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Abstract

We present a method for the construction of the trajectory of a discrete Painlevé

equation associated with the affine Weyl group E
(1)
8 on the weight lattice of said group.

The method is based on the geometrical description of the lattice and the construction
of the fundamental Miura relation. To this end we introduce the relation between the
nonlinear variables and the corresponding τ functions. Our approach is heuristic and
makes use of some simple rules of thumb in order to derive the result. Once the
latter is obtained, verifying that it does indeed correspond to the equation at hand
is elementary. We apply our approach to the explicit construction of the trajectory

of well-known, E
(1)
8 associated, discrete Painlevé equations derived in previous works

of ours. For each of them we investigate the possibility of defining an evolution by
periodically skipping up to four intermediate points in the trajectory and identifying
the resulting equation to one previously obtained, whenever the latter exists.
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1 Introduction

Discrete Painlevé equations have, by now, been around for three decades [1]. To tell the
truth, their history is much longer than that. While integrable non-autonomous recursion
relations can be found already in the work of Laguerre [2], it is Shohat [3] who first
derived a system that qualifies as a discrete Painlevé equation. Its identification had to
wait for 50 years, when the same system was rediscovered by Brezin and Kazakov [4] who,
by computing its continuum limit, identified it as a discrete Painlevé equation. While a
few other forms of discrete Painlevé equations were also obtained [5,6,7], their systematic
construction is due to the present authors in collaboration with J. Hietarinta [1], where
the discrete analogues of equations PI to PV were derived using the deautonomisation
method [8]. The derivation of a first discrete form for PVI was given by Jimbo and Sakai
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[9] who proved that what was called the asymmetric (in the QRT [10] sense) discrete PIII

had indeed PVI as continuum limit. The quest for a discrete PVI was finally over when a
QRT-symmetric form was proposed [11] by the present authors.

By that time it was clear that the discrete Painlevé equations were systems richer
than their continuous brethren. The relation of discrete to continuous equations, through
continuum limits, as a first attempt at a classification, proved quite unsatisfactory since
instances of discrete Painlevé equations involving up to 8 parameters were already known.
Taking the continuum limit transforms one of the parameters of the discrete Painlevé
equation into the continuous variable but this leaves up to 7 genuine parameters to be
matched to those of the continuous Painlevé equations which can have only up to four
parameters. To put it in an oversimplified way, based on the continuum limit, most discrete
Painlevé equations would be the discrete analogues of PVI.

The solution to the question of classification of discrete Painlevé equations was pro-
vided by Sakai [12]. His approach consisted in studying rational surfaces in connection to
extended Weyl groups. Discrete Painlevé equations are recovered as birational mappings
corresponding to translations of an affine Weyl group. While the Sakai approach may
seem somewhat abstract, it is quite useful for the understanding of various aspects of dis-
crete Painlevé equations and discrete systems in general. Sakai himself provided the link
between the property of singularity confinement [13] and the construction of the space of
initial conditions. He has shown that all discrete Painlevé equations have a maximum of
8 confined singularities and can be described by a maximum of 8 blow-ups.

One important finding of Sakai concerns the equations related to the group E
(1)
8 . Apart

from the already well-known additive and multiplicative equations a new kind of discrete
Painlevé equation did exist, one where the independent variable as well as the parameters
enter through the arguments of elliptic functions. They are by now referred to as elliptic
discrete Painlevé equations [14].

The discovery of Sakai led naturally to a redefinition of what a discrete Painlevé
equation is, doing away with the restrictive definition as an integrable second-order non-
autonomous mapping the continuum limit of which is a (differential) Painlevé equation.
Instead, we now consider that a discrete Painlevé equation is a birational mapping on
P1 × P1 obtained by translations on the periodic repetition of a non-closed pattern on a
lattice associated to one of the affine Weyl groups belonging to the degeneration cascade

starting from E
(1)
8 . The immediate consequence of this is that the number of discrete

Painlevé equations is infinite [15]. In fact there exist infinitely many such equations for
each of the affine Weyl groups in the Sakai degeneration cascade (except for the four

‘no-parameter’ groups A
(1)
1 ). In [16] we gave specific examples of construction of discrete

Painlevé equations which, through their structure, illustrate the fact that we can have
infinitely many discrete Painlevé equations associated to a given affine Weyl group.

From Sakai’s classification it was clear that the richest, but also most complicated,

family of discrete Painlevé equations is the one associated to E
(1)
8 . A first step towards

the systematic construction of equations belonging to this family was presented in [17]
where we introduced the form we dubbed trihomographic. (In [18] we showed that all
discrete Painlevé equations can be cast into a trihomographic form). Several examples
of such systems were produced in [19] including instances of elliptic discrete Painlevé
equations. A more systematic approach was made possible with the introduction of the
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representation in terms of an ancillary variable [20]. Thanks to this representation the
study of the singularities of the system was greatly simplified allowing a straightforward
application of the singularity confinement integrability criterion.

While the discrete Painlevé equations so discovered do possess the correct number of 8

parameters, their relation to the affine Weyl group E
(1)
8 has never been established. To tell

the truth, the only equations for which the precise trajectories in the lattice associated

to E
(1)
8 are known are the ‘generic’ discrete Painlevé equations, derived in [21] by the

present authors in collaboration with Y. Ohta. Finding the proper embedding of the

various discrete Painlevé equations of our list presented in [17] into the geometry of E
(1)
8

has been a long-standing challenge. In this paper we intend to rise to this challenge
and provide a method for the detailed geometrical description of these most interesting
systems. The construction of the trajectory of these discrete Painlevé equations may
appear somewhat involved but as we shall show, once the result is obtained, it is elementary

to check its validity. We start by a brief reminder of the geometry of the E
(1)
8 weight

lattice and the bilinear identities obtained through the relations of the nonlinear variables
to the corresponding τ functions. Then, we proceed to an outline of our method and
the systematic construction of the trajectories of all trihomographic discrete Painlevé
equations derived in [17, 19].

2 The geometry of the E
(1)
8 weight lattice and the construc-

tion of trajectories

The geometry of the E
(1)
8 weight lattice has been described at length in [21]. We will just

give here a short summary.

Our basic result in [21] was that the τ -functions “live” on the points of the 8-dimensional

weight lattice of E
(1)
8 . The coordinates of these points, in the orthonormal basis we con-

sidered are either all integer or all half-integer, with the additional constraint that the
sum of all coordinates is even. In fact, one can reverse the direction of any number of the
orthogonal directions. If an even number of such directions are inverted, nothing happens.
If one inverts an odd number of directions, then for a point of integer coordinates the sum
remains even, but for all points of half-integer coordinates the sum becomes odd. These
two choices are perfectly equivalent, but for purely æsthetical reasons, we will choose the
latter constraint, which we will henceforth call the alternate constraint, in some of the
following sections and subsections. It goes without saying that the choice of constraint
will be clearly announced.

This is not the only way the choices of this paper will differ from the original choices of
[21]. For the points where τ -functions exist, the largest denominator of the coordinates is
2. But later in the paper we will consider other objects, namely the nonlinear variables.
These variables “live” on points the coordinates of which can have a denominator as large
as 4. In order to get rid of the all denominators we will multiply all coordinates by 4,
with respect to the choices of [21], in addition to the change of constraint. To summarise,
the τ -functions exist on points of coordinates either all multiple of 4 or all congruent to 2
modulo 4. In the first case the sum will always be a be multiple of 8. In the second case the
sum will be either a multiple of 8, as per the original constraint, or congruent to 4 modulo
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8, as per the alternate constraint, depending on the specific choice we make in a given
subsection. For the remainder of the present section we will stick to the original choice of
[21], up to the extra factor 4, i.e., a sum of coordinates multiple of 8 for coordinates either
multiple of 4 or congruent to 2 modulo 4.

The origin obviously satisfies the requirements of the previous paragraph. The nearest-
neighbours, NN, positions where τ ’s exist are at squared distance 32 of the origin. Some
have six coordinates of value zero, the last ones being ai = ±4, aj = ±4, the other ones
have all eight coordinates of absolute value 2, with sum multiple of 8. We will call NV’s
(for ‘Nearest-neighbour-connecting Vectors’) the vectors, of squared length 32, from the
origin to any of its nearest-neighbours. Though the NV’s, in this specific basis, seem to
belong to two classes, this is not true; it is a pure artefact of choice of the basis. In fact

the NV’s correspond to each other by the symmetries of the underlying finite group E
(1)
8 .

The entire lattice is invariant by translation by any NV.

Next we turn to the next-nearest-neighbours (NNN’s) of a given τ . We can reach them
by moving away from this τ by a vector that we will call an NNV (for ‘Next-Nearest-
neighbour-connecting Vectors’) which is as short as possible a sum of NV’s (which is not
an NV itself). The squared length of an NNV is 64. All NNVs are fully equivalent,

corresponding to each other through the symmetries of the finite group E
(1)
8 . In this basis

they seem to come in three classes, but again it is purely an artefact of the choice of basis.
There are NNVs with only one nonzero coordinate of value ±8, some with four coordinates
of value zero and four coordinates ±4, and some with one coordinate ±6, the seven other
being ±2, with total sum multiple of 8.

For convenience, in what follows and whenever there is no ambiguity, we will use a
lower-case symbol for the name of a nonlinear variable and the same symbol in upper-case
to mean the point where this variable is defined.

We have shown in [21] that the nonlinear variables, for which we will use the symbols
x or y (and occasionally z, w and u) are defined at points of the lattice which are half-way
from the position of a τ -function to one of its NNN’s. For example, we have a nonlinear
variable x defined at the point X =(4 0 0 0 0 0 0 0), midpoint between the origin and the
point (8 0 0 0 0 0 0 0). It can be easily shown that X (and in fact any other such point)
is at the midpoint not only of the original pair, but of exactly eight pairs of τ sites which
are next-nearest-neighbours of each other, namely the original one {(0 0 0 0 0 0 0 0) (8 0
0 0 0 0 0 0)} and seven more of the form {(4 0 . . . 4 . . . 0), (4 0 . . .−4 . . . 0)}, etc, where
the second non-vanishing coordinates is at any of the seven last positions. The vectors
joining the two sites of each of these eight pairs are all distinct NNVs. One can easily see
that any two of them are orthogonal. Note however that each of them is only defined up
to a sign.

The nonlinear variable x at point X must now be related to the τ ’s. For each X

we have eight NNVs
−→
Vis and we can introduce eight quantities Ci which are the scalar

products of these vectors with the position vector
−−→
O′X. (Note here that the origin O′ of

this position vector need not coincide with the origin of coordinates: it may well be shifted
by eight arbitrary numbers αi). However, as we explained above, the orientations are not
determined, consequently there exist an arbitrariness in the definition of the sign of each
Ci. Next, we introduce the quantities ϕi which are the products of the two τ ’s at the ends
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of each NNV around X. One has:

x =
f(Cj)ϕi − f(Ci)ϕj
g(Cj)ϕi − g(Ci)ϕj

(1)

where the f(Ci)’s and g(Ci)’s are as yet undetermined functions of their respective Ci.
Note however that since the Ci’s are not determined better than up to a sign, f(Ci) and
g(Ci) must both be even functions. If one of the τ -functions at the end of one NNV
−→
Vi vanishes, then the quantity ϕi vanishes and the value of x is f(Ci)/g(Ci), totally
determined by this vanishing. This remark is the basis of the present paper: if one has
identified an equation with a specific ‘singularity pattern’, one initial ‘singular’ value of the
nonlinear variable x determining the value of the next one, for several steps, followed by
a ‘confinement’ of the singularity, i.e. a free value of the variable after a given number of
steps, it means that the positions of the respective variables which have a fixed value, i.e.
‘within the singularity’, are exactly half a NNV away from the τ -function that vanishes,
that is, at squared distance 16 from it. Contrariwise, the ‘free nonlinear variables’, outside
the singularity, are further away. This gives very severe restrictions on the ‘trajectory’ of

the positions of the respective variables in the geometry of E
(1)
8 , depending on the equation

at hand.

As explained at length in [21], there exist 28 different ways to write X in terms of the
ϕi. By equating any two of these expressions we obtain equations for the ϕi’s, i.e. for the
product of the τ -functions:

(f(Cj)g(Ck)− f(Ck)g(Cj))ϕi + (f(Ck)g(Ci)− f(Ci)g(Ck))ϕj + (f(Ci)g(Cj)− f(Cj)g(Ci))ϕk = 0

(2)
The overdetermined (but consistent) system of equations (2) is a non-autonomous Hirota-
Miwa system [22] which describes completely the evolution of the multivariable τ -function

in E
(1)
8 . They are the bilinear forms of the various equations that “live” in E

(1)
8 .

Consider a given point like X =(4 0 0 0 0 0 0 0) where a nonlinear variable exists.
There are eight pairs of opposite NNVs such that X is one-half of these vectors away from
a τ -function. In the particular case of the X we have chosen, these pairs are along each
of the elementary vectors of the basis. Let us choose an NV (of length 32) which is not

orthogonal to any of these NNVs, for instance
−→
T =[2 2 2 2 2 2 2 2]. We now consider the

point Y =(3 −1 −1 −1 −1 −1 −1 −1) such that the vector from it to the site of X is

half the NV considered above,
−−→
Y X =

−→
T /2. This turns out to be a valid site where we can

define a nonlinear variable Y . This was not a priori obvious. For instance, if we translate
the site of X by half of one other NV’s, say [0 0 0 0 0 0 4 4] orthogonal to some of the
NNVs above, we do not end up at a midpoint of two NNN’s τ ’s, and no nonlinear variable
can be defined there. Note that the squared distance from X to Y is 8.

Similarly to Y we can introduce Y corresponding to the point (5 1 1 1 1 1 1 1) such

that
−−→
XY =

−→
T /2. Here, the overline symbol denotes a translation by the full NV,

−→
T .

Since the point Y is distant from the site of Y by a full NV, a translation which leaves
the lattice invariant, all the τ ’s around Y are in the same positions with respect to it as
those around Y . The same is also true as far as the τ ’s around X and X are concerned.
(On the other hand, the τ ’s around X and Y are not the same). In fact, one can easily
convince oneself that the eight NNVs around Y and Y are identical, and have all their
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coordinates 2, but for one coordinate equal to −6 at any of the eight positions, up to a
global sign. They are symmetrical of the NNVs around X with respect to the hyperplane
orthogonal to the Y X line.

Instead of
−→
T we could have chosen any other NV with all coordinates of absolute value

equal to 2. Let us consider a different one, forming an angle π/3 with
−→
T , thus with scalar

product with the latter equal to 16. To be specific let us choose the point Z such that

the vector
−−→
ZX is half the NV [ 2 −2 −2 2 2 2 2 2]. The point Z =(3 1 1 −1 −1 −1 −1

−1) forms an equilateral triangle with X and Y . The point Z̃ =(5 −1 −1 1 1 1 1 1)),
symmetric of Z with respect to X is also a valid point to define a nonlinear variable, and
forms an equilateral triangle with X and Y .

In order to define a variable like x through (1) we need two products ϕ involving four
τ ’s. It turns out that just six well chosen τ ’s suffice to define all three variables x, y and
z: the two τ+− and τ−+ at (2 2 −2 −2 −2 −2 −2 −2) and (2 −2 2 −2 −2 −2 −2 −2)
(the indices refer to the signs of the second and third coordinates) and the four τ2,ϵ and
τ3,ϵ (ϵ = ±1) at the points (4 4ϵ 0 0 0 0 0 0) and (4 0 4ϵ 0 0 0 0 0) respectively. Indeed, X
is the midpoint of the two pairs {τi+, τi−} i = 2, 3 while Y is that of the pairs {τ+−, τ2−},
{τ−+, τ3−} and Z that of the pairs {τ+−, τ3+} and {τ−+, τ2+}.

We can obtain the value of x by specifying i = 3, j = 2 in (1)

x =
f(C2)ϕ3 − f(C3)ϕ2
g(C2)ϕ3 − g(C3)ϕ2

(3)

with ϕi = τi+τi−. Solving for the ratio of τ ’s we find:

τ2+τ2−
τ3+τ3−

=
g(C2)x− f(C2)

g(C3)x− f(C3)
(4)

Similarly we have

τ+−τ2−
τ−+τ3−

=
g(F2)y − f(F2)

g(F3)y − f(F3)
and

τ−+τ2+
τ+−τ3+

=
g(K2)z − f(K2)

g(K3)z − f(K3)
(5)

where the Fi and Ki are the analogs, for Y and Z respectively, of the Ci for X.
It is straightforward to eliminate all the τ ’s from (4-5) and find the contiguity relation

on the equilateral triangle of side of squared length 8.

g(C3)x− f(C3)

g(C2)x− f(C2)

g(F2)y − f(F2)

g(F3)y − f(F3)

g(K2)z − f(K2)

g(K3)z − f(K3)
= 1 (6)

This relationship between x, y and z, which is linear separately in each of the nonlinear
variables, is the basic one. We have dubbed relations of this form trihomographic.

The compatibility of the highly overdetermined (but consistent) system of the Hirota-
Miwa equations (2), or rather, of the Miura relations (6) have been studied at length in
[21]. In that paper the aim was to derive the generic equations satisfied by the nonlinear
variables, starting from (6). What is important for the purpose of the present paper
is the degrees of the equations obtained by eliminating some nonlinear variables from
appropriate combinations of Miura relations. Still we will follow the steps of [21] where
eliminating variables in order to obtain equations on triangles of various shapes was the
way we obtained finally the equation “on the straight line” Y XY .
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Besides Y XZ one can consider some more equilateral triangles, with one summit at X.
Around such triangles we can get analogues of equation (6). In particular we are interested

in the equilateral triangle WXZ where W has coordinates (5 1 1 1 −1 −1 −1 −1) so
−−→
XW

is orthogonal to
−−→
Y X. Eliminating z between the Miura in these two triangles, one can

obtain an equation in the isosceles right triangle Y XW . One can easily convince oneself
that this relation is still linear separately in y and w. In [21] we only mentioned that the
degree in x was higher than one, but the fact is that this degree is exactly 2. On the other
hand, the point U of coordinates (5 1 1 1 1 1 −1 −1) forms an equilateral triangle not
only with X and Y but also with X and W . So just as in the above construction, one
can obtain by eliminating the variable u an equation in the isosceles right triangle WXY ,
which is linear separately in w and y and, of course, also of the second degree in x. We
have shown in [21] that eliminating w leads to a relation involving only y, x and y, which
is still linear separately in y and y, and of the fourth degree in x.

The construction presented there allowed us to derive the nonlinear equation for x and
y. It goes without saying that the bulk of computations was considerable and, as a matter
of fact, in the case of the elliptic discrete Painlevé equation, prohibitively so. Thus we
did not present its explicit form and limited ourselves in [21] to those of the multiplicative
and additive equations.

Note that the degree of x is 1 in the Miura on the equilateral triangle Y XZ, where
the squared distance between the two other points is 8. The degree is 2 in the equation
on the isosceles right triangles Y XW and WXY where the squared distance between
the two other points is 16. On the segment of straight line Y XY , where the squared
distance between the two other points is 32, the degree of x in the equation is 4. The
latter equation can also be obtained by eliminating z between the equation on equilateral
triangle Y XZ and an, as yet not discussed, equation on the triangle ZXY . It turns out
that the degree of x in the latter equation is 3. And it is easy to check that the squared
distance between Z and Y is 24. The computations to obtain these degrees, as mentioned
above, are considerable but manageable, at least in the case of the multiplicative and
additive equations (but the degrees will be the same for the elliptic equations, though the
full expression becomes much longer) because all the τs involved are at distance 16 from
X and belong to various instances of (1).

Going beyond, by direct calculation in the lattice would be totally prohibitive. So at
this point all we can say is that equations relating three points, one being at squared
distance 8 from both the others, is linear in the latter two and the degree in the ‘central’
one is 1, 2, 3 or 4 when the squared distance between the two others is 8, 16, 24 or 32,
respectively. This will also be a very useful tool for what follows.

3 Outlining our method

In this section we shall present, in a general setting, the approach we shall follow in order

to obtain the trajectories in the E
(1)
8 weight space for the trihomographic discrete Painlevé

equations obtained in [17] (and presented in a better organised form in [19]). We should
point out from the outset that this constructive approach is rather involved and heuristic.
However, once the result is obtained, it is straightforward to show that the geometry does
indeed correspond to the equation under consideration.
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As stated above, all the equations studied in the present paper are of the trihomographic
form (6). But this relation must be reinterpreted. Instead of an intermediate step in the
construction of the equation on the straight-line segment Y XY it is one instance of the
equation itself.

In fact, we are dealing with two kinds of equations. The first kind, called “symmetric
equations” (using the QRT terminology) are in terms of a single variable x and each
instance is on an equilateral triangle Xn−1XnXn+1. The second kind, called “asymmetric
equations” (always in the QRT sense) are in terms of two variables x, y and instances
alternate on equilateral triangles Yn−1XnYn and XnYnXn+1. In both cases, the equations
depend on the variable n in two ways: there is a secular dependence, to which is superposed
a periodic dependence.

As we stated above, for each x (resp. y) we have 8 NNVs
−→
Vis and we can introduce 8

quantities Ci (resp. Fi) which are the scalar products of these vectors and the position

vector
−−→
O′X (resp.

−−→
O′Y ).

The point O′ is a fixed point. But for convenience, as explained in the previous section,
we will not attribute its 8 coordinates zero values, but rather 8 arbitrary numbers.

Let us discuss the symmetric case first. For every m, each vector
−−−−−−→
Xm−1Xm is half an

NV, of squared length 8. But contrary to the NV vector
−−→
Y Y which was of interest in [21],

here the vector
−−−−−−−−→
Xm−1Xm+1 is not an NV (in fact, it is precisely half an NV), and therefore

a translation by this vector does not leave the entire lattice invariant. This means that
the “environment” of Xm+1 in terms of τs is not the same as that of Xm−1: the 8 NNVs
are different at each X. Hence the equation on triangle Xn−1XnXn+1 must be written as

g(C1(n−1))xn−1−f(C1(n−1))
g(C2(n−1))xn−1−f(C2(n−1))

g(C3(n+1))xn+1−f(C3(n+1))
g(C4(n+1))xn+1−f(C4(n+1))

g(C5(n))xn−f(C5(n))
g(C6(n))xn−f(C6(n))

= 1
(7)

where the indices 1 to 6 are purely arbitrary, in as much as the set of Ci’s is completely
different for each value of n, until one has advanced by P steps, where P is the total period
related of the equation at hand. In the triangle XP+n−1XP+nXP+n+1, the equation is
the same as in the triangle Xn−1XnXn+1 except for the secular dependence: the NNV
vectors around each point are the same in both triangles. This means that the vector−→
S =

−−−−−−→
XmXP+m, the same for any m, leaves the lattice invariant and is a sum of NV’s,

and a priori we do not know its squared length. The P vectors
−−−−−−→
XmXm+1 “wind” around

a straight line generated by the vector
−→
S .

By symmetry, all of these P vectors have the same scalar product d with
−→
S , and thus

the squared length of
−→
S is Pd, but again, a priori we do not know what d is, except that

it cannot be zero, lest the secular behaviour disappear. Thus the Ci’s at Xn and XP+n

are the same up to the addition of the scalar product of the relevant NNV with
−→
S .

The aim of this present paper is, for each of the 12 equations of [17] and [19] (since
the geometry is the same for additive, multiplicative or elliptic equations), to present a
consistent choice of coordinates for the sites of the non-linear variables.

For the 5 symmetric equations it means first finding the P vectors
−−−−−−→
XmXm+1 and then

an appropriate “initial point” X0 from which to find all the other points by adding the
relevant vectors. The tools are the following ones. For each equation it is easy to compute
the homogeneous degrees of the iterates, starting from initial conditions of degree 0 for
xm and degree 1 for xm+1. As long as the degree of xm+q is not larger than 4 one knows
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that the squared length of
−−−−−−→
XmXm+q is exactly 8 times this degree, so we know the squared

length of the sum of q consecutive vectors
−−−−−−→
XmXm+1 (starting from any one of them) until

the degree of xm+q becomes larger than 4. Moreover, though we do not a priori know
−→
S

and the common value d of its scalar product with all the
−−−−−−→
XmXm+1, an educated guess

can often be used, to be confirmed at the end of the calculations (or infirmed, in which

case a different guess can be tried). Fixing the scalar product with a guessed
−→
S helps

finding the solution if the guess is right. If not, it rapidly leads to contradictions, and one
must start afresh. Of course the solution is far from being unique, as any transformation

of the group E
(1)
8 would give another solution.

Two rules of thumb did help us to find a solution. First, since all the periods P of the
equations studied in the present paper are even, rather than guessing the sum of P vectors

to get
−→
S , we tried to guess the sum of only P/2 vectors

−−−−−−→
XmXm+1 as a vector such that its

scalar product with the sum of the P/2 first ones would be the same (namely, d/2). This

rule of thumb, combined with the main condition, namely that the partial sums
−−−−−−→
XmXm+q

are of squared length 8 times the degree of xm+q in terms of xm+1 (for xm of degree 0),
as long as this degree does not exceed 4, allows the calculations to become manageable.

In fact, in all cases, we did find such a vector which indeed turned out to be
−→
S /2. So for

each case there are only P/2 distinct vectors, but their sum
−→
S /2 never turns out to be

a sum of NV’s and a translation by this vector does not leave the lattice invariant. The
“environment” of XP/2+m in terms of τs is totally different from that of Xm, the NNVs
not being the same. The same NNVs are only obtained after P steps, by repeating the
same P/2 vectors in the same order.

The second rule of thumb was used only after we found the solution for the first few
cases we are going to present. It became apparent that the squared distance between Xm

and Xm+q was always 8 times the degree of xm+q in terms of xm+1 (for xm of degree 0).
And this was true not only up to degree 4, but, in fact, for arbitrary degree. Since we have
no proof that this property is true beyond degree 4, we only used it as an “accelerator” to

find the vectors
−−−−−−→
XmXm+1 from a single starting point, much faster than if one had to limit

oneself to degree 4 and keep changing the starting point when getting too far. However
we always checked a posteriori that the results obtained through the “fast rule, beyond
degree 4” never violated the “safe rule, up to 4 only” from every possible starting point.

Next we consider the first step in the case for asymmetric equations. In that case, one

has a succession of equations on triangles XnYnXn+1, YnXn+Yn+1. All the vectors
−−−−→
XmYm

and
−−−−−−→
YmXm+1 are half-NV’s of squared length 8. Before getting to the next triangles where

the terms in the equation are just shifted by the secular evolution, there are altogether 2P

such vectors. However, the situation is not that complicated. Since the vectors
−−−−−−→
XmXm+1

(or
−−−−−→
YmYm+1, for that matter), are also half-NV’s, on can skip the points Y (resp. X) and

get an equation for x (resp. y) only.

Granted, this equation is not in general trihomographic. But this is not essential for
the discussion at this point. As long as we can compute the degrees of the iterates xm+q in
terms of xm+1 (for xm of degree 0), we can use the strategy described above. Thus, knowing

the equation for x only, we can find as in the previous case, the P vectors
−−−−−−→
XmXm+1, or

rather, as it always turns out, the first P/2 such vectors, guess their sum
−→
S /2 and use

the fact that their scalar product with it is always the same as a guide. One can do it for
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y as well as x but doing both does not help much. Indeed, the solution is far from being
unique, there is a lot of freedom in the first steps. A specific, arbitrary, choice can be made
without loss of generality. But there is no way to correlate such choices for two different

calculations. So the strategy is, once the succession of the
−−−−−−→
XmXm+1 (or, equivalently, the

−−−−−→
YmYm+1, but not both) is chosen, to “insert” the other variable in between.

All the tools we presented in the symmetric case can be used, and the calculations are
typically rather faster. One point has to be made clear here: for all the equations in the

present paper, the scalar products with
−→
S (or

−→
S /2, for that matter) of the vectors

−−−−→
XmYm

and
−−−−−−→
YmXm+1 are equal. There is no deep reason for that. Symmetry imposes that all the

−−−−→
XmYm have the same scalar product with

−→
S , and the same is true of all the

−−−−−−→
YmXm+1,

but these two quantities, of sum d, need not coincide. The reason they do coincide for the
equations in the present paper is a consequence of the way these equations were found, by
deautonomising QRT mappings. Equations presented in [23] do not suffer from this bias
and some of them indeed do not share this property.

The last step, finding the appropriate initial point, is the same for symmetric and
asymmetric equations. Presenting it in a general setting would make the presentation
unnecessarily complicated, since the choice of the initial point in question relies on a
heuristic approach. We feel that this step will be better explained in actual examples and
thus we proceed, in the section that follows, to examine, one by one the discrete Painlevé
equations of our list.

4 Working out specific examples

Before proceeding to the construction of the trajectories for specific discrete Painlevé
equations it is useful to devote a few paragraphs to present the list thereof. The equations
we are going to deal with were derived in [17] based on the trihomographic representation
inspired by the form of the Miura (7). As shown there the generic form of a trihomographic
equation, in the symmetric case, is

xn+1 − (zn + zn−1 + kn)
2

xn+1 − (zn + zn−1 − kn)2
xn−1 − (zn + zn+1 + kn)

2

xn−1 − (zn + zn+1 − kn)2
xn − (2zn + zn−1 + zn+1 − kn)

2

xn − (2zn + zn−1 + zn+1 + kn)2
= 1

(8)
where the functions zn and kn are specific to each equation.

Five symmetric discrete Painlevé equations were derived in [17]. In order to give the
detailed n-dependence of their parameters we start by introducing the independent variable
by tn ≡ αn+ β, two constants γ and δ and two periodic functions ϕm(n) and χm(n). The
first periodic function has period m, i.e. ϕm(n+m) = ϕm(n), and is given by

ϕm(n) =

m−1∑
l=1

ϵ
(m)
l exp

(
2iπln

m

)
. (9)

Note that the summation starts at 1 instead of 0, since, given the expressions below, the
constant term can be absorbed through a redefinition of β in tn (or, depending on the
case, of the constants γ and δ) and thus ϕm introduces (m − 1) parameters. The second
periodic function χ2m obeys the equation χ2m(n+m) + χ2m(n) = 0 and thus has period
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2m while involving only m parameters. It can be expressed in terms of roots of unity as

χ2m(n) =
m∑
ℓ=1

η
(m)
ℓ exp

(
iπ(2ℓ− 1)n

m

)
. (10)

(We should point out here that in the initial publications [17] and [19] the function χ was
introduced with an index m instead of 2m. This was amended in later publications [23]
since it is more natural to have the index coincide with the periodicity of the function).
Using the auxiliary functions just introduced we have for the five symmetric cases the
expressions:

I (4, 5) un = tn + ϕ4(n) + ϕ5(n), zn + zn+1 = un+2 + un, kn = un+2 + un−1

II (2, 3, 4) un = tn + ϕ2(n) + ϕ3(n), zn + zn+1 = un+1, kn = γ + ϕ4(n)

III (2, 3, 5) un = tn + ϕ2(n) + ϕ3(n) + ϕ5(n), zn = un, kn = un+1 + un + un−1

IV (2, 7) un = tn + ϕ2(n) + ϕ7(n), zn = un+1 − un + un−1, kn = un+2 − un + un−2

V (2, 3, 8) un = tn + ϕ2(n) + ϕ3(n), zn + zn+1 = un+1, kn = χ8(n)

where the numbers in the parentheses correspond to the periodicities of the parameters of
each equation.

While the previous cases corresponds to equations symmetric in the QRT sense, tri-
homographic discrete Painlevé equations were also obtained in the asymmetric case. The
general expression in this case is

xn+1 − (ζn + zn + kn)
2

xn+1 − (ζn + zn − kn)2
xn − (ζn + zn+1 + kn)

2

xn − (ζn + zn+1 − kn)2
yn − (2ζn + zn + zn+1 − kn)

2

yn − (2ζn + zn + zn+1 + kn)2
= 1 (11a)

yn − (ζn−1 + zn + κn)
2

yn − (ζn−1 + zn − κn)2
yn−1(ζn + zn + κn)

2

yn−1 − ζn + zn − κn)2
xn − (ζn + 2zn + ζn−1 − κn)

2

xn − (ζn + 2zn + ζn−1 + κn)2
= 1. (11b)

and again the z, ζ, k and κmust be specified in each case. Seven discrete Painlevé equations
were derived in [17]:

VI (8) un = tn + ϕ8(n), zn = un − un+1 + un−1 − un−2, ζn = un+2 − un + un−2,

kn = un, κn = un+2 + un−3

VII (4, 5) un = tn + ϕ4(n) + ϕ5(n), zn = −un − un−1, ζn = un+1 + un + un−1,

kn = un, κn = un+1 + un + un−1 + un−2

VIII (4, 6) un = tn+ϕ3(n)+ϕ4(n), zn = un+un−1+ψ6(n)+ψ6(n−1), ζn = −un−2ψ6(n),

kn = un+1 + un + un−1 + ψ6(n), κn = ψ6(n) + ψ6(n− 1)
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where ψ6(n) = θ1(−j)n + θ2(−j2)n, with j3 = 1.
(Note that in [17, 19] the k and κ were permuted. Moreover the parametrisation chosen

there was not the most convenient one since it introduced an extra, spurious, parameter.
Using the periodic function ψ6(n) ensures that the number of parameters is the correct
one).

IX (2, 3, 4) un = tn + ϕ3(n) + ϕ4(n), zn + ζn = un−1 − γ, zn+1 + ζn = un+1 + γ,

kn = un+1 + un + un−1 − ϕ2(n), κn = γ + ϕ2(n)

X (2, 2, 4) un = tn + ϕ4(n), zn + ζn = un−1 − γ, zn+1 + ζn = un+1 + γ,

kn = un+1 − un + un−1 + ϕ2(n), κn = δ + ϕ̃2(n)

where ϕ2(n) and ϕ̃2(n) are two independent functions of period 2. (Note that in [17, 19]
a misprint is present in the definition of zn + ζn and zn+1 + ζn. The expressions given
above are the correct ones).

XI (4, 4) un = tn + ϕ4(n), zn + ζn = un−1 − γ, zn+1 + ζn = un+1 + γ,

kn = un+1 − un + un−1 + ϕ2(n), κn = χ4(n)

and finally

XII (2, 3, 4) zn + ζn = tn − γ + ϕ3(n− 1), zn+1 + ζn = tn + γ + ϕ3(n+ 1),

kn = χ4(n), κn = δ + ϕ2(n)

where, again, the numbers in the parentheses correspond to the periodicities of the pa-
rameters of the equation.

In the remainder of the article we shall refer very often to the 12 discrete Painlevé equa-
tions of this list. Each of these equations is to be understood as the generic symmetric (8)
or asymmetric (11) equation complemented by the parameters as detailed in the preceding
paragraphs. In order to avoid awkward formulations we have adopted the notation of a
boldface roman numeral, I, II, · · · , XII to denote the corresponding equation of the list
of twelve, with the precise n-dependence of its parameters, given in the list.

In the following subsections we construct the trajectories of all 12 discrete Painlevé

equations in the E
(1)
8 weight space. Once the trajectory was constructed it turned out that

in all cases we could define at least one evolution by skipping one intermediate point and,
in some cases depending on the equation, even more evolutions skipping more (up to four)
intermediate points. While the resulting equations are only in a few cases trihomographic,
most of them still belong to a class of equations that we have previously studied. The
publication [23] we are referring to was based on the introduction of what we called the
ancillary variable. In fact, we showed there that using an ancillary variable ξ such that

xn = ξ2n (12)

one can rewrite the general additive (difference) discrete Painlevé equation

(xn − xn+1 + (zn + zn+1)
2)(xn − xn−1 + (zn + zn−1)

2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
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= 2
x4n + S2x

3
n + S4x

2
n + S6xn + S8

S1x3n + S3x2n + S5xn + S7
(13)

(were Sk are the elementary symmetric functions of the quantities zn + κin, and κ
i eight

parameters which are, generically, functions of the independent variable) as

xn+1 − (ξn − zn − zn+1)
2

xn+1 − (ξn + zn + zn+1)2
xn−1 − (ξn − zn − zn−1)

2

xn−1 − (ξn + zn + zn−1)2
=

∏8
i=1(κ

i
n + zn − ξn)∏8

i=1(κ
i
n + zn + ξn)

(14)

Note that while in the generic case the right-hand side of (14) is a ratio of 8 terms,
corresponding to the quartic over cubic rational right-hand side of (13), simplifications
may occur leading to right-hand sides involving ratios of six, four or even just two factors
(the latter case being equivalent to a trihomographic one). In what follows we shall use
an equivalent form of (14)

xn+1 − (ξn − Zn)
2

xn+1 − (ξn + Zn)2
xn−1 − (ξn − Zn−1)

2

xn−1 − (ξn + Zn−1)2
=

∏8
i=1(ξn −Ai

n)∏8
i=1(ξn +Ai

n)
, (15)

using the notations introduced in [23], where the ancillary parameters are Zn = zn + zn+1

and Ai
n = κin + zn.

As mentioned above, in the subsections that follow we shall present the construction
of trajectories for the equations of the list. Rather than following the order of that list we
shall proceed from the simplest cases to the more complex, which will, hopefully, make
our presentation easier to follow.

4.1 The periods 2,7 case

In this section we shall illustrate the workings of the trajectory construction by applying
them to the case of a discrete Painlevé equation with periods 2 and 7, case IV of the
list given at the beginning of the section. In [23] it was listed as Class III of chapter
3. The periods superposed on the secular behaviour are 2 and 7, so the full period is
14. We compute the homogeneous degree growth of x starting from initial conditions
where x0 has degree 0 and x1 has degree 1. We obtain thus the sequence of degrees
dn = 0, 1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 21, 25, 28, · · · , a quadratic growth, as expected given
the integrable character of the equation.

The normalisation chosen here is that for all τ -functions of coordinates congruent to 2
modulo 4, the sum of these coordinates will be congruent to 4 modulo 8. Now we introduce
7 vectors of squared length 8, each half of an NV (thus the double of each of the vectors
of the list is indeed an NV, with components ±2 with sum 4):

1 −1 −1 −1 1 1 1 1
1 1 1 1 −1 −1 −1 1
1 −1 −1 1 1 1 1 −1
1 1 1 −1 −1 −1 1 1
1 −1 1 1 1 1 −1 −1
1 1 −1 −1 −1 1 1 1
1 1 1 1 1 −1 −1 −1


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and the list is understood as being repeated periodically. The squared length of the sum
of any number m of consecutive ones is 8 times dm.

The sum of all 7 vectors is [7 1 1 1 1 1 1 1]. We denote this vector as
−→
S /2 and the

scalar product of each of the elementary vectors with
−→
S /2 is 8. The vector

−→
S is indeed

a vector with components 14 and 2 (all congruent to 2 modulo 4) the sum of which is
28, congruent to 4 modulo 8 and a translation by this vector does leave the whole lattice
invariant. The symmetry 7 can be easily seen: besides the first component which is always
1, three consecutive components −1 go around the seven last columns as around a torus,
moving to the right by three positions from one line to the next.

In order to explain how to find the initial position of some Xm to which one has to add
the above vectors to find all the other Xs one has to consider the singularity patterns of
this equation. In order to obtain these patterns it suffices to work with a simplified form
of the equation when one keeps the secular behaviour but ignores the periodicity. We have

xn+1 − (3tn − α)2

xn+1 − (tn − α)2
xn−1 − (3tn + α)2

xn−1 − (tn + α)2
xn − 9t2n
xn − 25t2n

= 1 (16)

and the patterns are {xn−2 = 25t2n−2, xn−1 = (3tn−2 − α)2, xn = (tn−2 − 4α)2, xn+1 =
(tn+3 + 4α)2, xn+2 = (3tn+3 + α)2, xn+3 = 25t2n+3} and {xn−1 = 9t2n−1, xn = (tn−1 −
α)2, xn+1 = (tn+2 + α)2, xn+2 = 9t2n+2}.

Throughout each singularity pattern, the variables have precise values which are exactly
the square of some Cj defined in section 2. This means that they are exactly at squared
distance 16 from a τ -function that happens to vanish.

So in order to reproduce the longest pattern, namely the one with five steps (involving
thus 6 points) there must be a τ -function at distance exactly 16 from 6 consecutive X,
while the X before and after these six ones are further away. To make this visually easy
to follow, we choose to call the position of this τ -function the origin of coordinates. Since
the point O′ that we chose as the one from where all positions are measured has totally
arbitrary coordinates, this is a freedom we can afford. Below are 8 points which are
precisely separated by the seven vectors presented at the beginning of this section.

−4 2 0 2 0 −2 0 −2
−3 1 −1 1 1 −1 1 −1
−2 2 0 2 0 −2 0 0
−1 1 −1 3 1 −1 1 −1
0 2 0 2 0 −2 2 0
1 1 1 3 1 −1 1 −1
2 2 0 2 0 0 2 0
3 3 1 3 1 −1 1 −1


The first and last points are at a squared distance of 32 from the origin. The 6 intermediate
ones are exactly at a squared distance of 16, and correspond to the “long” singularity

pattern. The scalar products of
−→
S with the vectors joining the origin to each of those six

points are (from top to bottom) -40, -24, -8, 8, 24 and 40 respectively, so eight times the
the numbers {−5,−3,−1, 1, 3, 5}. We remark that the squares of these numbers match
the values of the coefficients of tn present in the “long” pattern above. We shall refer to
such a collection of numbers as the “schematic” singularity pattern.



]ocnmp[ Geometrical description of discrete Painlevé equations 123

For the “short” pattern with only three steps (and thus involving the four central
points), one can easily check that the τ -function at the point (0 0 0 4 0 −4 0 0) is indeed
at squared distance 16 of these points but at squared distance 32 of the two topmost and

the two bottommost points. Moreover, the scalar product with
−→
S of the vectors joining

it to the four central points are again -24, -8, 8, 24, that is, 8 times the coefficients of n,
the square of which are present in this “short” pattern {−3,−1, 1, 3}.

One remark is in order here. Since the vector
−−−−−→
XnXn+2 is also half of an NV, an

equation can be found on the triangle Xn−2XnXn+2. Since the squared distance between
Xn−2 and Xn+2 is 24 rather than 8, this triangle is not equilateral, and the equation is
not trihomographic. Still, it is a valid equation which can be obtained by eliminating one
x out of two. Clearly we can choose to eliminate the x with even or odd indices and the
resulting values of the coefficients will be slightly different in order to reflect this choice.
In what follows we shall present explicitly the case where the evolution is over even values
n = 2m (and the evolution over odd values can be obtained mutatis mutandis).

The equation thus obtained has been identified as Class II, case 7 in chapter 5, i.e.
5.2.7, in [23]. It assumes a simple form when written using the ancillary variable ξ where
the right-hand side is a ratio of products of 6 terms. Written in the usual, “canonical”
form, the equation has a right-hand side which is a ratio of a cubic polynomial in x over
a quadratic one.

It is interesting at this point to express the quantities Zm and Ai
m entering the equation

in terms of the parameters appearing in IV. We introduce the quantity c which is equal
to −ϕ2(n) = −ϕ2(0), since we chose the evolution over even indices n = 2m rather than
odd, and find

Zm = 4(2αm+ β) + 4α+ ϕ7(2m+ 3) + ϕ7(2m+ 2) + ϕ7(2m) + ϕ7(2m− 1)

A1
m = 3(2αm+ β)− 4α+ c+ ϕ7(2m+ 1) + ϕ7(2m)− ϕ7(2m− 1) + 2ϕ7(2m− 3)

A2
m = 5(2αm+ β)− c+ 2ϕ7(2m+ 2) + ϕ7(2m+ 1)− ϕ7(2m) + ϕ7(2m− 1) + 2ϕ7(2m− 2)

A3
m = 3(2αm+ β) + 4α+ c+ 2ϕ7(2m+ 3)− ϕ7(2m+ 1) + ϕ7(2m) + ϕ7(2m− 1)

A4
m = 2αm+ β − 2α− c− ϕ7(2m+ 1) + ϕ7(2m) + ϕ7(2m− 1)

A5
m = 3(2αm+ β) + c+ ϕ7(2m+ 1) + ϕ7(2m) + ϕ7(2m− 1)

A6
m = 2αm+ β + 2α− c+ ϕ7(2m+ 1) + ϕ7(2m)− ϕ7(2m− 1)

As explained in [23], this equation has 6 distinct patterns. The patterns described
there match the succession, i.e. what we called above “schematic singularity patterns”
{−5,−1, 3}, {−3, 1, 5} for the two “long” ones and twice each of {−3, 1} and {−1, 3}.
Depending on which x we keep, the two “long” patterns of the equation 5.2.7 of [23]
can be seen to come from the “long pattern” {−5,−3,−1, 1, 3, 5} of the equation under
consideration (up to a factor 8), while one each of {−3, 1} and {−1, 3} come from the “short
pattern” {−3,−1, 1, 3}. But what about the second “copy” of {−3, 1} and {−1, 3}?

In [17] where our equation was identified for the first time, we only called “singularities”
situations where one specific value of xn, for generic xn−1, would fix the value of xn+1, or
in other words, would create a blow-up. But we did not consider actions “at a distance”.
Just by looking at equation (16), we can see that if it happens, for generic xn, that xn−1
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is equal to (3tn + α)2, then this would imply that xn+1 is equal to (tn − α)2, while if
xn−1 = (tn + α)2, then xn+1 = (3tn − α)2. Since for this equation, this “interaction at
distance two” did not cause a blow-up, we did not consider it. In some sense the blow-up-
free patterns {−3, ⋆, 1} an {−1, ⋆, 3} (where the ⋆ stands for a free value) are “hidden”
in equation (16). But when treating the equation “on every other point” this becomes a
singularity, duly noted in 5.2.7 of [23]. The trajectory of the points, however, is the same
for both equations, the only difference being in the points one is keeping. So what is the
cause of these definite values of x at these precise points? What we can deduce from their
existence is that there exists a τ in the neighbourhood of this trajectory that is exactly at
distance 16 from the point “−3” at (−2 2 0 2 0 −2 0 0) and from the point “+1” at (0 2 0
2 0 −2 2 0 ) but further away from every other point on the trajectory, in particular from
the point “−1” at (−1 1 −1 3 1 −1 1 −1), because the value of the x at the intermediate
point is arbitrary: the vanishing of the τ in that position should determine only the points
“−3” and “+1”. Conversely there must be a τ at distance 16 from the point “−1” and
also from the point “+3” at (1 1 1 3 1 −1 1 −1), but further away from the point “+1”
and all the others. And indeed this is the case. The first one is the τ at (0 4 0 0 0 −4 0
0) and the second one is at (0 0 0 4 0 0 0 −4). This explains the singularity patterns of
both equations, the original one considered over every point X and the one obtained by
skipping every other X.

4.2 The periods 2,3,5 case

The additive equation with period 2, 3 and 5 was presented in [17] and given as case
III in [19] and in the list presented at the beginning of this section. This equation is listed
in [23] as Class I of section 3. The overall period of the coefficients of the mapping is 30.

The homogeneous degree growth of x starting from initial conditions where x0 has
degree 0 and x1 has degree 1 is given by the sequence of degrees dm: 0, 1, 1, 1, 2, 2, 3, 4,
5, 6, 7, 9, 10, 12, 14, 15, · · · .

Just as in subsection 4.1, we looked for 15, rather than 30, vectors of squared length 8,
each half an NV. 

1 −1 1 −1 −1 1 1 1
−1 1 1 1 1 1 −1 −1
1 1 −1 1 −1 −1 1 1
1 −1 1 −1 1 1 1 −1

−1 1 1 1 1 −1 −1 1
1 1 −1 −1 −1 1 1 1
1 −1 1 1 1 1 −1 −1

−1 1 1 1 −1 −1 1 1
1 1 −1 −1 1 1 1 −1
1 −1 1 1 1 −1 −1 1

−1 1 1 −1 −1 1 1 1
1 1 −1 1 1 1 −1 −1
1 −1 1 1 −1 −1 1 1

−1 1 1 −1 1 1 1 −1
1 1 −1 1 1 −1 −1 1


In the three leftmost columns, a single −1 goes around a torus, moving to the left, with
the two other positions being +1. In the five rightmost columns, two consecutive −1 go
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around a torus, moving to the left by two positions down each line, with the three other
positions being +1.

Again, the list of vectors must be understood not just a list of fifteen vectors but rather
as an infinite repetition of the ones given above. As in the previous case, the constraint
chosen for this section is that for all τ -functions of coordinates congruent to 2 modulo 4,
the sum will be congruent to 4 modulo 8, rather than the original constraint of multiple of

8. The sum
−→
S /2 of these fifteen vectors is [5 5 5 3 3 3 3 3] and the scalar product of each of

the elementary vectors with
−→
S /2 is 8. The vector

−→
S is indeed a vector with components

10 and 6, both congruent to 2 modulo 4, the total sum of which is 60, congruent to 4
modulo 8 and a translation by this vector does leave the whole lattice invariant.

To find an initial point, we must consider the singularity patterns of the equation.
Again, we ignore the periodic functions and keep only the secular dependence. The equa-
tion becomes

xn+1 − (5tn − α)2

xn+1 − (tn + α)2
xn−1 − (5tn + α)2

xn−1 − (tn − α)2
xn − t2n
xn − 49t2n

= 1 (17)

There are two singularity patterns, a “long” one {xn−3 = 49t2n−3, xn−2 = (5tn−3 −
α)2, xn−1 = (3tn−3 − 4α)2, xn = (tn−3 − 9α)2,xn+1 = (tn+4 + 9α)2, xn+2 = (3tn+4 +
4α)2, xn+3 = (5tn+4 + α)2, xn+4 = 49t2n+4} and a “short” one {xn = t2n, xn+1 = t2n+1}. As
already explained these two patterns can we written schematically as {−7,−5,−3,−1, 1, 3, 5, 7}
and {−1, 1}.

The “long” pattern fixes the initial point, when we insist that it be generated by the
vanishing of the τ -function at the origin of coordinates. For the sake of completeness, we
present the full “half-period” pattern of points, although only eight of them (from the
second one to the ninth, inclusive) belong to the “long” pattern. The list below has 16
points because we start with one point before entering the pattern.

−2 0 −4 0 2 −2 0 −2
−1 −1 −3 −1 1 −1 1 −1
−2 0 −2 0 2 0 0 −2
−1 1 −3 1 1 −1 1 −1
0 0 −2 0 2 0 2 −2

−1 1 −1 1 3 −1 1 −1
0 2 −2 0 2 0 2 0
1 1 −1 1 3 1 1 −1
0 2 0 2 2 0 2 0
1 3 −1 1 3 1 3 −1
2 2 0 2 4 0 2 0
1 3 1 1 3 1 3 1
-2 4 0 2 4 2 2 0
3 3 1 3 3 1 3 1
2 4 2 2 4 2 4 0
3 5 1 3 5 1 3 1


The scalar product of

−→
S with the vector from the origin to the topmost point is −72,

and it increases by 16 down each line. From the second line to the ninth, these scalar
products are 8 time the numbers {−7,−5,−3,−1, 1, 3, 5, 7}, as expected from the “long”
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schematic pattern. The corresponding points are indeed all at a squared distance 16 from
the origin, while the topmost is at squared distance 32. The same is true for the tenth,
and the squared distance never decreases further down.

The “short” pattern as defined above involves only one step {−1, 1}. With the hindsight
of subsection 4.1, we decided to investigate whether more patterns might not be “hidden”
by the absence of a blow-up, while some precise value of xm might fully determine the
value of an xm+q with q > 1. Just by looking at equation (17) one can see easily that for xn
generic, a value (5tn+α)

2 for xn−1 determines the value of xn+1 as (tn+α)
2 that is, t2n+1.

Granted, the patterns just after equation (17) only take into account the secular behaviour,
not the periodic one, but the essential facts do survive with the periodic dependence added
to the secular one. This “action at distance” looks like the one we found in subsection 4.1.
But there is a major difference: the value xn′ = t2n′ for n′ = n+1 is a very special one. It is
the one that “opens” the “short” singularity pattern. The “short” singularity proceeds to
xn′+1 = t2n′+1 and ends there, namely, xn′+2 has a free value. But for n′′ = n′ +2 = n+3,
it is the case that xn′′−1 = t2n′′−1, while xn′′ is generic. Another glance at (17) shows that
in that case the value of xn′′+1 is not free but must be equal to (5tn′′ − α)2: the pattern
initiated by xn−1 = (5tn + α)2 extends up to xn+4 = (5tn+3 − α)2. Only one blow-up
appears in the pattern, but its total length extends over 6 points altogether, two of which
have free values. Schematically the “dressed short pattern” is {−5, ⋆,−1, 1, ⋆, 5} where ⋆
denotes a free value. One can infer that there must exist a τ in the neighbourhood of this
trajectory that is exactly at distance 16 from the points “−5” at (−2 0 −2 0 2 0 0 −2),
“−1” at (0 0 −2 0 2 0 2 −2), “+1” at (−1 1 −1 1 3 −1 1 −1) (as per the “short” pattern),
and “+5” at (1 1 −1 1 3 1 1 −1) but further away from all the others, and in particular
from “−3” at (−1 1 −3 1 1 −1 1 −1) and from “+3” at (0 2 −2 0 2 0 2 0 ). One can check
that a τ at (0 0 0 0 4 0 0 −4) does satisfy these conditions. Its vanishing is the cause of
this “dressed short pattern”.

Is this enough, or are there more “hidden patterns”? Since the degree of xm+2 in terms
of xm+1 (for xm of degree 0) is one, one can eliminate one x out of two, as in subsection
4.1. The resulting equation has been identified. It is Class III, case 4 in section 4 of [23].
When written using the ancillary variable ξ, the right-hand side is a ratio of products
of 4 terms, meaning that in the usual, “canonical” form, the equation has a right-hand
side which is a ratio of a quadratic polynomial in x over a linear one. We introduce the
quantity c which is equal to ϕ2(n) = ϕ2(0), since we chose the evolution over even indices
n = 2m rather than odd, and find

Zm = 4α(2m+ 1) + 4β + ϕ3(2m+ 1) + ϕ5(2m+ 2) + 2ϕ5(2m+ 1) + ϕ5(2m)

A1
m = 5(2αm+ β)− 6α− ϕ3(2m) + ϕ5(2m) + 2ϕ5(2m− 1) + 2ϕ5(2m− 2) + c

A2
m = 7(2αm+ β) + ϕ3(2m) + 2ϕ5(2m+ 1) + 3ϕ5(2m) + 2ϕ5(2m− 1)− c

A3
m = 5(2αm+ β) + 6α− ϕ3(2m) + 2ϕ5(2m+ 2) + 2ϕ5(2m+ 1) + ϕ5(2m) + c

A4
m = −(2αm+ β)− ϕ3(2m)− ϕ5(2m)− c

It has four patterns, corresponding to {−7,−3, 1, 5}, {−5,−1, 3, 7}, {5,−1} and {1, 5}.
The first two clearly come from the “long pattern” {−7,−5,−3,−1, 1, 3, 5, 7} of the equa-
tion we are discussing here, depending on which value one starts when skipping every
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other x. And the two last ones are clearly included in the “dressed short pattern”
{−5, ⋆,−1, 1, ⋆, 5}. It has to be noted that after “−5” and “−1” and skipping “+1”
one reaches a free value, and then another free one completely beyond the pattern, so the
equation 4.3.4 of [23] does not “know” about the values “+1” and “+5” that exist in this
particular pattern of our equation. Similarly, if starting from a free value one skips “−5”
to some other free value, and again skips −1, then to find “+1” and further “+5”, the
equation 4.3.4 does not “know of” the “skipped” special values. So the patterns {−5,−1}
and {1, 5} really are independent, as far as 4.3.4 of [23] is concerned, they do not come
from some “dressed” pattern in that equation. It would seem that the two τs at the origin
and at (0 0 0 0 4 0 0 −4) do suffice.

But this is not yet the end. It is not just xm+2 that is of the first degree in terms of
xm+1 (for xm of degree 0). For this equation it is also the case of xm+3. This means that
we can even get an equation relating one x out of three, skipping the two intermediate
ones.

This equation has also been identified. It is Class II, case 5 in section 5 , 5.2.5, of [23]
and has the form (15) when written in terms of the ancillary variable. The quantities Zn

and Ai
n are now given by

Zm = 6(3αm+ β) + 9α+ 2ϕ5(3m+ 2) + 2ϕ5(3m+ 1) + ϕ5(3m) + ϕ5(3m− 2)

A1
m = 5(3αm+ β)− 6α+ ϕ2(m) + ϕ5(3m) + 2ϕ5(3m− 1) + 2ϕ5(3m− 2) + c

A2
m = 7(3αm+ β)− ϕ2(m) + 2ϕ5(3m+ 1) + 3ϕ5(3m) + 2ϕ5(3m− 1)− c

A3
m = 5(3αm+ β) + 6α+ ϕ2(m) + 2ϕ5(3m+ 2) + 2ϕ5(3m+ 1) + ϕ5(3m) + c

A4
m = (3αm+ β) + ϕ2(m) + ϕ5(3m)− c

A5
m = 3(3αm+ β)− ϕ2(m) + 2ϕ5(3m+ 2)− ϕ5(3m) + 2ϕ5(3m− 2) + d

A6
m = 3(3αm+ β)− ϕ2(m) + 2ϕ5(3m+ 2)− ϕ5(3m) + 2ϕ5(3m− 2)− d

where we have introduced the quantities c and d which are equal to c = −ϕ3(0) and
d = ϕ3(1)− ϕ3(−1) since we chose the evolution over indices n = 3m rather than 3m± 1.
It has six patterns, two “long ones” {−7,−1, 5} and {−5, 1, 7} and four short ones, {−5, 1},
{−1, 5} and twice {−3, 3}. The two long ones and one short pattern {−3, 3} can be ob-
tained from our “long pattern”, which for clarity we repeat here: {−7,−5,−3,−1, 1, 3, 5, 7},
by skipping two values starting from −7,−5 and −3 respectively. Also the independent
patterns {−5, 1}, {−1, 5} (for equation 5.2.5 of [23]) come from our “dressed pattern”
{−5, ⋆,−1, 1, ⋆, 5}, skipping two x starting from “−5” or “−1” respectively. But what
about the second pattern {−3, 3}? It can only come from the vanishing of some other
τ -function, one which is at a squared distance 16 from “−3” at (−1 1 −3 1 1 −1 1 −1)
and “+3” at (0 2 −2 0 2 0 2 0 ), but further away from anything else. The position of
this τ is (0 4 −4 0 0 0 0 0) as one can easily check. This “action at distance three” is not
as easily seen on the equation as the “action at distance two”. Still, one can check that if
xn−1 takes the value (3tn+7α)2 in (17), the relationship between xn and xn+1 is the same
as the relationship between xn′−1 and xn′ in (17) written for n′ = n + 1 if xn′+1 = xn+2

takes the value (3tn′ − 7α)2, thus establishing the “action at distance three” of the value
(3tm+10α)2 for xm, with consequence the value of xm′ = xm+3 being (3tm′ − 10α)2. This
corresponds indeed to a “hidden pattern” {−3, ⋆, ⋆, 3} of equation (17).
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4.3 The period 8 case

In this subsection, we will again use the alternate constraint. The sum of the coordinates
of a τ with coordinates multiple of 4 is a multiple of 8 but if a τ has coordinates congruent
to 2 modulo 4 the sum of these coordinates is congruent to 4 modulo 8.

This asymmetric equation was numbered VI in [19] and in the list at the begin-
ning of the section. Being asymmetric, this equation is outside the scope of [23]. Since
the equation is asymmetric, we have to consider the degrees of x and y starting both
from x0, y0 and y0, x1, the degrees being in terms of the second variable. We find the
degrees (dxm, d

y
m)=(0,1), (1,1), (2,2), (3,4), (4,6), (7,8), (10,11), (13,15), (16,19) . . . and

(dym, dxm+1)=(0,1), (1,1), (2,2), (3,4), (5,6), (7,8), (10,11), (13,15), (16,19), . . . . In fact the
degrees obtained starting from (dx0 , d

y
0)=(0,1) and (dy0, d

x
1)=(0,1) are the same except for

the degree dx8k+4 in the first choice of initial data which is equal to (4k + 2)2 while the
degree dy8k+4 for the second choice of initial data which is equal to (4k + 2)2 + 1. (In the
case k = 0 shown above we have 4 and 5 respectively),

The easiest way to find the vectors is to consider the sequence of degrees of one variable.
Indeed, if one expresses y0 in terms of x1, the degrees in x1 of all subsequent objects will
be the same as in terms of y0, because y0 is of the first degree of x1 and the precise
dependance on x0, of degree zero, does not matter. So we have for x only dx0 = 0, dx1 =
1, dx2 = 2, dx3 = 3, dx4 = 4, dx5 = 7, dx6 = 10, dx7 = 13, dx8 = 16, . . . . Again, there is no proof

that beyond degree 4, the squared length of
−−−−→
X0Xm is really 8 times the degree of xm in

terms of x1, but it is an assumption of high heuristic power which has not been disproved
in all cases studied up to now.

The vector
−−−→
X0X8 is certainly

−→
S and we can reasonably assume it has squared length

128. Conversely, the vector
−−−→
X0X4 has certainly squared length 32, because up to the

degree 4 included, the squared length can be proven to be 8 times the degree. It is

therefore reasonable to assume that
−−−→
X0X4 =

−→
S /2 and try this as a heuristic tool to find

the solution. Note that of course
−−→
Y0Y8 =

−→
S , and the degree of y8 in terms of x1 (or y1,

for that matter) for y0 of degree zero, is indeed 16, but
−−→
Y0Y4 will be found to obey one of

our heuristic rules (its squared length is indeed 40, 8 times the degree of y4 in terms of y1
or x1, for y0 of degree 0) but not the other one, obviously it is not

−→
S /2.

Guided by the degrees of the Xm and the assumption that
−−−→
X0X4 =

−→
S /2, we found the

consistent choice which a posteriori was verified−−−→
X0X1 = [2, 0, 0, 0, 2, 0, 0, 0]
−−−→
X1X2 = [0, 0, 0, 2, 0, 0, 0, 2]
−−−→
X2X3 = [0, 0, 2, 0, 0, 0, 2, 0]
−−−→
X3X4 = [0, 2, 0, 0, 0, 2, 0, 0].

The sum
−→
S /2 of these consecutive vectors is [2 2 2 2 2 2 2 2] and the scalar product

of each of the
−−−−−−→
XmXm+1 vectors with

−→
S /2 is 8. Note that the sum of the components of

−→
S /2 is 16, a multiple of 8 and thus this vector does not satisfy the alternate constraint
we have chosen. It does not define an invariant translation of the whole lattice. This is
consistent with all the previous examples. Its double, namely

−→
S , of course does define an

invariant translation.
We must now turn to the vectors

−−−−→
XmYm and

−−−−−−→
YmXm+1. As we said earlier, in all the

equations in this paper, they have the same scalar product with
−→
S /2, thus 4 each. Though
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four vectors are enough for the X only, there is no shortcut for the Y . One has to find eight
different “splitting” of the above vectors in two half NV’s, with an eye on the strange value,

namely 40, of the squared length of
−−−−−→
YmYm+4 for all m. To make a long story short, here

is the list of the
−−−−→
XmYm and

−−−−−−→
YmXm+1 starting from the splitting of

−−−→
X0X1 = [2 0 0 0 2 0 0 0].

1 −1 −1 1 1 −1 1 1
1 1 1 −1 1 1 −1 −1

−1 1 1 1 −1 −1 1 1
1 −1 −1 1 1 1 −1 1

−1 1 1 −1 1 1 1 −1
1 −1 1 1 −1 −1 1 1
1 1 −1 −1 1 1 −1 1

−1 1 1 1 −1 1 1 −1
1 −1 1 1 1 −1 −1 1
1 1 −1 −1 1 1 1 −1

−1 −1 1 1 −1 1 1 1
1 1 −1 1 1 −1 −1 1
1 1 1 −1 −1 1 1 −1

−1 −1 1 1 1 −1 1 1
1 1 −1 1 1 1 −1 −1

−1 1 1 −1 −1 1 1 1


Having reached the period, this sequence now repeats indefinitely.

In order to find the initial point to which to add these vectors to find the positions of
all Xs and Y s we must consider the singularity patterns. A simplified expression, ignoring
the periodic function is

xn+1 − 4t2n
xn+1

xn − 4t2n
xn

yn − t2n
yn − 9t2n

= 1 (18a)

yn − (3tn − 2α)2

yn − t2n

yn−1 − (3tn − α)2

yn−1 − (tn − α)2
xn

xn − (4tn − 2α)2
= 1 (18b)

Four distinct singularity patterns do exist. A “long” one

{xn−2 = (4tn−2−2α)2, yn−2 = (3tn−2−2α)2, xn−1 = 4t2n−3, yn−1 = t2n−5, xn = 16α2, yn = t2n+4,

xn+1 = 4t2n+2, yn+1 = (3tn+2 − α)2, xn+2 = (4tn+2 − 2α)2}

a “medium” one {yn−1 = 9t2n−1, xn = 4t2n−1, yn = t2n−2, xn+1 = 4α2, yn+1 = t2n+3, xn+2 =
4t2n+2, yn+2 = 9t2n+2} and two “short” ones {xn = 0, yn = tn}, {yn = tn, xn+1 = 0}.
Schematically these patterns are {−4,−3,−2,−1, 0, 1, 2, 3, 4}, {−3,−2,−1, 0, 1, 2, 3} and
{0, 1}, {−1, 0}.

Now driven by previous experience, we look for “hidden patterns”. “Action at distance
two” can be directly seen on the equation. Looking at (18b) we can see that, for generic
xn, if yn−1 takes the value (3tn − α)2, which is not a remarkable value in (18a) (unless
α = 0, but in that case the equation would have no secular evolution), then yn does
take the remarkable value t2n. For generic xn, (18) implies that xn+1 takes a zero value.
This is precisely the second “short pattern”, schematically {−1, 0}. If we now look at
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(18b) evaluated at n′ = n + 1 we have xn′ = xn+1 = 0 while yn′−1 = yn = t2n. But
this value is precisely the quantity (tn′ − α)2 so the denominator of the second factor
vanishes. At this point the value of yn′ = yn+1 is not fixed by the singularity pattern. If
we now consider (18b) evaluated at n′ = n+1, since yn′ does not take a remarkable value,
the zero value of xn′ implies that xn′+1 = xn+2 takes the value 4t2n′ . At this point the
pattern ends, because that value for xn′+1 is not remarkable, neither in (18b) evaluated
at n′ = n + 1 nor in (18a) evaluated at n′′ = n + 2 because the remarkable value for
xn+2 = xn′′ is 4t2n′′ . So schematically this pattern is {−3, ⋆,−1, 0, ⋆, 2} where, as already
explained, the ⋆ represents a free value. The second “short pattern” is in fact “dressed”
in a not so short pattern involving six points, but two of them are free and only one
blow-up is involved. A similar reasoning starting from a generic yn and xn = 4t2n implies
zero value for xn+1. Going into (18b) evaluated at n′ = n + 1 one gets yn+1 = yn′ = t2n′ ,
as per the first “short pattern”, which is finally “dressed” as {−2, ⋆, 0, 1, ⋆, 3}. Thus
the four patterns the positions for X and Y must support are really the “long” one
{−4,−3,−2,−1, 0, 1, 2, 3, 4}, the “medium” one {−3,−2,−1, 0, 1, 2, 3} and the two now
“dressed”, not-so-short anymore, patterns.

Imposing that the “long” singularity pattern be caused by the vanishing of the τ -
function at the origin means that there must be a sequence of positions for X and Y that
extends on five Xs and four Y s in between at squared distance exactly 16 from the origin.
We present here a somewhat longer sequence, starting with one pair of X,Y at squared
distance 32 from the origin, just before the “long” singularity pattern and continuing with
one single Y followed by three extra pairs (X,Y ) at squared distance at least 32 from the

origin, eighteen points altogether. The bottommost X and Y are exactly
−→
S away from

the topmost X and Y respectively. All Xs have even coordinates, while all Y s have odd
coordinates. 

−4 −2 −2 −2 −2 0 0 0
−3 −3 −3 −1 −1 −1 1 1
−2 −2 −2 −2 0 0 0 0
−3 −1 −1 −1 −1 −1 1 1
−2 −2 −2 0 0 0 0 2
−3 −1 −1 −1 1 1 1 1
−2 −2 0 0 0 0 2 2
−1 −1 −1 −1 1 1 1 3
−2 0 0 0 0 2 2 2
−1 −1 1 1 1 1 1 3
0 0 0 0 2 2 2 2

−1 −1 1 1 1 3 3 3
0 0 0 2 2 2 2 4
1 1 1 1 1 3 3 3
0 0 2 2 2 2 4 4
1 1 1 3 3 3 3 3
0 2 2 2 2 4 4 4
1 1 1 3 3 3 5 5


The scalar product of

−→
S with the vectors

−−→
OX start from -24 for the topmost X and

increase by 4 from one line to the next one. On the third line, the pattern begins with (−2
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−2 −2 −2 0 0 0 0), with scalar product with
−→
S equal to −16, four times the value of the

label, namely “−4”, of this X which opens the “long” pattern. The scalar products keep
increasing by 4 from one line to the next one, labelling the points as integers from “−3”
to “+4”, odd for Y s, even for Xs, till the last X (0 0 0 0 2 2 2 2) in the “long” pattern.

It is easy to see that the τs at the point (−4 0 0 0 0 0 0 4) is at squared distance 32 of
the first and the last Xs of the “long pattern” but at squared distance 16 of all the others,
namely, all the points of the “medium pattern”. Thus it is precisely the τ the vanishing
of which causes the latter pattern.

The “dressed (not so) short patterns” {−3, ⋆,−1, 0, ⋆, 2} and {−2, ⋆, 0, 1, ⋆, 3} are caused
by the vanishing of τs at (−4 0 0 0 0 0 4 0) and (0 −4 0 0 0 0 0 0 4) respectively, as one
can easily check, the points mentioned in each pattern being at squared distance 16 of the
relevant τ , while the free value indicated by ⋆ appears when the point is too far from that
τ .

Since the vectors
−−−−−−→
XmXm+1, on the one hand, and

−−−−−→
YmYm+1 on the other hand, are both

half-NV’s, one can eliminate either variable to get an equation in the other variable alone.
None of these equations are trihomographic, but they have both been identified earlier.

The “x-only” reduction is case 2 of Class IV in section 4, 4.4.2, of [23]. Written in the
usual, “canonical” form, it has a right-hand side which is a ratio of a quadratic polynomial
in x over a linear one. Written in terms of the ancillary variable it has the same form as
(15) with a right-hand side being a ratio of a product of four terms. Starting form the tn
and ϕ8(n) of VI we obtain for 4.4.2 the quantities Zn and Ai

n

Zn = 2(αn+ β) + ϕ8(n+ 2) + ϕ8(n− 2)

A1
n = 4(αn+ β)− 2α+ 2ϕ8(n+ 2)− ϕ8(n+ 1) + ϕ8(n) + ϕ8(n− 1)− ϕ8(n− 2) + 2ϕ8(n− 3)

A2
n = 2(αn+ β) + ϕ8(n+ 1) + ϕ8(n)− ϕ8(n− 1) + ϕ8(n− 2)

A3
n = ϕ8(n+ 1)− ϕ8(n)− ϕ8(n− 1) + ϕ8(n− 2)

A4
n = 2(αn+ β)− 2α+ ϕ8(n+ 1)− ϕ8(n) + ϕ8(n− 1) + ϕ8(n− 2)

The equation has four patterns, one “long” pattern of the form {−4,−2, 0, 2, 4}, one
“medium” patterns of the type {−2, 0, 2}, and two “short” patterns {−2, 0} and {0, 2}.
One can immediately see the “long pattern” and the “medium pattern” of 4.4.2 in the
“long pattern” and “medium” patterns of the equation considered here, by keeping only
the x. Each of the “short pattern” of 4.4.2 is visible in one of the “dressed short patterns”,
though the “dressing” is indeed needed, the “short patterns” as identified in [17] and [19]
were not sufficient.sign of the each

The “y-only” reduction is the case 2 of Class III in section 4 of [23], also with the
right-hand side as a quadratic polynomial over a linear one in canonical from. Similarly,
starting from the parameters of VI we obtain the quantities Zn and Ai

n, which appear in
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the equation when written in a form involving the ancillary variable, as

Zn = 2(αn+ β) + α+ ϕ8(n+ 3)− ϕ8(n+ 2) + ϕ8(n+ 1) + ϕ8(n)− ϕ8(n− 1) + ϕ8(n− 2)

A1
n = 3(αn+ β) + ϕ8(n+ 2) + ϕ8(n) + ϕ8(n− 2)

A2
n = 3(αn+ β)− 2α+ ϕ8(n+ 2) + ϕ8(n)− ϕ8(n− 2) + 2ϕ8(n− 3)

A3
n = 3(αn+ β) + 2α+ 2ϕ8(n+ 3)− ϕ8(n+ 2) + ϕ8(n) + ϕ8(n− 2)

A4
n = −(αn+ β)− ϕ8(n+ 2) + ϕ8(n)− ϕ8(n− 2)

The equation has four patterns. Two of them are “long” pattern of the type {−3,−1, 1, 3}.
One can immediately see that both our “long pattern” and our “medium pattern” contain
one such pattern when we keep only the y. The other two patterns are short, of type
{−3,−1} and {1, 3} respectively. Again, they appear in the “dressed not so short patterns”
of (18), but not in the “short patterns” as identified in [17] and [19].

It would seem we have everything, but it not really the case. If we look at the degrees,
we can see that the degree of ym+1 in terms of xm and ym is one, so this triangle is

equilateral,
−−−−−−→
XmYm+1 is half an NV for any m. Since the degree of xq+2 in terms of yq and

xq+1 is 1, it follows that
−−−−−→
YqXq+2 is half an NV for any q. Taking first q = m + 1 we see

that there is an equation in the triangle XmYm+1Xm+3. Then using m′ = m+ 3 in place
of m, one sees there is also an equation in the triangle Ym+1Xm+3Ym+4. So one can write
a succession of equations from X to Y to X but skipping two points taking only one point
in three. The resulting equation is not trihomographic, so out of the scope of [17] and [19],
and not symmetric since it involves both x and y, so out of the scope of [23], but one can
derive it by appropriate eliminations. To our knowledge, it has not been identified before.
Deriving it in its full freedom involving all 8 parameters would lead to an expression too
long to be explicitly given.

On the other hand obtaining its autonomous form is perfectly manageable. Thus after
some moderately lengthy calculations, with tn ≡ β for all n, we obtain the mapping

(ym+1−xm+3+9β2)(ym+1−xm+9β2)+36ym+1β2

(ym+1−xm+3+9β2)+(ym+1−xm+9β2)
= 3

2

y3m+1+57β2y2m+1+171β4ym+1+27β6

3y2m+1+34β2ym+1+27β4

(xm+3−ym+1+9β2)(xm+3−ym+4+9β2)+36xm+3β2

(xm+3−ym+1+9β2)+(xm+3−ym+4+9β2)
= 3

2

xm+3(x2
m+3+56β2xm+3+144β4)

3x2
m+3+32β2xm+3+16β4

One can obtain many of its patterns from the patterns of our equation. The “long pattern”
provides 3 patterns for the new equation, by skipping two points to reach the third one,
namely {−4,−1, 2}, {−3, 0, 3} and {−2, 1, 4}. The “medium pattern” also provides 3 pat-
terns for the new equation {−3, 0, 3}, {−2, 1} and {−1, 2}. The “dressed short patterns”
provide two patterns each, {−3, 0}, and {−1, 2} for one, {−2, 1} and {0, 3} for the other.
This amounts to 10 patterns.

In fact, this new equation has a total of 12 patterns, including three of each type
{−2, 1} and {−1, 2} when we only found two of each. The third pattern of each type
cannot involve a blow-up, nor an “action at distance two”, or we would have found it
earlier; our search for such patterns was exhaustive. They must be “action at distance
three” of the type {−2, ⋆, ⋆, 1} and {−1, ⋆, ⋆, 2}. Indeed, one can also check that a value



]ocnmp[ Geometrical description of discrete Painlevé equations 133

(tn + α)2 for yn−1 in (18b) and 4(tn − α)2 for xn+1 in (18b) lead to the same relationship
between xn and yn. In other words, if it happens that ym takes the value t2m+2 then three
position later, at m′ = m+ 2, xm′ will take the value 4t2m′−2. Similarly, a value 4t2n+1 for
xn in (18) induces the same relationship between yn and xn+1 as a value t2n−1 for yn+1

in (18b) evaluated at n′ = n + 1, in other words xn = 4t2n+1 implies yn′ = t2n′−2 three
positions later, at n′ = n+ 1.

So do we see this “action at distance three” in our trajectory ? Yes, indeed. These
“elongated” patterns are caused, respectively, by the vanishing of the τs at (0 0 −4 0 0 0
0 4) and (−4 0 0 0 0 4 0 0) respectively, which are at squared distance 16 of the relevant
points, and at least at squared distance 32 from all the others.

4.4 The period 4 case (and its ghost)

In [17] two slightly different deautonomisations are proposed for the additive asymmet-
ric system of period 4. And two different numberings X and XI are given in [19] and in
the list at the beginning of section 4. However, these two equations are in fact just one
and the same. The general form of an asymmetric equation is (11). Exchanging numera-
tor and denominator of each factor of (11b) obviously leaves the equation invariant, but
changes κn into its opposite.

In this case we have for both equations tn = αn + β and un = tn + ϕ4(n), kn =
un+1 − un + un−1 + ϕ2(n), supplemented by κn = δ + η(−1)n for the first one, where
we have written explicitly the period 2 function rather than calling it a different ϕ2, and
κn = χ4(n) for the second one. The first expression means the period 2 series of values
(. . . a, b, a, b, a, b, . . . ) with a = δ + η, b = δ − η. Since one is free at any time to change
κn into its opposite, we can do so twice in a row every four steps. The series of values
becomes (. . . a, b,−a,−b, a, b,−a,−b, . . . ), which is just what χ4(n) means. So there is
no real difference between the two equations. (The same equivalence will be discussed in
subsection 4.6). The overall period is four in both cases, due to the ϕ4 term in un. We
note that ϕ4(n) can be rewritten ϕ̃2(n) + χ̃4(n), which will be useful later.

We will study the first choice for κ, but the trajectory is obviously the same for the
second one. Since the equation is asymmetric, we have to consider the degrees of x and
y starting both from x0, y0 and y0, x1, the degrees being in terms of the second variable.
We find (dxm, d

y
m)=(0,1), (1,2), (2,4), (5,7), (8,11), . . . and (dym, dxm+1)=(0,1), (1,2), (3,4),

(5,7), (8,11), . . .

As we explained in section 2, the easiest way to find the vectors is to eliminate one
variable to get a symmetric equation in terms of the other one, even if the resulting
equation is not trihomographic. But one need not even compute this equation. It is
enough to consider the sequence of degrees of one variable. For instance, since for x0 of
degree zero, the degree of x1 in terms of y0 is one, it means that if one expresses y0 in
terms of x1, the degrees in x1 of all subsequent objects will be the same as in terms of y0.
The dependence in terms of x0 will be different, but this is not essential. So we have for
x only dx0 = 0, dx1 = 1, dx2 = 2, dx3 = 5, dx4 = 8, . . . .

In this subsection, we will take the original constraint that the sum of the components
of every NV vector must be a multiple of 8. So we take the half-NV’s

−−−→
X0X1 = [2 0 2 0 0 0 0 0]
−−−→
X1X2 = [0 2 0 2 0 0 0 0] and again
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−−−→
X2X3 = [2 0 2 0 0 0 0 0]
−−−→
X3X4 = [0 2 0 2 0 0 0 0] etc.

The sum
−→
S /2 of any two consecutive vectors is [2 2 2 2 0 0 0 0] and the scalar product

of each of the
−−−−−−→
XmXm+1 vectors with

−→
S /2 is 8.

We must now turn to the vectors
−−−−→
XmYm and

−−−−−−→
YmXm+1. As we said earlier, in all the

equations in this paper, they have the same scalar product with
−→
S /2, 4 each. This leads

us to−−−→
X0Y0 = [2 0 0 0 0 0 0 2]
−−−→
Y0X1 = [0 0 2 0 0 0 0 −2] and by analogy
−−−→
X1Y1 = [0 2 0 0 0 0 0 2]
−−−→
Y1X2 = [0 0 0 2 0 0 0 −2]

At this point we see that the degree of y2 is 3, hence we expect
−−→
Y0Y2 to have squared

length 24, and not 16. This can be arranged if the splitting of
−−−→
X2X3 with respect to Y2 is

not the same as that of the equal vector
−−−→
X0X1 but rather as−−−→

X2Y2 = [0 0 2 0 0 0 0 2]
−−−→
Y2X3 = [2 0 0 0 0 0 0 −2]

Then
−−→
Y0Y2 = [0 2 4 2 0 0 0 0] is indeed of squared length 24. The sequence ends with

−−−→
X3Y3 = [0 0 0 2 0 0 0 2]
−−−→
Y3X4 = [0 2 0 0 0 0 0 −2]
Having reached the period, this sequence now repeats indefinitely.

Note that though
−−−−−−→
XmXm+2 is indeed equal to

−→
S /2, for all m, this is never the case for

−−−−−→
YmYm+2. That equality is a rule of thumb, useful to guess the results, and it did work for
X. But we never claimed this heuristic rule to be a theorem. What is true, of course, is

that
−−−−−→
YmYm+4 is always equal to

−→
S .

In order to find the initial point to which to add these vectors to find the positions of
all Xs and Y s we must consider the singularity patterns. As usual, we shall work with
a simplified form of (11) where we ignore the periodic functions. Though taking κ ≡ 0
in X looks absurd at first glance, in fact choosing ϕ̃2 ≡ 0 and taking the limit δ → 0 is
meaningful, and the resulting equation is just a subcase of the initial equation and the
degrees remain the same. However, here, for simplicity, we keep a non zero δ.

xn+1 − (2tn − α− γ)2

xn+1 − (α+ γ)2
xn − (2tn + α+ γ)2

xn − (α+ γ)2
yn − t2n
yn − 9t2n

= 1 (19a)

yn − (tn + γ + δ)2

yn − (tn + γ − δ)2
yn−1 − (tn−1 − γ + δ)2

yn−1 − (tn−1 − γ − δ)2
xn − (2tn − α− δ)2

xn − (2tn − α+ δ)2
= 1 (19b)

The four singularity patterns are a “long” one of the form {−3,−2,−1, 0, 1, 2, 3}

{yn−1 = 9t2n−1, xn = (2tn−1 − α− γ)2, yn = t2n−2, xn+1 = (3α+ γ)2, yn+1

= t2n+3, xn+2 = (2tn+2 + α+ γ)2, yn+2 = 9t2n+2}

two “medium” ones, both of the form {−2,−1, 0, 1, 2}

{xn−1 = (2tn−1−α±δ)2, yn−1 = (tn−1+γ±δ)2, xn = (α∓δ)2, yn = (tn−γ∓δ)2, xn+1 = (2tn+1−α∓δ)2}
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and a “short” one of the form {−1, 0, 1}

{yn = t2n, xn+1 = (α+ γ)2, yn+1 = t2n+1}.

Imposing that the “long” singularity pattern be caused by the vanishing of the τ -function
at the origin means that there must be a sequence of positions for X and Y that extends
on four Y s and three Xs in between at squared distance exactly 16 from the origin. We
present here a slightly longer sequence, starting from an X at squared distance 32 from
the origin, just before the “long” singularity pattern and continuing with one extra X and
one extra Y both also at squared distance 32 from the origin. The bottommost X and Y

are exactly
−→
S away from the topmost X and Y respectively. All X have their rightmost

coordinate equal to −2, while all Y have a zero rightmost coordinate.



−4 −2 −2 0 0 0 2 −2
−2 −2 −2 0 0 0 2 0
−2 −2 0 0 0 0 2 −2
−2 −2 0 2 0 0 2 0
−2 0 0 2 0 0 2 −2
−2 0 2 2 0 0 2 0
0 0 2 2 0 0 2 −2
0 2 2 2 0 0 2 0
0 2 2 4 0 0 2 −2
2 2 2 4 0 0 2 0



The topmost X is such that the scalar product of
−→
S /2 with the vectors

−−→
OX is -16. The

scalar product increases by 4 from one point to the next one, but, of course, every other
point is a Y . This X, being at squared distance 32 from the origin is outside the singularity
pattern. The latter begins with the topmost Y , (−2 −2 −2 0 0 0 2 0), at squared distance

16 from the origin, and such that the scalar product of
−→
S /2 with the

−−→
OY is −12, i.e. 4

times the value of the index “−3” of this point. The last Y in the pattern, “3”, is the

point (0 2 2 2 0 0 2 0) such that the scalar product of
−→
S /2 with the vectors

−−→
OX is 12.

It is easy to see that the τs at the points (−2 −2 2 2 ±2 ∓2 2 −2), (which correctly
have the sum of their coordinates equal to 0, a multiple of 8) are at squared distance 32
from the two Y points “−3” and “3” but at squared distance 16 from the three X points
“−2”, “0” and “2” as well as the intermediate Y s. Therefore their respective vanishings
cause one “medium pattern” each. And similarly, the equally acceptable τ at (−4 0 0 4 0
0 0 0) is at squared distance 16 of the Y s at “−1” and “1” and the X at “0” but no other
point. Its vanishing causes the “short” pattern.

Since the vectors
−−−−−−→
XmXm+1, on the one hand, and

−−−−−→
YmYm+1 on the other hand, are both

half-NV’s, one can eliminate either variable to get an equation in the other variable alone.
None of these equations are trihomographic, but they have both been identified earlier.

The “x-only” reduction is the unique case of Class I in section 4, namely 4.1, of [23].
One could write it in terms of the ancillary variables in form (15) using instead of Ai the
following Bi (and we remind the reader here, that we can rewrite ϕ4(n) as ϕ̃2(n)+ χ̃4(n)):
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Zn = 2(αn+ β)− 2ϕ̃2(n)

B1
n = 2(αn+ β)− α− χ̃4(n)− χ̃4(n− 1) + 4ϕ̃2(n)− ϕ2(n)− γ − 2α

B2
n = 2(αn+ β)− α− χ̃4(n)− χ̃4(n− 1)− (4ϕ̃2(n)− ϕ2(n)− γ − 2α)

B3
n = 2(αn+ β)− α+ χ̃4(n) + χ̃4(n− 1) + κn

B4
n = 2(αn+ β)− α+ χ̃4(n) + χ̃4(n− 1)− κn

These expressions are valid for both cases X and XI, provided one uses the appropriate
κn, namely κn = δ + η(−1)n for the former and κn = χ4(n) for the latter.

A singularity entered at point n at a Bi
n exits at point n + 2 at Bj

n+2, with j not
necessarily equal to i. In principle this is perfectly acceptable. In fact, this is the case
for many equations of [23]. It turns out, however that precisely for 4.1 of [23] (and a few
others) the singularity entered at each Ai

n exists at Ai
n+2, with the same i. Therefore,

in order to make the connection with the unique case of Class I in section 4, 4.1 of [23],
clearer, it is more appropriate to redefine the Ais in terms of Bjs in such a way that the
same holds true. This means that we must have Ai

n +Ai
n+2 = Zn + Zn+1 for i = 1, 2, 3, 4

and all n. So we must take A1
n = B1

n, A
2
n = B2

n for n = 4N and n = 4N +1 and A1
n = B2

n,
A2

n = B1
n for n = 4N + 2 and n = 4N + 3.

In the case of equation X similar relations between A3, A4 and B3, B4 are needed for
the singularity to enter and exit at Ai with same indices. In the case of equation XI,
since κn is already a χ4, one should take A3 = B3 and A4 = B4 for all n. Note that in
all cases the sum of the periodic parts of the Ai and Bi cancels at every n, as expected.
Thus equation (17) of [23] is satisfied 1

2

∑4
i=1A

i
n = 1

2

∑4
i=1B

i
n = Zn + Zn−1.

The equation has four patterns of the type {−2, 0, 2}. One can immediately see that
within the “long pattern” as well as both of the “medium” ones, keeping only the x gives
one such pattern each. But the fourth one is missing. Since we have not identified it in
the previous papers concerning equation (19ab), it means it must be a “hidden” pattern,
causing no blow-up. Rather, it must come from an “action at distance”. Just a glance at
equation (19a) shows that, for generic yn, if xn = (2tn + γ)2 then xn+1 = γ2. Note that
this value of xn is not remarkable in equation (19b) for generic values of α, γ and δ. Only
the coefficient of n is the same as for the values “of interest” there. Thus one expect yn+1

to be generic, and for n′ = n+ 1 the fact that xn′ = γ2 means that xn′+1 should be equal
to (2tn′ −γ)2. The two consecutive “actions at distance two” in equation (19ab), i.e., X or
equivalently XI, constitute a blow-up-free pattern {−2, ⋆, 0, ⋆, 2}, which was not detected
in [4, 7], which only dealt with blow-ups. This pattern is caused by the vanishing of the
τ -function at (0 0 0 0 0 0 4 −4) which is at squared distance 16 of the x “−2”, “0” and
“2” and no other points. And indeed, it induces an extra singularity of type {−2, 0, 2} for
its x-only reduction.

The “y-only” reduction is the case 1 of Class I in section 5, i.e. 5.1.1, of [23]. Starting
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from (11) we obtain the quantities Zn and Ai
n entering the equation

Zn = α(2n+ 1) + 2β + χ̃4(n) + χ̃4(n+ 1)

A1
n = 3(αn+ β)− χ̃4(n)− 5ϕ̃2(n) + ϕ2(n)

A2
n = αn+ β + χ̃4(n) + ϕ̃2(n)− ϕ2(n)

A3
n = αn+ β + χ̃4(n) + ϕ̃2(n) + (γ + δ + η)(−1)n

A4
n = αn+ β + χ̃4(n) + ϕ̃2(n) + (γ − δ − η)(−1)n

A5
n = αn+ β + χ̃4(n) + ϕ̃2(n)− (γ − δ + η)(−1)n

A6
n = αn+ β + χ̃4(n) + ϕ̃2(n)− (γ + δ − η)(−1)n

The equation has six singularity patterns. One is a “long” pattern of the type {−3,−1, 1, 3}.
One can immediately see that pattern within our “long pattern”. The five other ones are
all of the type {−1, 1}. Each of our “medium pattern” contains one such pattern for the y
and so does our “short” one. But two more similar patterns are missing. They must also
be “hidden” in our equation for causing no blow-ups (otherwise we would not have missed
them in our previous papers concerning the equation at hand, that concentrated in pat-
terns causing blow-ups), therefore they must be “actions at distance two”. Again, looking
at (19b), we see that, for xn generic, if yn−1 takes any of the two values (tn−1 − γ ± δ)2,
then yn takes the value (tn + γ∓ δ)2. Again, neither of these values of yn is remarkable in
equation (19) for generic values of α, γ and δ. Only the coefficient of n coincides with that
of the “value of interest” t2n. The two “hidden” patterns “at distance two” we have just
identified are of the form {−1, ⋆, 1}. The last thing to do to complete this subsection is to
find the two positions where the vanishing of a τ -function would cause such a behaviour,
at distance 16 from the Y s at “−1” an “+1”. The positions are in fact (−2 −2 2 2 ±2 ±2
2 2). Indeed, the sum of the coordinates of these points, depending on the common sign
of the fifth and sixth coordinates, are 8 and 0 respectively as per the original constraint.

4.5 The periods 4,5 case

This section will consider two equations of periods 4 and 5. One is an asymmetrical
one, described in [17], numbered VII in [19]. The other one, symmetrical, is nothing but
the “x-only” reduction of the first one. Since it happens to be trihomographic too, it
also appears in [17] and in [19], numbered I. Being symmetrical it is mentioned in [23] in
section 3 Class II. The “y-only” reduction also exists and has been identified. It is not
trihomographic, and we will come back to it later.

Since the equation is asymmetric, we have to consider the degrees of x and y starting
both from xm, ym and ym, xm+1, the degrees being in terms of the second variable. We
find (dxm, d

y
m)=(0,1), (1,1), (1,1), (2,2), (2,3), (3,4), (4,5), (6,6), (7,8), (9,10), (10,12),. . .

and (dym, dxm+1)=(0,1), (1,1), (2,1), (2,2), (2,3), (3,4), (5,5), (6,6), (7,8), (9,10), (11,12),. . . .
We can remark that the degree of x10 in terms of y0 (for x0 of degree 0) is 10, while

that of y10 in terms of x1 (for y0 of degree 0) is 11. Differences already appeared at
x2 from x0 (degree 1) versus y2 from y0 (degree 2) and x6 from x0 (degree 4) versus y6
from y0 (degree 5). This phenomenon already appeared in the asymmetrical equations of

subsection 4.3 and 4.4. In both cases, though
−−−→
Y0YP (P = 8 and 4 respectively) was always
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the corresponding vector
−→
S , the value of the degree of yP/2 was clearly incompatible with

a value
−→
S /2 for

−−−−→
Y0YP/2. But in both equations it was still true that

−−−−−→
X0XP/2 was indeed

equal to
−→
S /2. Hoping (with a posteriori confirmation) that it would still be the case

here, we were able to find first 10 vectors
−−−−−−→
XmXm+1 for m from 0 to 9, then thanks to the

behaviour of y2, y6 and y10, a consistent way to “split” them.

We present here the ten first
−−−−−−→
XmXm+1. (In this section we will use the original con-

straint, namely that the sum of the coordinates of the site of a τ -function is always a
multiple of 8, whether the coordinates are multiples of 4, or congruent to 2 modulo 4).



0 0 0 0 2 −2 0 0
0 0 2 0 0 2 0 0
2 0 0 0 0 −2 0 0
0 0 0 2 0 2 0 0
0 2 0 0 0 −2 0 0
0 0 0 0 2 2 0 0
0 0 2 0 0 −2 0 0
2 0 0 0 0 2 0 0
0 0 0 2 0 −2 0 0
0 2 0 0 0 2 0 0



On the five first columns, all coordinates take the value 0 except one with value +2 that
goes round to the left by two units down each line around these five columns as around
a torus. (Granted the skip by two instead of one seems arbitrary, and even bizarre, but
there are æsthetical reasons for that when the y are introduced). On the sixth one, values
of 2 and −2 alternate. The seventh and last columns stay blank.

The sum
−→
S /2 of any consecutive 10 vectors is [4 4 4 4 4 0 0 0] and the scalar product

of each of the
−−−−−−→
XmXm+1 vectors with

−→
S /2 is 8. Note that the sum of the components of

−→
S /2 is 20, not a multiple of 8, and thus this vector does not satisfy the original constraint
we have chosen in this chapter. As in all the previous examples, it does not define an

invariant translation of the whole lattice. Again
−→
S , of course does define an invariant

translation. The eleven first pairs of vectors {
−−−−→
XmYm,

−−−−−−→
YmXm+1} are
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

1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 1 −1 −1 1
1 −1 1 1 −1 1 −1 −1

−1 1 1 −1 1 1 1 1
1 1 −1 1 −1 −1 −1 1
1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 1 1 1 1
1 −1 1 1 −1 1 −1 −1

−1 1 1 −1 1 −1 1 −1
1 1 −1 1 −1 −1 −1 1
1 −1 1 −1 1 1 −1 −1

−1 1 −1 1 1 1 1 1
1 −1 1 1 −1 −1 −1 1

−1 1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 1 1
1 −1 1 −1 1 1 −1 −1

−1 1 −1 1 1 −1 1 −1
1 −1 1 1 −1 −1 −1 1

−1 1 1 −1 1 1 −1 −1
1 1 −1 1 −1 1 1 1
1 −1 1 −1 1 −1 −1 1

−1 1 −1 1 1 −1 1 −1


Note that the ten first pairs represent only one half-period. Indeed, though it is true

that
−−−−−−−−−→
Xm+10Xm+11 =

−−−−−−→
XmXm+1, contrariwise

−−−−−−−−−→
Xm+10Ym+10 and

−−−−→
XmYm do not coincide.

Their six first components are equal but the last two change sign. The same holds for−−−−−−−−−→
Ym+10Xm+11 and

−−−−−−→
YmXm+1. Therefore

−−−−−−−→
XmXm+10 is equal to

−→
S /2, of squared length 80,

but
−−−−−−→
YmYm+10 is of squared length 88, eight times the degree, namely 11, of y10 in terms

of x1 for y0 of degree 0.

In order to find the initial point to which to add these vectors in order to find the posi-
tions of all Xs and Y s we must consider the singularity patterns. A simplified expression
for the asymmetric equation, ignoring the periodic functions, is:

xn+1 − (2tn + α)2

xn+1 − α2

xn − (2tn − α)2

xn − α2

yn − t2n
yn − 9t2n

= 1 (20a)

yn − (5tn − 4α)2

yn − 9t2n

yn−1 − (5tn−1 + 4α)2

yn−1 − 9t2n−1

xn − (2tn − α)2

xn − (6tn − 3α)2
= 1 (20b)

There are four singularity patterns, a “long” one, {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}

{xn−3 = (6tn−3− 3α)2, yn−3 = (5tn−3− 4α)2, xn−2 = (4tn−3− 3α)2, yn−2 = (3tn−3− 5α)2,

xn−1 = (2tn−3−5α)2, yn−1 = (tn−3−8α)2, xn = 81α2, yn = (tn+3+7α)2, xn+1 = (2tn+3+3α)2,

yn+1 = (3tn+3 + 2α)2, xn+2 = (4tn+3 − α)2, yn+2 = (5tn+3 − α)2, xn+3 = (6tn+3 − 3α)2}
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a “medium” one {−1, 0, 1}, {yn−1 = t2n−1, xn = α2, yn = t2n} and two “short” ones
{−3,−2} and {2, 3}, {yn = 9t2n, xn+1 = (2tn + α)2}, {xn = (2tn − α)2, yn = 9t2n}.

We now look for “action at distance two”. From (20b) we can see that, for generic xn, if
yn−1 takes the value (5tn−1+4α)2, which is not a remarkable value in (20a), then yn does
take the remarkable value 9t2n, the starting value of the first “short pattern”, schematically
{−3,−2}. We exit it through xn+1 = (2tn +α)2 which means that yn+1 recovers a degree
of freedom. Indeed in (20b) evaluated at n′ = n+1, xn′ = xn+1 = (2tn+α)

2 = (2tn′ −α)2
while yn′−1 = 9t2n′−1 and the equation is satisfied for any yn′ . Now let us consider (20a)
evaluated at n′. In the third factor, yn′ is not remarkable, so the value (2tn′ − α)2 for
xn′ implies a value α2 for xn′+1 = xn+2. Back to (20b), now evaluated at n′′ = n + 2.
The value α2 of xn′′ is not remarkable, and yn′′−1 = yn′ is a free quantity. Hence the
same is true of yn′′ = yn+2. But in (20a) evaluated at n′′ a free value for yn′′ and a value
α2 of xn′′ imply a value (2tn′′ + α)2 for xn′′+1, which can be written xn′′′ = (2tn′′′ − α)2

for n′′′ = n + 3. This means xn′′′ has just the value to enter the second “short” pattern,
thus followed by yn′′′ = 9t2n′′′ . Exiting this “short” pattern, the next value of x is free,
and in the next instance of (20b) the vanishing of the denominator of the second factor
implies that of the numerator of the first factor, and thus fixes the value of the next y at
n′′′′ = n + 4 as (5tn′′′′ − 4α)2 through a final “action at distance two”. So the “action at
distance two” initiated by yn−1 = (5tn−1 + 4α)2) leads in fact to a rather long “dressed
pattern”, that involves both the “short patterns”, and can be schematically written as
{−5, ⋆,−3,−2, ⋆, 0, ⋆, 2, 3, ⋆, 5}. The value of xn+2 = xn′′ is α2 and not actually 0, but
there is no n2 dependence, and this is what the schematic value 0 means.

Imposing that the “long” singularity pattern be caused by the vanishing of the τ -
function at the origin means that there must be a sequence of positions for X and Y
that extends on seven Xs and the six Y s in between at squared distance exactly 16 from
the origin. We present here a somewhat longer sequence, starting with one pair of X,Y
both at squared distance 32 from the origin, just before the “long” singularity pattern and
continuing with one single Y followed by two extra pairs (X,Y ), all at squared distance 32
from the origin, and a last pair at squared distance 48 from the origin, twenty-two points

altogether. The last X is exactly
−→
S /2 away from the first one, but this is not so for the

corresponding Y s. The period is 20 and one has to wait for Yn+20 to find
−−−−−→
YnYn+20 =

−→
S .

All Xs have even coordinates, while all Y s have odd coordinates. Below we give the
transposed matrix of the X and Y .



0 1 0 1 0 1 2 1 2 1 2 3 2 3 2 3 4 3 4 3 4 5
0 −1 0 −1 0 1 0 1 0 1 2 1 2 1 2 3 2 3 2 3 4 3

−2 −1 −2 −1 0 −1 0 −1 0 1 0 1 0 1 2 1 2 1 2 3 2 3
−2 −3 −2 −1 −2 −1 −2 −1 0 −1 0 −1 0 1 0 1 0 1 2 1 2 1
−4 −3 −2 −3 −2 −3 −2 −1 −2 −1 −2 −1 0 −1 0 −1 0 1 0 1 0 1
2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1
2 3 2 1 2 1 2 3 2 3 2 1 2 1 2 3 2 3 2 1 2 1
0 −1 0 −1 0 1 0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1 0 1


The singularity begins with the second X, “−6”, at (0 0 −2 −2 −2 0 2 0) such that the

scalar product of
−→
S /2 with the vectors

−−→
OX is -24. This scalar product increases by 4 from

one point to the next one (but of course every other point is a Y ). This X is the first
point of the “long pattern”. The last one is the point X, “6”, (2 2 2 0 0 0 2 0) such that



]ocnmp[ Geometrical description of discrete Painlevé equations 141

the scalar product of
−→
S /2 with the vectors

−−→
OX is 24. The labelling of the intermediate

points, even Xs and odd Y s is obvious.
One can convince oneself that the τs at the point (4 0 0 0 −4 0 0 0) is at squared

distance 16 of points “0”, “2” and “−2”, “3” and “−3” and “5” and “−5” but at squared
distance at least 32 of all the others, in particular “1” and “−1”, “4” and “−4” and “6”
and “−6”. Thus it is precisely the τ the vanishing of which causes the rather long “dressed
pattern” {−5, ⋆,−3,−2, ⋆, 0, ⋆, 2, 3, ⋆, 5} we discovered by looking at “action at distance
two”.

Trying to find a τ the vanishing of which causes the “medium pattern” of (20) we
encounter a surprise. It has to be at squared distance exactly 16 from “0”, “1” and “−1”,
but certainly further than that from “2” and “−2”, because these points are definitely
outside the “medium pattern”, defined by its entry and exit points. The only solution
is at (0 0 0 0 0 4 4 0). But in addition to “0”, “1” and “−1”, this point is also at
squared distance exactly 16 of “4” and “−4”, though farther from every other point, in
particular, all those of the “dressed pattern” except, of course, “0”. So its vanishing creates
an “extended pattern” {−4, ⋆, ⋆,−1, 0, 1, ⋆, ⋆, 4} rather than just the “medium pattern”
we previously knew of. Since the extension is by “action at distance three”, there is no
paradox about us not finding it earlier. Since “1” means that ym = t2m we can try and
check whether the relationship between xn and yn induced by a value yn−1 = t2n−1 in (20b)
does fix the value of xn+1 in (20a). As stated before, it is tricky to guess where “actions at
distance three” exist, but it is easy to check if one knows where to look for it. And indeed,
this relationship implies xn+1 = (4tn − 3α)2, a good value for a point “4”. A calculation
“backwards” would also allow to find a good point “−4”.

Since the vectors
−−−−−−→
XmXm+1, on the one hand, and

−−−−−→
YmYm+1, on the other hand, are

both half-NV’s, one can eliminate either variable to get an equation in the other variable
alone. As we remarked earlier, this is just the trihomographic equation I for x. Its purely
secular additive form can easily be obtained.

xn+1 − (4tn − 3α)2

xn+1 − α2

xn−1 − (4tn − α)2

xn−1 − α2

xn − (2tn − α)2

xn − (6tn − 3α)2
= 1 (21)

with singularity patterns

{xn−3 = (6tn−3 − 3α)2, xn−2 = (4tn−3 − α)2, xn−1 = (2tn−3 − 5α)2, xn = 81α2,

xn+1 = (2tn+3 + 3α)2, xn+2 = (4tn+3 − α)2, xn+3 = (6tn+3 − 3α)2}

and
{xn−1 = (2tn−1 − α)2, xn = α2, xn+1 = (2tn+1 − α)2}.

The long pattern {−6,−4,−2, 0, 2, 4, 6} of this equation is just the x part of the long
pattern of (20). As for the short pattern {−2, 0, 2}, it is to be found in the “dressed
pattern” {−5, ⋆,−3,−2, ⋆, 0, ⋆, 2, 3, ⋆, 5} we constructed earlier. The x part is of course
limited to the {−2, ⋆, 0, ⋆, 2} part. More precisely, we found there xn+1 = (2tn + α)2,
xn+2 = α2 and xn+3 = (2tn+3 − α)2. These values perfectly coincide with those given
here, when evaluated at the appropriate n.

Since this equation is trihomographic, one can consider the equation obtained by keep-
ing only one x out of two. This equation has also been identified. It is case 1 of Class II
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in section 4, i.e. 4.2.1, of [23]. Written in terms of the ancillary variable it has the same
form as equation (15) given at the beginning of this section. Starting from the tn and
ϕ4(n), ϕ5(n) of (11), for an evolution over xn with even indices n = 2m rather than odd
ones, we obtain the quantities Zm and Ai

m entering the equation

Zm = 4(2mα+ β)− ϕ5(2m− 2)

A1
m = 6(2αm+ β)− 6α− ϕ4(2m)− ϕ4(2m− 1)− ϕ5(2m+ 2) + ϕ5(2m+ 1) + ϕ5(2m− 2)

A2
m = 4(2αm+ β) + 6α+ ϕ4(2m+ 2)− ϕ4(2m+ 1) + ϕ5(2m+ 2)− ϕ5(2m+ 1)− ϕ5(2m− 2)

A3
m = 4(2αm+ β)− 14α− ϕ4(2m+ 2) + ϕ4(2m+ 1) + ϕ5(2m+ 2)− ϕ5(2m+ 1)− ϕ5(2m− 2)

A4
m = 2(2αm+ β)− 2α+ ϕ4(2m) + ϕ4(2m− 1) + ϕ5(2m) + ϕ5(2m− 1)

This equation has four singularity patterns, a “long” one that can be schematised as
{−6,−2, 2, 6}. This is present in the “long pattern” of (21), starting at “−6” and skipping
every other x. There is one “short pattern” {−2, 2} that comes from the short pattern of
(21) but also two “medium patterns” both of form {−4, 0, 4}. One of them is clearly in
the long pattern of (21), starting at “−4”. But where is the second one? Well, it is in
the extended pattern {−4, ⋆, ⋆,−1, 0, 1, ⋆, ⋆, 4} that we have identified earlier. In the “x-
only” reduction, equation (21), this extended pattern becomes {−4, ⋆, 0, ⋆, 4}. It does not
contain a blow-up, and therefore was not considered before. Though we might have noted
in (21) that for generic xn a value (4tn+α)

2 for xn−1 leads to a value α2 for xn+1 = xn′−1

for n′ = n + 2, and then to (4tn′ − α)2 for xn′+1 = xn+3 in (21) evaluated at n′. In that
equation one can see in {−4, ⋆, 0, ⋆, 4} twice an “action at distance two”. The “0” here
really means a value α2 and if different from the “0” of the {−4, 0, 4} within the long
pattern, the value of which is 81α2. All the patterns are thus accounted for, at this point.

Similarly we can consider the “y-only” reduction. The resulting equation has been
identified in [23]: it is case 2 of class V of Section 4, 4.5.2, (and thus it has a right-hand
side that is the ratio of a quadratic over a linear polynomial). The quantities Zn and Ai

n

entering the equation written in terms of the ancillary variable are

Zn = (2n+ 1)α+ β + ϕ4(n+ 2) + ϕ4(n− 1) + ϕ5(n+ 2) + ϕ5(n− 1)

A1
n = 5(αn+ β)− 4α+ ϕ4(n− 2) + ϕ5(n− 2)− ϕ5(n+ 2)

A2
n = 5(αn+ β) + 4α+ ϕ4(n+ 2) + ϕ5(n+ 2)− ϕ5(n− 2)

A3
n = −3(αn+ β) + ϕ4(n+ 2) + ϕ5(n+ 2) + ϕ5(n− 2)

A4
n = αn+ β + ϕ4(n+ 1)− ϕ4(n) + ϕ4(n− 1) + ϕ5(n+ 1)− ϕ5(n) + ϕ5(n− 1)

This equation has four singularity patterns when we only consider patterns entirely con-
sisting in blow-ups. The “long” one that can be schematised as {−5,−3,−1, 1, 3, 5} is
present in the long pattern of (20ab), starting at “−5” and taking only the y. There are
two “short pattern” {−5,−3} and {3, 5} which in fact belong to a single “reconstructed
pattern” {−5,−3, ⋆, ⋆, 3, 5} with action at distance three. It can be seen in the “dressed
pattern” {−5, ⋆,−3,−2, ⋆, 0, ⋆, 2, 3, ⋆, 5} of (20ab). A final short pattern {−1, 1} can be
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seen in the extended pattern {−4, ⋆, ⋆,−1, 0, 1, ⋆, ⋆, 4} of (20ab) and in fact is already
present in the “medium pattern” {−1, 0, 1} with only blow-ups.

Because both
−−−−−−→
XmYm+1 and

−−−−−−→
YmXm+2 are half NV’s there are equations on the triangles

XmYm+1Xm+3 and YmXm+2Ym+3 and thus there is an equation fromX to Y toX skipping
two points. This equation is asymmetric, involving x and y, and not trihomographic, and
had not been identified before. Because the degree of xm+3 in terms of ym and thus ym+1

is two for zero degree xm, and the value of the degree of ym+3 for zero degree ym+1 or
equivalently ym+2 is also two, we expect eight singularity patterns, four starting with an
x (even) and four starting with a y (odd).

Skipping two points, the “long pattern” gives us {−6,−3, 0, 3, 6}, {−5,−2, 1, 4} and
{−4,−1, 2, 5}, depending on the starting point. The pattern {−5, ⋆,−3,−2, ⋆, 0, ⋆, 2, 3, ⋆, 5}
gives {−5,−2}, {−3, 0, 3} and {2, 5}. Finally the pattern {−4, ⋆, ⋆,−1, 0, 1, ⋆, ⋆, 4} gives
{−4,−1} and {1, 4}, a total of eight patterns, four starting by x and four starting by y
(and also four ending in x and four ending in y, with various combinations) so all patterns
are accounted for.

We shall not attempt to present the equation in its full freedom, involving all 8 param-
eters but content ourselves with exhibiting its autonomous form. Thus, with tn ≡ β for
all n, we obtain the mapping

(ym+1 − xm+3 + 9β2)(ym+1 − xm + 9β2) + 36β2ym+1

(ym+1 − xm+3 + 9β2) + (ym+1 − xm + 9β2)
=

3

2

y2m+1 + 42β2ym+1 − 75β4

3ym+1 + 5β2

(xm+3 − ym+1 + 9β2)(xm+3 − ym+4 + 9β2) + 36β2xm+3

(xm+3 − ym+1 + 9β2) + (xm+3 − ym+4 + 9β2)
=

3

2

x2m+3 + 36β2xm+3 − 192β4

3xm+3 − 8β2

But for equation VII,
−−−−−−→
XmYm+2 and

−−−−−−→
YmXm+3 are also half NV’s, which means that

there are equations on both triangles XmYm+2Xm+5 and YmXm+3Ym+5. The asymmetric
equation from X to Y to X skipping four points to reach the fifth one has never been
identified before. But because the degree of Xm+5 in terms of Ym and thus Ym+2 (for Xm

of zero degree) is three, and the same is true of the degree of Ym+5 in terms of Xm+1 and
thus Xm+3 (for Ym of zero degree), we expect the number of patterns to be twelve. Again
we present only the autonomous form, i.e.with tn ≡ β for all n:

(ym+2−xm+5+25β2)(ym+2−xm+25β2)+100β2ym+2

(ym+2−xm+5+25β2)+(ym+2−xm+25β2)
= 5

2

y3m+2+161β2y2m+2+1467β4ym+2+675β6

5y2m+2+166β2ym+2+405β4

(xm+5−ym+2+25β2)(xm+5−ym+7+25β2)+100β2xm+5

(xm+5−ym+2+25β2)+(xm+5−ym+7+25β2)
= 5

2

x3
m+5+160β2x2

m+5+1456β4xm+5+768β6

5x2
m+5+164β2xm+5+416β4

Skipping four points in the “long pattern” gives us {−6,−1, 4}, {−5, 0,−5}, {−4,−1, 6},
{−3, 2} and {−2, 3}. The pattern {−5, ⋆,−3,−2, ⋆, 0, ⋆, 2, 3, ⋆, 5} gives {−5, 0, 5}, {−3, 2}
and {−2, 3}. Finally the pattern {−4, ⋆, ⋆,−1, 0, 1, ⋆, ⋆, 4} gives {−4, 1} and {−1, 4}, a
total of ten patterns, five starting by x and five starting by y (and also five ending in x
and five ending in y). Two patterns are still missing.

A more careful examination of the equation given above shows that it has three different
patterns of each of the forms {−3, 2} and {−2, 3}, while we accounted for only two of each.
Since our search for “action at distance two” was exhaustive, and though we might have
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missed some “action at distance three” they could not have combined to the patterns
we are looking for. This means that in the original equation these patterns must be of
the form {−3, ⋆, ⋆, ⋆, ⋆, 2} and {−2, ⋆, ⋆, ⋆, ⋆, 3}. We are not going to compute how this
“action at distance five” propagates from step to step. But there must be τ -functions the
vanishing of which causes these two patterns, so one τ at distance exactly 16 from “−3”
and “2” and no other, and similarly for “−2” and “3”. It turns out that these τ -functions
do exist. Their positions are (0 4 0 0 −4 0 0 0) and (4 0 0 −4 0 0 0 0) respectively.

4.6 The periods 2,3,4, 2,3,8 and 4,6 case

In this subsection we choose the original constraint, i.e. that the sum of all coordinates
of a τ function be always a multiple of 8.

First we will clarity a few ambiguities. The equations we will discuss in this section
have, in the list of [19] the numbers II, V, VIII, IX and XII. However, they are not five
different equations. We begin with the asymmetric equation IX described in [17], namely
our equation (11) supplemented by

tn = αn+ β, un = tn + ϕ3(n) + ϕ4(n)

κn = γ+ϕ2(n), kn = un+1+un+un−1−ϕ2(n), zn+ζn = un−1−γ, zn+ζn−1 = un+γ

Eliminating y from IX we obtain the “x-only” reduction, which is trihomographic, of the
form (8) supplemented by

un = (2n− 1)α+ β − ϕ3(n− 1) + ϕ4(n− 2) + ϕ4(n)

zn + zn+1 = un+1, kn = 3α+ γ − ϕ2(n) + ϕ4(n+ 1)− ϕ4(n+ 2)

Note that this is identical to equation II of (19), given at the beginning of section 4, up to
a reinterpretation of the parameters. In fact, the quantity ϕ4(n− 2) + ϕ4(n) is a quantity
with period 2 and the non-constant term in kn has a period 4. So indeed un is of the form
Tn +Φ2(n) + Φ3(n) where Tn = (2n− 1)α+ β while kn has the form Γ + Φ4(n).

As we have already remarked in subsection 4.4, exchanging numerator and denominator
of each factor of (8) leaves the equation invariant, but changes kn into its opposite. The
function kn of II is of period 4, (· · · , a, b, c, d, a, b, c, d, · · · ). Changing the sign of four
consecutive instances out of eight we get for a new choice of function kn the sequence
(· · · , a, b, c, d,−a,−b,−c,−d, a, b, · · · ), which is just what we call χ8. We thus recover the
equation given as V in [19] and given again at the beginning of section 4.

Now let us artificially rewrite equation II by separating even and odd indices and
replacing x2n, z2n, k2n, x2n+1, z2n+1 k2n+1 by xn, zn, κn, yn, ζn, kn respectively. The
periodic function Φ2 in un of equation II, rewritten as G(−1)n, contributes −G to the
quantity zn + ζn of XII which is u2n+1 of II and G to zn+1 + ζn which is u2n+2 while Φ3

remains a period-3 function φ3, upon reinterpretation. The equation II is now split into
a system of the form (11). At this point k and κ are of the form (· · · , a, c, a, c, · · · ) and
(· · · , b, d, b, d, · · · ), namely both of the general form “D + φ2(n)”.

Now we leave (11b) unchanged and thus κn remains as is, but we invert two out of
four instances of (11a). Then kn becomes the sequence (· · · , a, c,−a,−c, · · · ) which is just
what is called χ4.
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We have thus reconstructed the equation called XII of [19] and given again at the
beginning of section 4.

A single trajectory will suffice to describe the evolution all these four equations, IX, a
genuinely asymmetric equation, and II, V, XII which are essentially one and the same,
symmetric, equation, written in three different ways, one of which is artificially asymmet-
ric.

Contrariwise, the asymmetric equation described in [17] and denoted by VIII in [19]
(and at the beginning of section 4) is a distinct equation. In particular, it does have an “x-
only” reduction, but the latter is not a trihomographic equation but rather the equation
case 4, Class IV in section 4, i.e. 4.4.4, of [23]. The two asymmetric equations, VIII
and IX however, are so intimately related that we will study both together rather than
dedicate a separate sub-section to each of them.

In order to get the vectors relating both the Xs and the Y s for IX, the easiest
way is to find first the vectors relating the X for II. The latter has period 12, and
the degrees dq of the xm+q, starting from degree zero for xm and one for xm+1 are
dm = 0, 1, 1, 2, 3, 5, 6, 9, 11, 14, 17, 21, 24, · · · , and thus d12 = 24.

Because the degree of xm+12 is four times that of xm+6 and
−−−−−−−→
XmXm+12 =

−→
S we can

expect
−−−−−−→
XmXm+6 =

−→
S /2 so we look for only six vectors

−−−−−−→
XmXm+1



2 0 0 0 0 0 −2 0
0 2 0 0 0 0 2 0
0 0 2 0 0 0 −2 0
2 0 0 0 0 0 2 0
0 2 0 0 0 0 −2 0
0 0 2 0 0 0 2 0



and the sum of these six vectors is
−→
S /2 =[4 4 4 0 0 0 0 0]. This pattern has to be repeated

before we get to the actual period, which is 12. The scalar product of each vector
−−−−−−→
XmXm+1

with
−→
S /2 is 8.

To get the
−−−−→
XmYm and

−−−−−−→
YmXm+1 we need the degrees for the asymmetric equation IX

starting both from x0 of degree 0, y0 of degree 1 and y0 of degree 0, x1 of degree 1. We
find (dxn, d

y
n) =(0,1), (1,1), (1,2), (2,3), (3,4), (5,6), (6,8), (9,10), (11,13), (14,16), (17,19),

(21,23), (24,27),· · · which means that dx12 = 24 and (dyn, dxn+1) =(0,1), (1,1), (2,2), (2,3),
(3,4), (5,6), (7,8), (9,10), (11,13), (14,16), (18,19), (21,23), (24,27)· · · i.e., dy12 = 24.

We see here that
−−−−−→
YmYm+2 has squared length 16 and not 8 like

−−−−−−→
XmXm+2. Again

according to our rule of thumb,
−−−−−→
YmYm+6 and

−−−−−−→
YmYm+10 also differ in squared length from

the X analogs. In particular
−−−−−→
YmYm+6 is not

−→
S /2. The degrees of x12 on the first sequence,

of y12 on the second one, are 24, consistent with the squared length 192 of
−→
S =[8 8 8 0 0

0 0 0].

We must now turn to the vectors
−−−−→
XmYm and

−−−−−−→
YmXm+1. As we said earlier, in all the

equations in this paper, they have the same scalar product with
−→
S /2, thus 4 each. This

led us to
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

1 1 −1 −1 1 1 −1 −1
1 −1 1 1 −1 −1 −1 1

−1 1 1 1 1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 1 −1 1 −1 −1

−1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 1 1 −1
1 −1 1 1 1 −1 1 1

−1 1 1 −1 1 1 −1 −1
1 1 −1 1 −1 −1 −1 1
1 −1 1 1 1 1 1 −1

−1 1 1 −1 −1 −1 1 1
1 1 −1 1 −1 1 −1 −1
1 −1 1 −1 1 −1 −1 1

−1 1 1 −1 −1 1 1 −1
1 1 −1 1 1 −1 1 1
1 −1 1 −1 1 1 −1 −1

−1 1 1 1 −1 −1 −1 1
1 1 −1 1 1 1 1 −1
1 −1 1 −1 −1 −1 1 1

−1 1 1 1 −1 1 −1 −1
1 1 −1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 1 −1

−1 1 1 1 1 −1 1 1


In order to find the initial point to which to add these vectors to obtain the positions

of all Xs and Y s we must consider the singularity patterns.

We consider the simplified expression, ignoring the periodic functions but keeping a
nonzero γ, to lift ambiguities

xn+1 − (4tn − α− γ)2

xn+1 − (2tn + α+ γ)2
xn − (4tn + α+ γ)2

xn − (2tn − α− γ)2
yn − t2n
yn − 25t2n

= 1 (22a)

yn − (tn + 2γ)2

yn − t2n

yn−1 − (tn−1)
2

yn−1 − (tn−1 − 2γ)2
xn − (2tn − α− γ)2

xn − (2tn − α+ γ)2
= 1 (22b)

In [17] we presented four distinct singularity patterns, a “long” one, schematically
{−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5},

{yn−2 = 25t2n−2, xn−1 = (4tn−2−α−γ)2, yn−1 = (3tn−2−α)2, xn = (2tn−2−3α−γ)2, yn = (tn−2−4α)2,

xn+1 = (γ + 7α)2, yn+1 = (tn+3 + 4α)2, xn+2 = (2tn+3 + 3α+ γ)2, yn+2 = (3tn+3 + α)2,

xn+3 = (4tn+3 + α+ γ)2, yn+3 = 25t2n+3}

a “medium” one {−2,−1, 0, 1, 2}

{xn−1 = (2tn−1−α+γ)2, yn−1 = (tn−1+2γ)2, xn = (γ−α)2, yn = (tn+1−2γ)2, xn+1 = (2tn+1−α−γ)2}
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and two short ones {−2− 1} and {1, 2}, {xn = (2tn −α− γ)2, yn = t2n}, {yn = t2n, xn+1 =
(2tn+1−α+γ)2} because we were only looking for patterns composed of blow-ups. But by
now we are used to the fact that patterns may well be longer, when “actions at distance”
are taken into account.

In fact the “medium pattern” is somewhat longer when “dressed”, but without reaching
the length of the “long” one. In (22a) one sees that an initial value xn = (4tn + α + γ)2

for yn arbitrary imposes xn+1 = (2tn + α + γ)2 which means xn′−1 = (2tn′−1 − α + γ)2

for n′ = n + 2. This value is the entry to the “medium pattern” for n′ that exists with
xn′+1 = (2tn′+1 − α − γ)2. After this exit, the next value of y, namely yn′+1 is arbitrary.
Therefore, in (22a) evaluated for n′′ = n′+1 = n+3 one has xn′′ = (2tn′′ −α−γ)2 and yn′′

arbitrary we have xn′′+1−(4tn′′−α−γ)2. This value is not remarkable otherwise, therefore
the pattern ends there. Schematically, it has the form {−4, ⋆,−2,−1, 0, 1, 2, ⋆, 4}, because
the values yn and yn′+1 = yn+3 are arbitrary and thus represented by stars.

The value (2tn − α − γ)2 for xn, entry to the first short pattern does not have an
“antecedent”. After exiting this pattern through yn = t2n, the value of xn+1 is arbitrary.
In (22a) evaluated at n′ = n + 1, xn′ is arbitrary while yn′−1 = yn = t2n = t2n′−1 and this
implies that yn′ = t2n′ . Thus after xn′ we enter the second “short” pattern at n′ = n+ 1.
When exiting, the value (2tn′+1−α+γ)2 is not remarkable and does not have consequences
“at distance two”. Still, the two “short patterns” are in fact not independent but form a
single “reconstructed” pattern of the form {−2,−1, ⋆, 1, 2}, still the shortest of the three
patterns that remain when “actions at distance two” are considered.

Finally, while for arbitrary xn the value t2n−1 for yn−1 in (22b) can only be the exit of
the first “short pattern” and will lead to yn = t2n and the second “short pattern” the value
(tn−1 − 2γ)2 does not have any antecedent. It leads to yn = (tn − 2γ)2, but this value is
not otherwise remarkable. So this blow-up-free pattern stops there. Its schematic form is
just {−1, ⋆, 1}.

Imposing that the “long” singularity pattern be caused by the vanishing of the τ -
function at the origin means that there must be sequence of positions for X and Y that
extends on six Y s and five intervening Xs at squared distance exactly 16 from the origin.
We present here a slightly longer sequence

−4 −2 0 0 −2 0 2 2
−3 −1 −1 −1 −1 1 1 1
−2 −2 0 0 −2 0 0 2
−3 −1 1 1 −1 1 1 1
−2 0 0 0 −2 0 2 2
−1 −1 1 1 −3 1 1 1
−2 0 2 0 −2 0 0 2
−1 1 1 −1 −3 1 1 1
0 0 2 0 −2 0 2 2

−1 1 3 −1 −1 1 1 1
0 2 2 0 −2 0 0 2
1 1 3 1 −1 1 1 1
0 2 4 0 −2 0 2 2
1 3 3 1 −3 1 1 1


starting from an X at squared distance 32 from the origin, just before the “long”
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singularity pattern and continuing with one extra X and one extra Y both also at squared
distance 32 from the origin.

We have chosen in this subsection the original contraint that the sum of the coordinates
of every site of τ -functions is a multiple of 8. All X have all even coordinates while all
Y have all odd coordinates. We are showing fourteen points altogether, but this is much
less than the twelve Xs and twelve Y s needed for a whole period. The bottommost X is

exactly
−→
S /2 away from the topmost X, but this is not the case for the corresponding Y s.

One needs a whole period for the Y s to be translated by
−→
S .

The scalar products of
−→
S with the vectors from the second to the twelfth point increase

by steps of 4 from −20 to 20, which is exactly the long pattern for points schematically
represented by one quarter of these respective quantities, i.e. from “−5” to “+5”. The
“medium, dressed pattern” {−4, ⋆,−2,−1, 0, 1, 2, ⋆, 4} is realised when the τ -function at
the point (0 0 0 0 −4 0 0 4) vanishes. Indeed this point is at squared distance 32 from the
points “±5” and “±3” (and at least as much from of all points beyond the “long pattern”)
but still at squared distance 16 from the other points of the “long pattern”. In the same
way, the points “±2”and “±1” of the “short reconstructed pattern” {−2,−1, ⋆, 1, 2} are
the only ones at exactly squared distance 16 from the point (0 0 0 0 −4 0 4 0) and this
pattern is realised when the τ -function there vanishes.

The very short, blow-up-free pattern {−1, ⋆, 1} is related with the vanishing of the
τ -function at the point (0 0 0 0 −4 4 0 0) which is at squared distance 16 of “±1” and at
lest 32 from every other point.

Having finished with the full equation IX we turn to its “x-only” and “y-only” reduc-
tions. For the former we obtained, in [17], the simplified form of equation, II, when the
periodicity is omitted but a non vanishing γ is kept. We obtain the simplified form

xn+1 − (2tn − α+ γ)2

xn+1 − (2tn − α− γ)2
xn−1 − (2tn + α+ γ)2

xn−1 − (2tn + α− γ)2
xn − (4tn − γ)2

xn − (4tn + γ)2
= 1 (23)

In the two singularity patterns, both of the schematical form {−4,−2, 0, 2, 4} we can
recognise the x only part of the “long” and “medium dressed” patterns respectively for γ
and −γ. What we call here tn, γ can be expressed in terms of the ones of equation (22)
as tn − α/2, γ + 3α.

No blow-up in II comes from the “reconstructed, short pattern” {−2,−1, ⋆, 1, 2} of IX.
However, there is an “action at distance two” pattern {−2, ⋆, 2}, caused by the vanishing
of the τ -function at (0 0 0 0 −4 0 4 0), as noted above. But by examining equation (23)
one can see that there are two such patterns, because for xn arbitrary, both choices of
values (2tn + α ± γ)2 for xn−1 lead to a value (2tn − α ∓ γ)2 for xn+1. This means that
there should exist a τ -function the vanishing of which creates, for equation IX an “action
at distance four” pattern {−2, ⋆, ⋆, ⋆, 2}, thus at squared distance 16 of just the two points
in this pattern and none other. One can check that it is indeed the case for the point (0
0 0 0 0 0 4 4).

Since equation II is trihomographic, one can skip every other x to have an equation
for one x out of two. This equation is not trihomographic but has been identified. It
is the case 1 of Class II in the Section 5, i.e. 5.2.1, of [23]. It has six patterns, two
“long” ones of the schematic form {−4, 0, 4} and four “short” ones of the form {−2, 2}.
Each of the two patterns of equation II of the form {−4,−2, 0, 2, 4} mentioned just after
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(23) contains one “long” and one “short” pattern of this non-trihomographic equation,
depending on which point one starts. The other two “short” patterns come from blow-up-
free, “hidden” patterns for the equation II. One of them comes from the “reconstructed”
pattern {−2,−1, ⋆, 1, 2} of equation (22a,b) as described in the paragraphs that follow the
latter equation. The last one comes from the second pattern {−2, ⋆, 2} we just found from
a search of “action at distance two” in II, namely {−2, ⋆, ⋆, ⋆, 2} in IX. We have thus
found all the τs that explain all the patterns of this equation.

The corresponding Zn and Ai
n are now

Zm = 2(2mα+ β) + 3α− ϕ3(2m)

A1
m = 2(2mα+ β) + α− ϕ3(2m− 1) + γ + ϕ4(2m)

A2
m = 2(2mα+ β) + α− ϕ3(2m− 1)− γ − ϕ4(2m)

A3
m = 2mα+ β − α+ ϕ3(2m− 1)− h− γ − ϕ4(2m− 1)

A4
m = 2mα+ β + 2α+ ϕ3(2m− 1) + h+ γ + ϕ4(2m+ 1)

A5
m = 2mα+ β − α+ ϕ3(2m− 1)− h+ γ + ϕ4(2m− 1)

A6
m = 2mα+ β + 2α+ ϕ3(2m− 1) + h− γ − ϕ4(2m+ 1)

where h = ϕ2(0).

The “y-only” reduction is equation case 1 of Class V in section 4, i.e. 4.5.1, of [23].
It has four patterns. One is a “long” pattern of the type {−5,−3,−1, 1, 3, 5}. One can
immediately see that pattern within our “long pattern”. The three other ones are all of the
type {−1, 1}. One is visible in the “medium dressed pattern” {−4, ⋆,−2,−1, 0, 1, 2, ⋆, 4}
and another one in the “short reconstructed pattern” {−2,−1, ⋆, 1, 2}. The last one comes
from the pattern {−1, ⋆, 1} we discussed last after (22ab).

Starting from the parameters un, kn and κn of IX given at the beginning of this subsec-
tion we can obtain the parameters Zn, A

i
n of 4.5.1. We start from un = tn+ϕ3(n)+ϕ4(n)

(where tn = αn+ β) and introduce the auxiliary quantity: wn = un + ϕ2(n)/3. We find:

Zn = un + un+1 = tn + tn+1 − ϕ3(n− 1) + ϕ4(n) + ϕ4(n+ 1) = wn + wn+1

A1
n = 5tn − ϕ3(n) + 2ϕ4(n− 1) + ϕ4(n− 1) + 2ϕ4(n− 1)− ϕ2(n) = 2wn−1 + wn + 2wn+1

A2
n = tn + ϕ3(n) + ϕ4(n)− ϕ2(n) = wn − 4ϕ2(n)/3

and, in order to proceed, define two auxiliary quantities:

B3
n = tn + ϕ3(n) + ϕ4(n) + 2γ + ϕ2(n)

B4
n = tn + ϕ3(n) + ϕ4(n)− 2γ + ϕ2(n)

Just as we did in subsection 4.4, we introduce A3, A4 by identifying them to B3, B4 for
even values of n and to B4, B3 for odd values. We are thus led to

A3
n = tn + ϕ3(n) + ϕ4(n) + 2γ(−1)n + ϕ2(n) = wn + 2γ(−1)n + 2ϕ2(n)/3

A4
n = tn + ϕ3(n) + ϕ4(n)− 2γ(−1)n + ϕ2(n) = wn − 2γ(−1)n + 2ϕ2(n)/3
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Thus, formally the Zn, A
i
n obtained above are identical to those of 4.5.1, up to some

re-interpretations. In fact interpreting wn as the quantity called zn in 4.5.1 of [23], i.e.
wn = tn+ϕ3(n)+Φ4(n), where Φ4(n) is the period-4 function appearing in 4.5.1, we must
obtain the latter from the periodic functions of IX as Φ4(n) = ϕ4(n) + ϕ2(n)/3. Then
the expressions of Zn and A1

n in IX and 4.5.1 of [23] coincide, and the three other Ais are
indeed obtained as the sum of wn (resp. zn) with three period-2 functions of zero sum.

As both
−−−−−−→
XmYm+1 and

−−−−−−→
YmXm+2 are of squared length 8, for any m there is an equation

in each of the triangles XmYm+1Xm+3 and Ym+1Xm+3Ym+4, that is, an equation that
propagates along the trajectory we have constructed, but skipping two points to reach
the third one. This equation is asymmetrical, and thus outside the scope of [23]. Since
the degrees of xm+3 (for xm of degree 0) and ym+3 (for ym of degree 0) are both equal
to two, the equation is not trihomographic, but has right-hand sides which are a ratio of
quadratic over linear polynomials. We give below its autonomous form:

(ym+1 − xm+3 + 9β2)(ym+1 − xm + 9β2) + 36ym+1β
2

(ym+1 − xm+3 + 9β2) + (ym+1 − xm + 9β2)
=

3

2

y2m+1 + 50ym+1β
2 + 45β4

ym+1 + 7β2

(24a)

(xm+3 − ym+1 + 9β2)(xm+3 − ym+4 + 9β2) + 36xm+3β
2

(xm+3 − ym+1 + 9β2) + (xm+3 − ym+4 + 9β2)
=

3

2

x2m+3 + 52xm+3β
2 + 64β4

xm+3 + 8β2

(24b)

This equation has eight distinct “connected” singularity patterns, four starting with
an x and four starting with a y (and similarly four ending with a y and four ending with
an x, but with any combinations). The “long pattern” {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5},
when skipping two points leads to three patterns for this equation, namely {−5,−2, 1, 4},
{−4,−1, 2, 5} and {−3, 0, 3}. The “medium dressed pattern” {−4, ⋆,−2,−1, 0, 1, 2, ⋆, 4}
leads to two more, namely, {−4,−1, 2}, {−2, 1, 4} while the “short reconstructed pattern”
{−2,−1, ⋆, 1, 2} also leads to two more, namely {−2, 1} and {−1, 2}. One pattern is
missing, and it should start and end with y. By symmetry, it can only be another pattern
of the form {−3, 0, 3}. Since it was not found before, when we looked for blow-ups and
“action at distance two” it must be of “action at distance three” form {−3, ⋆, ⋆, 0, ⋆, ⋆, 3}
in the original equation. And indeed, the τ -function at the point (−4 0 4 0 0 0 0 0) is
exactly at squared distance 16 from “ − 3”, “0” and “3” and at least 32 from any other
point.

This concludes the study of the equations living on the trajectory of equation IX.

We now turn to the asymmetric equation denoted by VIII. This is generically a distinct
equation. If however we take ψ6 identically zero, then VIII is nothing but IX with γ ≡ 0
and ϕ2 ≡ 0. As in the case of equation X in subsection 4.4, choosing ϕ2 ≡ 0 and taking
the limit γ → 0 is meaningful, and the resulting equation is just a subcase of the initial
one. The degrees are exactly the same as in the generic case. However, in this limit, there
is no difference anymore between VIII and IX. In order to compute the degrees of the
iterates of VIII on must keep a nonzero ψ6(n).

In that case, the degrees become (dxn, d
y
n) =(0,1), (1,1), (2,2), (3,3), (4,4), (5,6), (6,8),

(9,10), (12,13), (15,16), (18,19), (21,23), (24,27),· · · and so dx12 = 24. And (dyn, dxn+1)
=(0,1), (1,1), (2,2), (2,3), (3,4), (5,6), (7,8), (9,10), (11,13), (14,16), (18,19), (21,23),
(24,27),· · · and thus dy12 = 24. We remark that the degrees (dyn, dxn+1) are identical to
those obtained for IX. In particular, since the degree of y1 in terms of y0 and x1 is one
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in that case, if one expresses x1 in terms of y0 and y1 in the expression of all the y, the
degrees do not change. The dependence in y0 is different, of course, but this is of no
matter. This shows that the degrees in y1 of all the y in terms of y0 and y1 is the same as
for equation IX and thus that the trajectory of the Y s is the same.

The only changes are for the degrees (dxn, d
y
n) which are modified for x of index (6n+2),

(6n + 3) and (6n + 4) which increase by one unit. Still, this shows that the trajectory
of the Xs is definitely not the same as for IX, though it is very close to the latter. In
particular the value 2 of the degree of x2 for x0 of degree 0 and y0, or x1 for that matter,
of degree one, shows that the “x-only” reduction is not trihomographic contrary to the
“x-only” reduction of IX, namely II. In fact this equation has been identified. It is case
4 of Class IV of section 4, i.e. 4.4.4 in [23].

Expressing the quantities Zm and Ai
m entering the equation in terms of the parameters

appearing in VIII we find

Zn = 2tn − ϕ3(n) + ϕ4(n− 1) + ϕ4(n+ 1)− ψ6(n)

A1
n = 4tn − 5α+ ϕ3(n+ 1) + ϕ4(n− 2)− ϕ4(n+ 1)− ψ6(n+ 1)

A2
n = 4tn + α+ ϕ3(n+ 1)− ϕ4(n− 2) + ϕ4(n+ 1) + ψ6(n+ 1)

A3
n = −2tn + α+ ϕ3(n+ 1)− ϕ4(n− 1)− ϕ4(n)− ψ6(n− 1)− ψ6(n)

A4
n = 2tn − α− ϕ3(n+ 1) + ϕ4(n− 1) + ϕ4(n)− ψ6(n− 1)− ψ6(n)

There are four patterns for this equation, 4.4.4 of [23], namely the “x-only” reduction
of equation VIII. The “long” one, {−4,−2, 0, 2, 4} and the “medium” one, {−2, 0, 2} are
present in the respective patterns of equation VIII as given in [17] and [19]. The other
two patterns {−4,−2} and {2, 4} will be explained in what follows.

Since 4.4.4 is not trihomographic, there is no equation skipping every other x. Contrary
to the case of the “x-only” reduction, as we have remarked above, the degrees for the “y-
only” reduction are unchanged, so the trajectory for the Y s is exactly the same as for IX.

So it remains true that
−−−−−−→
YmYm+12 =

−→
S = [8 8 8 0 0 0 0 0]. One has to find how the Xs are

affected without changing the Y s. Though some of the Xs are indeed affected it remains

true that
−−−−−−→
XmXm+6 =

−→
S /2 for all m. So we only need six vectors

−−−−−−→
XmXm+1 for m = 1 to

6, but for lengths different for
−−−−−−→
XmXm+2 and

−−−−−−→
XmXm+4 from the case of IX. It turns out

that the following sequence

2 0 0 0 0 −2 0 0
0 2 0 0 0 0 0 2
0 0 2 0 0 0 −2 0
2 0 0 0 0 2 0 0
0 2 0 0 0 0 0 −2
0 0 2 0 0 0 2 0


not only satisfies the correct lengths for all the

−−−→
X0Xq, but also neatly fits with the positions

of the Y s which are common with equation IX.

The intervals between consecutive X and Y have period 12, thus we consider 24 intervals
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altogether. 

1 1 −1 −1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1

−1 1 1 1 1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 1 1 −1 1 −1 −1

−1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 1 1 −1
1 −1 1 1 1 1 −1 1

−1 1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 1 −1 1 1

−1 1 1 −1 −1 1 1 −1
1 1 −1 1 −1 −1 −1 1
1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 −1 1
1 1 −1 1 1 −1 1 1
1 −1 1 −1 1 1 −1 −1

−1 1 1 1 −1 −1 −1 1
1 1 −1 1 1 1 1 −1
1 −1 1 −1 −1 1 −1 1

−1 1 1 1 −1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 −1 1 1

−1 1 1 1 1 1 1 −1


Imposing that the “long” singularity pattern be caused by the vanishing of the τ -function
at the origin means that there must be a sequence of positions for X and Y that extends
on six Y s and five Xs in between at squared distance exactly 16 from the origin. We
present here a slightly longer sequence starting from an X at squared distance 32 from
the origin, just before the “long” singularity pattern and continuing with one extra X and
one extra Y both also at squared distance 32 from the origin.

−4 −2 0 0 −2 2 2 0
−3 −1 −1 −1 −1 1 1 1
−2 −2 0 0 −2 0 2 0
−3 −1 1 1 −1 1 1 1
−2 0 0 0 −2 0 2 2
−1 −1 1 1 −3 1 1 1
−2 0 2 0 −2 0 0 2
−1 1 1 −1 −3 1 1 1
0 0 2 0 −2 2 0 2

−1 1 3 −1 −1 1 1 1
0 2 2 0 −2 2 0 0
1 1 3 1 −1 1 1 1
0 2 4 0 −2 2 2 0
1 3 3 1 −3 1 1 1


The singularity patterns of equation VIII, presented in [17], are the same as those of IX,
namely the long one {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}, the medium one {−2,−1, 0, 1, 2}
and the two short ones {−2,−1}, {1, 2} but they are not rearranged in the same way. In
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particular, we have yet to find rearranged patterns that explain the patterns {−4,−2},
{2, 4} of the “x-only” reduction of VIII. How can we find these rearrangements? In all the
other cases studied in this paper, we considered the simplified equation where one keeps
just the secular terms discarding all periodicities and looked for action at distance-two for
this simplified equation. However here if we consider a purely secular equation, without
the periods, we simply recover equation (22ab), which is not what we are looking for (and
keeping the ψ6 term would lead to prohibitively long expressions). So one has to look at
the possible positions of the τ -functions to check that all patterns can be accounted for.

As usual, the “long pattern” is caused by the vanishing of the τ -function at the origin,
as all points are at squared distance 16 from it. The “medium pattern” {−2,−1, 0, 1, 2}
as originally found is now caused by vanishing of the τ -function at the point (0 0 0 0 −4 0
0 4), but here the points “− 4” and “4” are at squared distance 32 from the latter point,
so the “medium pattern” is not “dressed”. The two short patterns are not combined into
a longer one. Rather, each of them is independently “dressed”. The vanishing of the
τ -function at the point (0 0 0 0 −4 0 4 0) now causes a first “dressed short pattern”
of the schematic form {−4, ⋆,−2,−1, ⋆, 1} being at squared distance 16 of these four
points but at squared distance at least 32 from all other points, while the schematic form
{−1, ⋆, 1, 2, ⋆, 4} containing the second originally found “short pattern” is caused by the
vanishing of the τ -function at the point (0 0 0 0 −4 4 0 0). Each of these two patterns
contains one of the two, as yet unaccounted for, patterns of the “x-only” reduction of
VIII.

Note that these two τs, the vanishing of which cause these “dressed short patterns”
of equation VIII, are exactly those who cause the “short reconstructed pattern” and the
“very short blow-up-free pattern” of equation IX. Indeed, as we have already mentioned,
the “y-only” reduction of VIII is the same as for the case of IX. Thus the Y s are on
the same trajectory and consequently the τs, which cause these patterns through their
vanishing, must perforce be the same. Indeed the “long pattern” of the “y-only” reduction
involving all six odd points from “ − 5” to “5” is in the “long pattern” of VIII and its
three “short patterns” of schematic form {−1, 1} can be found, one at a time in each of
the other three patterns of the latter equation.

Even for non-vanishing ψ6 this equation is identical to the equation 4.5.1 of [23]. This
means that Zn and the Ai

n have the same expressions. But the identification we did of
the equation 4.5.1 of [23] with the “y-only” reduction of IX contains γ and ϕ2, which are
meaningless for VIII. It is not necessary, however, to put to zero ψ6 in VIII and γ, ϕ2
in IX in order to see the equivalence. One can indeed show, with some care, how the
“y-only” reduction of VIII and IX lead to the same auxiliary parameters Z and Ai.

Starting from the values for un, kn, κn, zn and ζn for VIII a naive calculation gives

Zn = un + un+1 = tn+1 − ϕ3(n− 1) + ϕ4(n) + ϕ4(n+ 1)

A1
n = 2un−1 + un + 2un+1

B2
n = un + 2ψ6(n)

B3
n = un − 2ψ6(n− 1)

B4
n = un − 2ψ6(n+ 1)

where with hindsight we introduced Bi instead of Ai.
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In this case the singularities that start at step n with (B2, B3, B4) respectively exit at
step n + 1 with (B3, B4, B2), and not with the Bi of same index. As mentioned in [23]
this is the reason for which the spurious period 6 appears. The period 6 is indeed spurious
for 4.5.1 whether it is the “y-only” reduction of IX or VIII, since it is exactly the same
equation. One can eliminate this period by redefining the Ai from the Bi in the following
way. Taking (A2, A3, A4) as (B2, B3, B4) for n = 3m, (B3, B4, B2) for n = 3m + 1 and
(B4, B2, B3) for n = 3m + 2 then singularities that start at step n with Ai exits at step
n+ 1 by the same Ai for i = 1, 2, 3, 4 and all n.

With this choice the expression of the Ais are

A1
n = 2un−1 + un + 2un+1

A2
n = un + 2(−1)nψ6(0)

A3
n = un − 2(−1)nψ6(−1)

A4
n = un − 2(−1)nψ6(1)

which has exactly the form 4.5.1 since the sum of the three period 2 functions is indeed
zero.

There is still an equation skipping two points to land on the third one, alternating X

and Y , because as for IX the vectors
−−−−−−→
XmYm+1 and

−−−−−−→
YmXm+2 are of squared length 8. But

here we find a situation that was never encountered before. While the vector
−−−−−→
YmYm+3 is

still of squared length 32, as for y0 of degree zero, the degree of y3 in x1 (or for that matter

x2), is still two, the vector
−−−−−−→
XmXm+3 is not of squared length 32 but rather 48. Indeed for

x0 of degree zero x3 is of degree 3 in y0 or equivalently y1. So we expect this equation,
which has not been identified earlier, to have 10 patterns, four starting with x and six
starting with y, and also four ending in x and six ending in y, but in any combination.

The long pattern of VIII gives the schematic forms {−5,−2, 1, 4}, {−4,−1, 2, 5} and
{−3, 0, 3} as before. The “medium pattern”, not being “dressed”, still gives two patterns,
but which are now shorter: {−1, 2} and {−2, 1}. Each “dressed short pattern” gives two
skipping two points patterns,{−4,−1} and {−2, 1} for the first one and {−1, 2} and {1, 4}
for the second one. This amounts to 9 patterns, only five starting in y and similarly only
five ending in y. Again one expects one extra pattern {−3, 0, 3} which has to come from
an “action at distance three” pattern {−3, ⋆, ⋆, 0, ⋆, ⋆, 3} of VIII. This pattern is indeed
caused by the vanishing of the τ -function at the point (−4 0 4 0 0 0 0 0), which, again, is
also the one the vanishing of which causes a similar pattern for equation IX.

This system is unique among those presented in this paper inasmuch as the equation
relating two y in terms of x has a right-hand side quadratic over linear just as (24b), while
the equation relating two x in terms of y does not have a right-hand side of the same form
as (24a) but rather cubic over quadratic.

As before, if we consider a purely secular equation, we simply recover equation (24ab),
while keeping the ψ6 term would lead to prohibitively long expressions. If, however one
takes the limit ψ6 → 0 separately in the numerator and the denominator one finds
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(ym+1 − xm+3 + 9β2)(ym+1 − xm + 9β2) + 36ym+1β
2

(ym+1 − xm+3 + 9β2) + (ym+1 − xm + 9β2)
=

3

2

y3m+1 + 49y2m+1β
2 − 5ym+1β

4 − 45β6

y2m+1 + 6ym+1β2 − 7β4

(25a)
(xm+3 − ym+1 + 9β2)(xm+3 − ym+4 + 9β2) + 36xm+3β

2

(xm+3 − ym+1 + 9β2) + (xm+3 − ym+4 + 9β2)
=

3

2

x2m+3 + 52xm+3β
2 + 64β4

xm+3 + 8β2

(25b)
However the numerator and denominator of (25a) have a common factor (ym+1 − β2)

and simplifying by it leads back to (24a).
A last remark is in order at this point. We have mentioned above that, for every one

of the equations we have studied, except VIII, the degrees of the iterates are the same
whether one keeps the periodicity or ignores it. This is true even if one also sets to zero
the parameter γ in IX and both parameters γ and δ in (19) in subsection 4.4. And this
makes sense when one remembers that all the parameters of the equation, the β in tn, the
constants γ and δ discussed above for IX and (19) and all the parameters that enter in the
periodic functions are determined by the scalar product with appropriates NV around each

X or Y of the vector
−−→
O′X (or

−−→
O′Y ) where O′ is some point with eight arbitrary coordinates

corresponding to the total of eight degrees of freedom of each equation. It follows from this
remark that, for each specific equation, there are choices of these arbitrary coordinates so
that all the parameters vanish, with the exception of β which keeps changing from point to
point. This does not affect the geometry of the equations, nor the degrees of the iterates.

For equationVIII, however, something unique takes place. If we choose the coordinates
of the point O′ in such a way that the coefficients θ1 and θ2 of ψ6(n) vanish, the geometry
of the X and Y is the same, the squared distances are the same, but the equation becomes
indistinguishable from IX for γ = 0, ϕ2 = 0, for which the degrees are the same as for its
generic case. For some of the Xs the degrees of the x at those points are smaller than what
is expected for the generic case of VIII. This means that the relationship between degrees
and squared distance that we used as a “rule of thumb” is violated for these choices for
O′. Some simplification occurs in the expressions of the values at these points, due to the
vanishing of the parameters θ1 and θ2, that decreases the degree with respect to the value
expected from the squared distance.

5 Conclusion

In this paper we set out to study in detail discrete Painlevé equations associated with the

affine Weyl group E
(1)
8 . The existence of these equations was first shown in the work of

Sakai [12], which provided the tools for the classification of discrete Painlevé equations.
Sakai’s work had three most important consequences.

First, it showed the existence of a third kind of discrete Painlevé equation on top of
the two already known, additive and multiplicative, namely one where the independent
variable as well as the parameters enter through the arguments of elliptic functions. Two
of the present authors, in collaboration with Y. Ohta, presented in [14] the first tangible
examples of elliptic discrete Painlevé equations. In subsequent studies we explained how
one can construct elliptic (and multiplicative) systems once the additive one is known.
The second important contribution of Sakai’s work was that one could at last dispense
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with the link, through continuum limits, to continuous Painlevé equations in order to
characterise the discrete ones. A discrete Painlevé equation is the mapping obtained by
translations on the periodic repetition of a non-closed pattern on a lattice associated to

one of the affine Weyl groups belonging to the degeneration cascade starting from E
(1)
8 .

The third consequence, stemming directly from this definition, is that, contrary to the
continuous case, the number of discrete Painlevé equations is infinite. In [16] two of the
present authors presented explicit examples and argued that the construction method can

be extended to any of the affine Weyl groups of the degeneration cascade of E
(1)
8 (except

for the four parameter-less A
(1)
1 ).

This paper was motivated by the second point mentioned above, related to the definition
of what is a discrete Painlevé equation. Since the latter is described as a translation
on a trajectory on the lattice of an affine Weyl group, it appeared challenging, once a
discrete Painlevé equation is given, to find the corresponding trajectory. And we focused

on known examples of equations associated with E
(1)
8 . In [17] and [19] we derived all the

additive equations which can be written in trihomographic form. Twelve discrete Painlevé
equations of this type were identified, which could be regrouped into 6 distinct families as
far as the trajectories were concerned. (Considering additive discrete Painlevé equations
is in no way a restriction, the extension of our approach to multiplicative and elliptic
being straightforward). As explained in the body of the paper, we introduced a heuristic
approach which allowed us to construct in detail the trajectory for each of the studied
cases. The main ingredient for this was the singularity structure of the equation, leading
to the introduction the corresponding τ -functions in an appropriate way.

In many instances, given the form of the initial equation, it was possible to define
also an evolution when one or more intermediate points are skipped. This resulted, in
some cases, into equations that were already obtained, in particular in [23], while in other
cases the resulting equations were never encountered before. In the latter cases only the
autonomous form of the mapping was given. Obtaining the detailed forms of the ancillary
parameters for these asymmetric equations will be the object of some future work of ours.

Speaking of future directions of our work, the phenomenon of a degree smaller than
the one expected from the value of the squared distance is worth special study. Among
all equations studied in the present paper, the case of VIII is unique. However more
such cases do exist. In fact, in [24], there are quite a few equations that contain periodic
functions which similarly to the case of VIII are essential to them. If all the parameters
of these periodic functions are set to zero, the equation completely changes and becomes
indistinguishable from a different one, with lower degrees of growth, where the same
number of parameters were set to zero (but without any effect to the degree growth). Of
course the zero value of these parameters could be obtained by an appropriate choice of
the coordinates of the point O′ that causes extra simplifications in the expressions of the
values of the x and y, but the trajectories remain different, and thus the rule of thumb
of equating the squared distance with the degree is violated. We plan to return to this
fascinating subject in a future publication.
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References

[1] A. Ramani, B. Grammaticos and J. Hietarinta, Discrete versions of the Painlevé
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[2] E. Laguerre, Sur la réduction en fractions continues d’une fraction qui satisfait à une
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