equations for the KdV equation (see, in particular, [27, 28]) allow us to
expect that the reductions under study admit special solutions important for physical
applications, but their isolation and study remains a very difficult open problem.
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