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Abstract

This article addresses the study of the complex version of the modified Korteweg-de
Vries equation using two different approaches. Firstly, the singular manifold method
is applied in order to obtain the associated spectral problem, binary Darboux transfor-
mations and τ -functions. The second part concerns the identification of the classical
Lie symmetries for the spectral problem. The similarity reductions associated with
these symmetries allow us to derive the reduced spectral problems and first integrals
for the ordinary differential equations arising from such reductions.

1 Introduction

The integrability analysis of nonlinear partial differential equations (PDEs) can be ad-
dressed from different perspectives, which are not always shown to be equivalent [1]. The
existence of a Lax pair [2] that permits to solve the associated spectral problem in terms of
the inverse scattering transform (IST) [3, 4] is frequently considered as a definite proof of
the integrability of a given PDE. Nevertheless, the determination of the associated linear
problem is neither trivial nor straightforward task. In most cases, the aforementioned
spectral problem is obtained by inspection. This quest becomes even harder when dealing
with nonlinear ordinary differential equations (ODEs). Lax pairs for ODEs involve deriva-
tives with respect to the spectral parameter and it is exceedingly difficult to compute them
by inspection [5], especially for nonautonomous equations.

In this paper we focus on two of these possible approaches which, in our view, aid in
determining both the spectral problem associated with a nonlinear PDE and the Lax pair
of an ODE arising from a reduction of a PDE whose spectral problem is known:
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• Painlevé Property

The first approach is based on the Painlevé Property [6] and the conjecture that if
a differential equation successfully passes the Painlevé test, it should be possible to
find an associated spectral problem (Lax pair) [2]. Within this framework, the deter-
mination of the spectral problem is frequently achieved using the singular manifold
method (SMM) [7]. While the SMM provides the suitable results in most cases, it
may present some limitations, especially when the equation has multiple Painlevé
branches [8] or if it has resonances in the dominant terms [9]. Several modifications
of the SMM that allow us to overcome these issues can be found in [1].

• Lie symmetries

Lie symmetries constitute a powerful technique to tackle any sort of PDEs, regardless
of their integrability. Of capital importance has been the pioneering work of Decio

Levi in this field [10, 11, 12, 13, 14]. For the particular case of integrable PDEs, Lie
analysis can be extended to the associated spectral problem, providing the symmetry
transformations not only for the fields but also for the eigenfunctions and the spectral
parameter [15].

This article aims to combine the aforementioned approaches in order to analyze the
complex version of the ubiquitous modified Korteveg-de Vries (mKdV) equation [16, 17],
written as follows

ut + uxxx + 6uuux = 0,

ut + uxxx + 6uuux = 0,
(1)

where u = u(x, t) is a complex field and u(x, t) stands for its complex conjugate. Therefore,
the modulus of this field can be written as

|u|2 = uu. (2)

System (1) can be alternatively written as

ut + uxxx + 6mxux = 0,

ut + uxxx + 6mxux = 0, (3)

mx = uu.

where we have introduced the real field m(x, t) as the probability density.
This equation and its solutions have been studied in previous works from different

perspectives [17, 18, 19]. Our article aims to offer a unified study of this equation by
means of the singular manifold method, so that the spectral problem can be algorithmically
derived, as well as the construction of solutions.

Section 2 is devoted to the application of the SMM to the system of PDEs given in (3),
which allows us to compute its associated spectral problem, resulting in a two-component
Lax pair. The SMM, when applied to the spectral problem itself, straightforwardly pro-
vides binary Darboux transformations. This procedure can be recursively iterated in order
to derive an algorithmic description of the τ -functions in terms of the eigenfunctions of the
Lax pair. The construction of this approach can be found in Section 3, together with its
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application to obtain interesting solutions of solitonic nature. Section 4 comprises the Lie
symmetry analysis for the spectral problem. This method leads to the symmetry trans-
formations for the fields u, u as well as for the eigenfunctions and the spectral parameter.
Nontrivial similarity reductions are exhaustively studied in Section 5. These reductions
enables us to determine spectral problems for ODEs, which are extraordinarily difficult to
find through other methods. We conclude the paper with a section of conclusions.

2 Singular manifold method

The Painlevé expansion [7] for the system (3) means that the fields can be locally written
as

u =
∞
∑

j=0

aj(x, t) [φ(x, t)]
j−α ,

u =

∞
∑

j=0

aj(x, t) [φ(x, t)]
j−α ,

m =
∞
∑

j=0

bj(x, t) [φ(x, t)]
j−β ,

(4)

where φ(x, t) = 0 is an arbitrary manifold, often denominated as the movable singularity
manifold [7], and α, β ∈ N.

A leading-order balance easily yields

α = 1, β = 1, a0a0 = −φ2x, b0 = φx. (5)

Substitution of the series (4) into (3) constitutes a cumbersome calculation, which can
be easily computed with the aid of MAPLE. This process leads to recurrence relations
among the coefficients aj, aj, bj, which can be expressed in matrix form as

A





aj
aj
bj



 = B, (6)

where A is the matrix

A =





φ3xj(j − 1)(j − 5) 0 −6φ2xa0(j − 1)
0 φ3xj(j − 1)(j − 5) −6φ2xa0(j − 1)

−a0 −a0 φx(j − 1)



 ,

and the vector B only depends on lower coefficients up to aj−1, aj−1, bj−1 and their deriva-
tives. The values of j which retrieve arbitrary coefficients in the series (4) are called reso-
nances. Given the resonance conditions (6), it is easy to compute the resonances imposing
the condition

detA = φ7x(j + 1)j(j − 1)2(j − 3)(j − 4)(j − 5) = 0.

Therefore the system exhibits simple resonances at j = −1, 0, 3, 4, 5, and a double
resonance at j = 1. The resonance j = −1 is associated with the arbitrariness of the
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singular manifold φ = 0. The remaining six resonances imply the presence of an arbitrary
coefficient at each order of j in the series expansions. The resonance conditions (6) are
identically satisfied, allowing us to conclude that (3) possesses the Painlevé Property, and
it is therefore integrable [20]. The resonance at j = 0 allows us to introduce an arbitrary
function C(x, t) such that the leading coefficients in (5) can be written as

a0 = Cφx, a0 = −φx
C
. (7)

2.1 Truncated expansion

The SMM [7] focuses on truncated solutions of the Painlevé series (4) in which all the
coefficients in positive powers of φ vanish, i.e. solutions

{

u[1], u[1], m[1]
}

of the form

u[1] = a1 + C
φx

φ
,

u[1] = a1 −
1

C

φx

φ
,

m[1] = b1 +
φx

φ
.

(8)

Substitution of (8) into (3) gives rise to three polynomials in negative powers of φ whose
coefficients should be zero, providing the following results:

• Auto-Bäcklund transformations

The terms in φ0 indicate that the coefficients {a1, a1, b1} are also solutions of the
system (3). Without loss of generality, we may therefore identify {a1 = u[0], a1 =
u[0], b1 = m[0]} such that expression (8) corresponds to the auto-Bäcklund transfor-
mation

u[1] = u[0] + C
φx

φ
,

u[1] = u[0] − 1

C

φx

φ
,

m[1] = m[0] +
φx

φ
,

(9)

between two solutions
{

u[0], u[0],m[0]
}

and {u[1], u[1],m[1]} of system (3), where the
first solution is called the seed solutions and the second solution is the iterated one.
Obviously, m[0] and m[1] can be also expressed as

m[0]
x = u[0]u[0], m[1]

x = u[1]u[1].

• Seed solutions

The lower-order powers in φ of the three equations in (3) are
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−Cφ
2
x

φ2

[

6
u
[0]
x

C
+ 6mx +R+ 4

φxxx

φx
− 3

(

φxx

φx

)2

+ 3
Cxx

C
+ 3

φxx

φx

Cx

C

]

= 0,

φ2x
Cφ2

[

−6C u[0]x + 6mx +R+ 4
φxxx

φx
− 3

(

φxx

φx

)2

− 3
Cxx

C
+ 6

C2
x

C2
− 3

φxx

φx

Cx

C

]

= 0,

φx

φ

[

u[0]

C
− C u[0] +

φxx

φx

]

= 0,

whose combination permits to express the seed fields in terms of the functions φ and
C as

u[0] =
C

2

(

−Cx
C

− φxx

φx
− λ

)

,

u[0] =
1

2C

(

−Cx
C

+
φxx

φx
− λ

)

,

(10)

where λ appears as an integration constant.

• Singular manifold equations

The remaining powers in φ establish relations between the functions C and φ, known
as the singular manifold equations, which read

R = −Vx +
V 2

2
− 3

2

(

λ2 +
C2
x

C2

)

,

Ct

C
= −Cxxx

C
+

3CxxCx
C2

− 9C3
x

2C3
− 3

(

Vx −
V 2

2
+
λ2

2

)

Cx

C
− 3λ

C2
x

C2
,

Vt = (Rx + V R)x ,

(11)

where V,R are defined as

V =
φxx

φx
, R =

φt

φx
. (12)

2.2 Spectral problem

Equations (10) for the fields can be straightforwardly linearized by redefining φ and C in
terms of two auxiliary functions ψ and χ in the form

φx = ψχ, C =
ψ

χ
, (13)

providing the following relations

V =
ψx

ψ
+
χx

χ
, R = −3

2
λ2 − ψxx

ψ
− χxx

χ
+ 4

ψx

ψ

χx

χ
. (14)
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Thus, expressions (10) read

ψx = −λ
2
ψ − u[0]χ,

χx =
λ

2
χ+ u[0]ψ,

(15)

whilst equations from (11) take the form

ψt

ψ
− χt

χ
= −Cxxx

C
+

3CxxCx
C2

− 9C3
x

2C3
− 3

(

Vx −
V 2

2
+
λ2

2

)

Cx

C
− 3λ

C2
x

C2
,

ψt

ψ
+
χt

χ
= Rx + V R.

(16)

After introducing (13) and (14), equations (16) result in

ψt =

(

λ3

2
+ λu[0]u[0] + u[0]u[0]x − u[0]u[0]x

)

ψ +

(

+λ2u[0] − λu[0]x + 2u[0]
(

u[0]
)2

+ u[0]xx

)

χ,

χt =

(

−λ
3

2
− λu[0]u[0] + u[0]u[0]x − u[0]u[0]x

)

χ+

(

−λ2u[0] − λu[0]x − 2u[0]
(

u[0]
)2

− u[0]xx

)

ψ.

(17)

Thus, equations (15) and (17) constitute the spectral problem of the complex mKdV
equation, which can be written in matrix form as

~Ψx = −
(

λ

2
A+B{u[0],u[0]}

)

~Ψ,

~Ψt =

(

λ3

2
A+ λ2B{u[0],u[0]} + λ

[(

−D{u[0],u[0]}
)

x
+ u[0]u[0]A

]

)

~Ψ

+
([

B{u[0],u[0]}
]

xx
+ 2u[0]u[0]B{u[0],u[0]} +

[

u[0]u[0]x − u[0]u[0]x

]

A
)

~Ψ.

(18)

where ~Ψ = (ψ,χ)⊺ and A,B,D are the matrices

A =

(

1 0
0 −1

)

, B{u,u} =

(

0 u

−u 0

)

, D{u,u} =

(

0 u

u 0

)

. (19)

The relations among the function C, the singular manifold φ and the eigenfunctions ψ,χ
follow from (12)-(14), yielding

C =
ψ

χ
,

dφ = ψχdx+

(

−3

2
λ2ψχ− ψxxχ− χxxψ + 4ψxχx

)

dt,

(20)

while the auto-Bäcklund transformation (9) takes the form

u[1] = u[0] +
ψ2

φ
,

u[1] = u[0] − χ2

φ
,

m[1] = m[0] +
φx

φ
.

(21)
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3 Darboux transformations

Truncated expansion (21) can be understood as an auto-Bäcklund transformation between
the seed solution {u[0], u[0],m[0]} and the iterated solution {u[1], u[1],m[1]}. The Lax pair
for this last solution, of spectral parameter λ2, has the expression

(~Ψ1,2)x = −
(

λ2

2
A+B{u[1],u[1]}

)

~Ψ1,2,

(~Ψ1,2)t =

(

λ32
2
A+ λ22B{u[1],u[1]} + λ2

[(

−D{u[1],u[1]}
)

x
+ u[1]u[1]A

]

)

~Ψ1,2

+
([

B{u[1],u[1]}
]

xx
+ 2u[1]u[1]B{u[1],u[1]} +

[

u[1]u[1]x − u[1]u[1]x

]

A
)

~Ψ1,2,

(22)

where ~Ψ1,2 = (ψ1,2, χ1,2)
⊺ is the eigenvector associated with the iterated solution.

The Lax pair is frequently treated as a linear system for the eigenfunctions. Never-
theless, another approach to tackle this problem is to consider (22) as a set of nonlinear
coupled differential equations among the fields and eigenfunctions [21]. Consequently, the
truncation of the Painlevé series for the fields must be accompanied by a similar truncation
for the eigenfunctions, of the form

u[1] = u[0] +
ψ2
1

φ1
,

u[1] = u[0] − χ2
1

φ1
,

m[1] = m[0] +
(φ1)x
φ1

,

ψ1,2 = ψ2 − ψ1
∆1,2

φ1
,

χ1,2 = χ2 − χ1
∆1,2

φ1
,

(23)

where ~Ψi = (ψi, χi)
⊺, i = 1, 2, is an eigenvector for the seed Lax pair (18) of eigenvalue λi,

and ∆1,2 = ∆1,2(x, t) is a complex function to be determined. Each eigenvector ~Ψi then
defines a singular manifold φi through (20) as

dφi = ψiχidx+

(

−3

2
λ2iψiχi − (ψi)xxχi − (χi)xxψi + 4(ψi)x(χi)x

)

dt. (24)

Substitution of (23) in (22) provides the following expression for ∆1,2 in terms of the

eigenvectors ~Ψi,

∆1,2 =
ψ1χ2 − ψ2χ1

λ2 − λ1
. (25)

An analogous reasoning allows us to regard (24) as a nonlinear equation that links
eigenfunctions and singular manifolds, such that the truncation for the eigenfunctions
leads to the following truncated expansion for the singular manifold

φ1,2 = φ2 −
∆2

1,2

φ1
. (26)
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The truncated Painlevé expansion series (23) can therefore be considered as binary Dar-
boux transformations [22] such that both fields and eigenfunctions for the iterated Lax
pair (22) are constructed in terms of two solutions for the seed Lax pair (18), associated
with two different values of the spectral parameter, λ1 and λ2, respectively.

3.1 Iteration of solutions

The iterated singular manifold (26) can be employed to generate a new iteration of the
fields in the form

u[2] = u[1] +
ψ2
12

φ1,2
,

u[2] = u[1] −
χ2
1,2

φ1,2
,

m[2] = m[1] +
(φ1,2)x
φ1,2

,

(27)

which in combination with (23) leads to

u[2] = u[0] +
ψ2
2φ1 + ψ2

1φ2 − 2ψ1ψ2∆1,2

τ1,2
,

u[2] = u[0] − χ2
2φ1 + χ2

1φ2 − 2χ1χ2∆1,2

τ1,2
,

m[2] = m[0] +
(τ1,2)x
τ1,2

,

(28)

where now the τ -function is defined as

τ1,2 = φ1φ1,2 = φ1φ2 −∆2
1,2. (29)

Generally, the nth iteration for the fields can be easily constructed as

m[n] = m[0] +
(τ1,2,...,n)x
τ1,2,...,n

,

τ1,2,...,n = det∆i,j,

(30)

where τ1,2,...,n constitutes the generalization of the τ -function in (29) and ∆i,j is given by
the matrix

∆i,i = φi,

∆i,j =
ψiχj − ψjχi

λj − λi
, i, j = 1, . . . , n.

(31)

It is worthwhile to remark that τ1,2,...,n is the same τ -function that appears in Hirota’s
direct method [23]. Thus, the SMM allows us not only to identify the spectral problem (18),
but also to determine many key properties related to integrability, such as auto-Bäcklund
transformations (21), Darboux transformations (23) and τ -functions (31). Moreover, it
also provides an algorithmic procedure to obtain solutions in a more compact and simple
way than other direct methods [16, 17, 18, 19].
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3.2 Soliton solutions

We start with a trivial plane wave as seed solution, of the form

u[0] = j0E0, u[0] =
j0

E0
, E0 = E0(x, t) = eik0[(x+(k20−6j20)t], (32)

where k0 and j0 are arbitrary constants.
The seed eigenfunctions for the Lax pair (18) then read

ψj = eθj
EjE

1
2
0

Hj

, χj = e−θj
Ej

E
1
2
0 Hj

, j = 1, 2, . . . , n, (33)

where

Ej = Ej(x, t) = ekj [x+vjt], Hj = Hj(t) = eicjt.

The spectral parameter λj and the constants kj , vj , cj can be expressed in terms of the
sole arbitrary parameter θj through the following identities

λj = −ik0 − 2j0 cosh(2θj),

kj = j0 sinh(2θj),

vj = 3k20 − 6j20 − 4j20 sinh
2(2θj),

cj = 3kjk0j0 cosh(2θj).

(34)

The singular manifolds and the ∆-matrix are easily obtained from (24) and (31), yield-
ing

φi =
1

2ki

(

di +
E2
i

H2
i

)

, ∆i,j =
1

2j0 sinh(θi + θj)

EiEj

HiHj

, i, j = 1, 2, . . . , n, (35)

where di are arbitrary constants.
These results forthrightly lead to the n-soliton solution for (3) through (30). In the

case of two solitons, the τ -function explicitly reads

τ1,2 =
1

4k1k2

[

d1d2 +
d1E

2
2

H2
2

+
d2E

2
1

H2
1

+A1,2
E2

1E
2
2

H2
1H

2
2

]

, (36)

where

A1,2 = 1− sinh(2θ1) sinh(2θ2)

sinh2(θ1 + θ2)
. (37)

Taking into account (2) and (30), the two-soliton solution of (1) is written as

∣

∣

∣
u[2]
∣

∣

∣

2
= m[2]

x = j20 +

(

(τ1,2)x
τ1,2

)

x

, (38)

with τ1,2 given in (36).
In the following, we explore various types of solutions depending on different values of

the free parameters k0, θ1, θ2.
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3.3 Line solitons

The usual soliton solutions can be obtained by imposing k0 = 0. This choice necessarily
implies that H1 = H2 = 1. Then, considering the center-of-mass reference frame, which
follows from the Galilean transformation

x = X − v1 + v2

2
t,

the τ -function in (36) becomes

τ1,2 =
1

4k1k2

[

d1d2 + d1e
2k2(X−V t) + d2e

2k1(X+V t) +A1,2e
2k2(X−V t)e2k1(X+V t)

]

, (39)

where d1, d2 are arbitrary parameters, and V is the relative velocity of the two solitons
given by

V =
v1 − v2

2
= 2j20(sinh

2(2θ2)− sinh2(2θ1)).

Similar solutions have been derived in [17] through Hirota’s bilinear method [23].
Figure 1 displays the one-soliton solution (left) and the two-soliton solution (right)

for the system (3). It can be straightforwardly seen that the first iteration for the fields
provides the usual line soliton (left), whilst the second iteration allows us to construct the
usual scattering between two solitons (right), where the sole effect of their interactions is
a phase shift in the direction of propagation of the solitary waves.

Figure 1. One-soliton solution (left) and two-soliton solution (right) for k0 = 0, j0 = 1, d1 =

1, d2 = 2, θ1 = 0.1, θ2 = 0.2.

3.4 Breathers

Temporal breathers

Choosing θ2 = iπ
2 − θ1 and d1 = d2 = cosh(2θ1), the different parameters defined in (34)

read

λ1 = −λ2 = −ik0 − 2j0 cosh(2θ1),

k1 = k2 = j0 sinh(2θ1),

v1 = v2 = 3k20 − 6j20 − 4j20 sinh
2(2θ1),

c1 = −c2 = 3k0j
2
0 sinh(4θ1),

(40)
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such that the τ -function from (36) can be expressed as

τ1,2 =
cosh(2θ1)E

2
1

2k21
[cosh (2k1(x+ v1t)) cosh(2θ1) + cos(2c1t)] , (41)

which is a solution with a periodic behaviour in time but hiperbolic in space. Solution
(41) can be considered as the equivalent of the Kuznetsov-Ma breather from NLS equation
[24, 25].

Spatial breathers

Taking θ1 = iϕ1 as a purely imaginary parameter in (40), it is easy to get

λ1 = −ik0 − 2j0 cos(2ϕ1),

k1 = iK1 = ij0 sin(2ϕ1),

v1 = 3k20 − 6j20 + 4j20 sin
2(2ϕ1),

c1 = iC1 = 3ik0j
2
0 sin(4ϕ1),

(42)

such that the τ -function now reads

τ1,2 = −cos(2ϕ1)E
2
1

2K2
1

[cos (2K1(x+ v1t)) cos(2ϕ1) + cosh(2C1t)] . (43)

This τ -function is oscillatory in space and hyperbolic in time, yielding a solution analogous
to the Akhmediev breather from NLS equation [26].

The behaviour of these breather solutions has been plotted in Figure 2.

Figure 2. Analogous Akhmediev breather (left) and Kuznetsov-Ma breather (right) for the com-

plex mKdV equation, with parameter k0 = 1, j0 = 1, θ1 = 0.2, ϕ1 = 0.2.

3.5 Rogue waves

Rogue waves are known as rational soliton solutions that are localized in space and time
[27]. This kind of solutions can be easily obtained taking the ansatz θ1 = 0, θ2 = iπ2 , such
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that the eigenfunctions for the seed Lax pair exhibit now polynomial expressions of the
form

ψ1 = E
1
2
0

[

a

(

X − 6ik0j0t+
1

2j0

)

+ z0

]

, χ1 =
1

E
1
2
0

[

a

(

X − 6ik0j0t−
1

2j0

)

+ z0

]

,

ψ2 = iE
1
2
0

[

a

(

X + 6ik0j0t−
1

2j0

)

+ z0

]

, χ2 = − i

E
1
2
0

[

a

(

X + 6ik0j0t+
1

2j0

)

+ z0

]

,

(44)

in the comoving rest frame X = x+3(k20−2j20)t. Parameters a, z0 are arbitrary constants.
The spectral parameters λ1 and λ2 are no longer arbitrary but rather related to the

parameters of the seed solution in the form

λ1 = −ik0 − 2j0, λ2 = −ik0 + 2j0. (45)

The singular manifold and ∆-matrix follow from (24) and (25)

φ1 =

[

a2X3

3
+ (aX + z0)

(

z0X − 36ak20j
2
0t

2
)

− a2

4j20

(

X − 16j20 t
)

+ a0

]

+i

[

6k0j0t

(

12a2k20j
2
0t

2 − (aX + z0)
2 +

3a2

4j20

)

+ b0

]

,

φ2 =

[

a2X3

3
+ (aX + z0)

(

z0X − 36ak20j
2
0t

2
)

− a2

4j20

(

X − 16j20 t
)

+ a0

]

−i
[

6k0j0t

(

12a2k20j
2
0t

2 − (aX + z0)
2 +

3a2

4j20

)

+ b0

]

,

∆1,2 = − i

2j0

[

(aX + z0)
2 + 36a2k20j

2
0t

2 +
a2

4j20

]

.

(46)

It is worthwhile to notice that φ2 is the complex conjugate of φ1.
Then, the second iteration for the fields provides

∣

∣

∣
u[2]
∣

∣

∣

2
= j20 +

(

(τ1,2)x
τ1,2

)

x

, (47)

where τ1,2 is now given by

τ1,2 =

[

a2X3

3
+ (aX + z0)

(

z0X − 36ak20j
2
0t

2
)

− a2

4j20

(

X − 16j20t
)

+ a0

]2

+

+

[

6k0j0t

(

12a2k20j
2
0 t

2 − (aX + z0)
2 +

3a2

4j20

)

+ b0

]2

+
1

4j20

[

(aX + z0)
2 + 36a2k20j

2
0t

2 +
a2

4j20

]2

.

(48)

This solution, expressed in terms of six arbitrary constants a, a0, b0, z0, j0, k0, generalizes
other solutions previously obtained in [17]. Since τ -function (48) has no zeroes, then
solution (47) is free of singularities. This solution includes two different cases:
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1. a = 0, z0 = 1.

In this case, the τ -functions (48) reads

τ1,2 = [X + a0]
2 + [−6k0j0t+ b0]

2 +
1

4j20
, (49)

which provides the equivalent solution of the Peregrine soliton for the NLS equation
[28].

2. a = 1, z0 = 0.

This choice for the parameters yields a second family of rogue waves for system (1)
with a more intricate behaviour. The τ -function therefore reads

τ1,2 =

[(

X3

3
− 36k20j

2
0t

2X − X

4j20
+ 4t

)

+ a0

]2

+

[

−6k0j0t

(

X2 − 12k20j
2
0t

2 − 3

4j20

)

+ b0

]2

+
1

4j20

[

X2 + 36j20k
2
0t

2 +
1

4j20

]2

,

(50)

which provides a solution that asymptotically behaves as two rogue waves moving
along the curves

(

X3

3
− 36k20j

2
0t

2X − X

4j20
+ 4t

)

+ a0 = 0,

and

−6k0j0t

(

X2 − 12k20j
2
0t

2 − 3

4j20

)

+ b0 = 0,

respectively.

Figure 3 depicts the spatio-temporal behaviour of these solutions for both cases, when
a = 0 and a 6= 0.

Figure 3. Rogue waves for the complex mKdV equation when a = 0, z0 = 1 (left) and a 6= 0, z0 = 0

(right), for parameters k0 = 1, j0 = 1, a0 = 0, b0 = 0.
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4 Lie symmetries

Group analysis constitutes another fundamental technique to analyze any sort of problems
involving differential equations [29, 30]. The Lie symmetry method and the construction of
group invariant solutions provide a consolidated framework to approach integrable systems.
It allows us to analyze not only the nonlinear PDEs of interest but also their associated
spectral problems, yielding valuable information about the integrability structure of such
systems. The novelty in our approach lies in considering simultaneous group transforma-
tions for the spectral parameter as a new independent variable for the eigenfunctions of
the spectral problem. This retrieves information about how both eigenfunctions and the
spectral parameter are transformed under the action of the symmetry group [9, 15, 31, 32],
together with the usual symmetry transformations for the independent variables and the
fields. Moreover, as the Lax pair constitutes an equivalent system to the former nonlinear
equation, the symmetries of the spectral problem are expected to include the symmetries
of the initial system [33]. This Section therefore concerns the application of Lie’s method
[34, 35] to the spectral problem, in order to obtain classical symmetries for such system
of PDEs.

Let us focus on the spectral problem (18)

~Ψx = −
(

λ

2
A+B{u,u}

)

~Ψ,

~Ψt =

(

λ3

2
A+ λ2B{u,u} + λ

[

(

−D{u,u}

)

x
+ uuA

]

)

~Ψ

+
(

[

B{u,u}

]

xx
+ 2uuB{u,u} + [uux − uux]A

)

~Ψ,

(51)

related to the system

ut + uxxx + 6uuux = 0,

ut + uxxx + 6uuux = 0.
(52)

Let us consider the following ǫ-parametric group of infinitesimal transformations

x̃ = x+ ǫ ξx(x, t, λ, u, u, ψ, χ) +O(ǫ2),

t̃ = t+ ǫ ξt(x, t, λ, u, u, ψ, χ) +O(ǫ2),

λ̃ = λ+ ǫ ξλ(x, t, λ, u, u, ψ, χ) +O(ǫ2),

ũ = u+ ǫ ηu(x, t, λ, u, u, ψ, χ) +O(ǫ2),

ũ = u+ ǫ ηu(x, t, λ, u, u, ψ, χ) +O(ǫ2),

ψ̃ = ψ + ǫ ηψ(x, t, λ, u, u, ψ, χ) +O(ǫ2),

χ̃ = χ+ ǫ ηχ(x, t, λ, u, u, ψ, χ) +O(ǫ2),

(53)

generated by the vector field

X = ξx∂x + ξt∂t + ξλ∂λ + ηu∂u + ηu∂u + ηψ∂ψ + ηχ∂χ, (54)

where ǫ is the group parameter and ξx, ξt, ξλ, ηu, ηu, ηψ, ηχ are the infinitesimals asso-
ciated with the independent variables x, t, the spectral parameter λ, the fields u, u and
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the eigenfunctions ψ,χ, respectively. Transformation (53) can be easily extended to the
different derivatives of the dependent variables [34, 35], such that the spectral problem
(51) remains invariant, resulting in the following set of symmetries

ξx = k1x+ k2,

ξt = 3k1t+ k3,

ξλ = −k1λ,
ηu = (−k1 + 2ik4)u,

ηu = (−k1 − 2ik4)u,

ηψ = (K(λ) + ik4)ψ,

ηχ = (K(λ)− ik4)χ,

(55)

where ki, i = 1, . . . , 4 are arbitrary real constants and K(λ) is an arbitrary real function
of λ.

4.1 Lie algebra

The vector fields associated with the Lie symmetries in (55) read as follows

X1 = x∂x + 3t∂t − λ∂λ − u∂u − u∂u,

X2 = ∂x,

X3 = ∂t,

X4 = 2u∂u − 2u∂u + ψ∂ψ − χ∂χ,

Y{K(λ)} = K(λ) (ψ∂ψ + χ∂χ) ,

(56)

such that X1 accounts for the usual scaling symmetry, X2 and X3 refer to space and
time translations, X4 describes complex phase translations in fields and eigenfunctions,
and YK(λ) represents a phase shift in the eigenfunctions. Symmetries X1 −X4 extend the
original symmetries of the complex mKdV equation (51) to the spectral problem, whilst
the generator YK(λ) is the only symmetry of the Lax pair itself. Nevertheless, this last
symmetry is trivially introduced by the linearity of the equations, and it does not provide
any further information.

The Lie algebra defined by the vector fields 〈X1,X2,X3,X4〉 can be easily addressed
by exploring their commutation relations, giving rise to the following nontrivial results,

[X1,X2] = −X2, [X1,X3] = −3X3, (57)

which define a four-dimensional real Lie algebra which is solvable and decomposable
〈X1,X2,X3〉 ⊕X4 and can be classified as Aa3,5 ⊕A1 for a = 1

3 [36, 37].

5 Similarity reductions

Lie symmetries can be exploited to derive solutions of a given equation in terms of solutions
of lower dimensional differential equations. In particular, if a system of PDEs is invariant
under a one-parameter symmetry group, then it is possible to reduce the total number
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of independent variables by one. This can be achieved by means of the invariants of the
system, through the integration of the characteristic system

dx

ξx
=
dt

ξt
=
dλ

ξλ
=
du

ηu
=
du

ηu
=
dψ

ηψ
=
dχ

ηχ
, (58)

allowing us to introduce the new reduced variables, reduced fields and reduced eigenfunc-
tions as follows

Original variables New reduced variables

Independent variables x, t, λ z, Λ

Fields u(x, t), u(x, t) F (z), F (z)

Eigenfunctions ψ(x, t, λ), χ(x, t, λ) Ψ(z,Λ), Φ(z,Λ)

The only symmetries that yield nontrivial reductions are those related to the transfor-
mations of the independent variables, i.e. the ones associated with k1, k2 and k3. The
remaining symmetries provide trivial reductions, since they are related to phase shifts over
the fields and eigenfunctions that are satisfied due to the complexity and linearity of the
Lax pair. Then, it is possible to set k4 = 0, K(λ) = 0 without loss of generality. In the
following, we study two different cases, corresponding to whether the constant k1 is taken
as nonzero or null, respectively.

5.1 k1 6= 0

The integration of the characteristic system (58) in the most general case provides the
following results:

• Reduced variable and reduced spectral parameter

z =
k1x+ k2

k
2
3
1 (3k1t+ k3)

1
3

, Λ = k
− 1

3
1 (3k1t+ k3)

1
3 λ. (59)

• Reduced fields

u(x, t) = k
1
3
1 (3k1t+ k3)

− 1
3 F (z), u(x, t) = k

1
3
1 (3k1t+ k3)

− 1
3 F (z). (60)

• Reduced eigenfunctions

ψ(x, t, λ) = Ψ(z,Λ), χ(x, t, λ) = Φ(z,Λ). (61)

• Reduced spectral problem

Ψz = −1

2
ΛΨ− FΦ,

Φz = FΨ+
1

2
ΛΦ

(62a)
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ΛΨΛ =

(

Λ
(

Λ2 − z
)

2
+ ΛFF − FFz + FF z

)

Ψ+
(

Λ2F − ΛFz + 2FF 2 + Fzz − zF
)

Φ,

ΛΦΛ = −
(

Λ
(

Λ2 − z
)

2
+ ΛFF − FFz + FF z

)

Φ−
(

Λ2F + ΛF z + 2F
2
F + F zz − zF

)

Ψ,

(62b)

If the reduced parameter Λ has a nontrivial expression (depending on x or t), it can
be proven that the original spectral problem in 1+1 dimensions reduces to a reduced
Lax pair also in 1+1 dimensions, where now the independent variables are z and Λ.
Nevertheless, the compatibility condition of such reduced spectral problem retrieves
a reduced ordinary differential equation in terms of z, as it is illustrated below.

• Reduced equation

Fzzz + 6FFFz − zFz − F = 0,

F zzz + 6FFF z − zF z − F = 0.
(63)

For the particular case F = F , this system becomes after integration

Fzz + 2F 3 − zF + a = 0,

which is essentially the second Painlevé transcendent PII [3, 6] with arbitrary pa-
rameter a.

5.2 k1 = 0, k2 6= 0, k3 6= 0

An analogous procedure allows us to compute the group invariants for this case from (58),
yielding

• Reduced variable and reduced spectral parameter

z =

√

k2

k3

(

x− k2

k3
t

)

, Λ =

√

k3

k2
λ. (64)

• Reduced fields

u(x, t) =

√

k2

k3
F (z), u(x, t) =

√

k2

k3
F (z). (65)

• Reduced eigenfunctions

ψ(x, t, λ) = Ψ(z,Λ), χ(x, t, λ) = Φ(z,Λ). (66)

• Reduced spectral problem

Ψz = −1

2
ΛΨ− FΦ,

Φz = FΨ+
1

2
ΛΦ,

(67a)
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(

Λ
(

1− Λ2
)

2
− ΛFF + FFz − FF z

)

Ψ−
(

Λ2F − ΛFz + 2FF 2 + Fzz − F
)

Φ = 0,

(

Λ
(

1− Λ2
)

2
− ΛFF + FFz − FF z

)

Φ+
(

Λ2F + ΛF z + 2F
2
F + F zz − F

)

Ψ = 0,

(67b)

• Reduced equation

Fzzz + 6FFFz − Fz = 0,

F zzz + 6FFF z − F z = 0.
(68)

Notice that for the real case F = F , equation (68) can be integrated twice as

F 2
z + F 4 − F 2 = aF + b,

with a, b arbitrary constants. The ODE above can be solved through the elliptic
integral [38]

∫

dF√
aF + b+ F 2 − F 4

=

∫

dz.

The spectral problem (67) does not constitute a proper Lax pair for the reduced equa-
tions. Nevertheless (67b) is a linear system for Ψ and Φ whose compatibility therefore
requires

(

Λ
(

1− Λ2
)

2
− ΛFF + FFz − FF z

)2

+

+
(

Λ2F − ΛFz + 2FF 2 + Fzz − F
)

(

Λ2F +ΛF z + 2F
2
F + F zz − F

)

= 0,

(69)

where the reduced spectral parameter Λ plays the role of an implicit first integral of the
system (68). It is straightforward to check that, with the aid of (68), the derivative of (69)
is zero.

6 Conclusions

The first part of the article focuses on the application of the singular manifold method
to the complex version of the mKdV equation defined in (1). This technique allows
us to obtain the associated spectral problem through the relation among the singular
manifold and the eigenfunctions. Moreover, the systematic application of the singular
manifold method to the spectral problem itself leads to the identification of binary Darboux
transformations. These transformations can be used to derive an iterative procedure to
obtain solutions. Soliton solutions and rogue waves are presented and thoroughly analyzed
in this article.
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In the second part of the article an alternative approach based on Lie symmetry analysis
has been performed. The standard Lie method, when applied directly to the spectral
problem, provides both the symmetry transformations for the eigenfunctions, spectral
parameter and the fields. In this case, the set of classical Lie symmetries depends on
four arbitrary real constants and a single arbitrary function of the spectral parameter
λ. This procedure generalizes the concept of Lie symmetries to the spectral problem,
which are fully consistent, as expected, with the Lie symmetries for the original equation.
The commutation relations and the classification of the resulting Lie algebra have been
thoroughly studied. Finally, two different nontrivial similarity reductions for the associated
spectral problem have been obtained. In the first case, the symmetry reduction method
allows us to derive the associated spectral problem for the reduced equation, which turns
out to be an ordinary nonautonomous differential equation, where the reduced spectral
problem plays the role of a new independent variable for the reduced eigenfunctions. In
the second case, the similarity reduction directly retrieves an implicit first integral of the
analyzed system.
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