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Abstract

In recent work, we presented the construction of a family of difference equations as-
sociated with the Stieltjes continued fraction expansion of a certain function on a
hyperelliptic curve of genus g. As well as proving that each such discrete system is an
integrable map in the Liouville sense, we also showed it to be an algebraic completely
integrable system. In the discrete setting, the latter means that the generic level set
of the invariants is an affine part of an abelian variety, in this case the Jacobian of
the hyperelliptic curve, and each iteration of the map corresponds to a translation
by a fixed vector on the Jacobian. In addition, we demonstrated that, by combining
the discrete integrable dynamics with the flow of one of the commuting Hamiltonian
vector fields, these maps provide genus g algebro-geometric solutions of the infinite
Volterra lattice, which justified naming them Volterra maps, denoted Vg.

The original motivation behind our work was the fact that, in the particular case
g = 2, we could recover an example of an integrable symplectic map in four dimen-
sions found by Gubbiotti, Joshi, Tran and Viallet, who classified birational maps in
4D admitting two invariants (first integrals) with a particular degree structure, by
considering recurrences of fourth order with a certain symmetry. Hence, in this par-
ticular case, the map V2 yields genus two solutions of the Volterra lattice. The purpose
of this note is to point out how two of the other 4D integrable maps obtained in the
classification of Gubbiotti et al. correspond to genus two solutions of two different
forms of the modified Volterra lattice, being related via a Miura-type transformation
to the g = 2 Volterra map V2.

We dedicate this work to a dear friend and colleague, Decio Levi.

© The author(s). Distributed under a Creative Commons Attribution 4.0 International License
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1 Introduction

This short article consists of some recollections of our colleague Decio Levi (in section 2
below), followed by a brief update on our recent results about integrable maps in four (and
higher) dimensions, which provide algebro-geometric solutions of differential-difference
equations of Volterra type [12]. Decio was one of the pioneers in the theory of integrability
for differential-difference equations, especially in the construction of integrable lattices
from Bäcklund transformations for continuous systems [15, 17], and the programme of
applying the symmetry approach to the classification of such lattices, which he initiated
with Yamilov [16]. Thus we like to think that Decio would have appreciated the results
being presented here.

After presenting a few memories of Decio, in section 3 we begin by giving a brief
overview of the 4D integrable maps which were classified by Gubbiotti et al. [8]. We then
proceed to review our construction of integrable maps obtained from the Stieltjes fraction
expansion of certain functions on hyperelliptic curves [12], and explain how it reproduces
one of the examples from [8], denoted (P.iv), in the particular case of genus two curves.
Sections 4 and 5 are devoted to the maps (P.v) and (P.vi), respectively: we show how each
of these maps is related to a different form of the modified Volterra lattice, and present
explicit formulae which relate their solutions to the solutions of (P.iv) via a transformation
of Miura type. We end with some very short conclusions in section 6.

2 Memories of Decio Levi

Andrew Hone writes: I first met Decio in Warsaw in September 1995, when I was a PhD
student participating in the 1st Non-Orthodox School on Nonlinearity and Geometry [25].
Decio was one of the lecturers, along with Orlando Ragnisco, and it was thanks to extended
conversations with Orlando that I resolved to apply for postdoctoral funding to work with
him when I finished my PhD. After receiving a grant from the Leverhulme Trust two years
later, I finally got to be a researcher at Roma Tre, where Orlando and Decio were both
professors in the Dipartimento di Fisica.

For approximately the first six months of my time in Rome, there was no available
office space for postdocs, which meant that I had to share an office with Orlando. Far
from being a negative aspect of my experience, this situation had many positive benefits
for me, and not just scientific ones. By working in close proximity with Orlando, it meant
that I was privy to the regular visits from the neighbour in the office next door, namely
Decio, his long-time friend and collaborator. Apart from the pleasure of getting to know
Decio, and learning many wonderful ideas about integrable systems from him, there was
the fact that, by default, he would chat to Orlando in Italian, which helped me to rapidly
improve my grasp of the language in those first few months. The strong bond of friendship
between Orlando and Decio created a very happy atmosphere, and I have extremely fond
memories of those times.

In subsequent years, I would see Decio fairly often at various international conferences,
or during return visits to Rome. He had an amiable manner and a warm, cheerful smile.
It was always enjoyable to talk to him, whether about technical problems, sharing family
news, or just musing about life in general. Talking with Decio would leave me feeling
reassured, that all was right with the world, and I liked his gentle way of concluding a
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long conversation with “Vabbè in somma”.
It is an honour to be able to remember Decio here, both for his contributions as a

scientist, and as a wonderful human being.

Federico Zullo writes: The first time I met Decio was in 2003: I was a student at
the Dipartimento di Fisica of Roma Tre University and needed an advisor for my last
examination for my laurea triennale (bachelor’s degree). I asked Orlando Ragnisco who,
at that time, was very busy. He accompanied me to the office next door, where Decio
was, and I asked him for a theme for my short dissertation. He very heartily introduced
me to the subject of solitons, that I never heard about before, giving me books and kind
advice. Later, during my laurea magistrale (master’s degree), and during my PhD studies,
I followed different classes taught by Decio, some with very few students. The familiar
atmosphere and natural mildness of Decio’s classes fostered my learning, and I’m greatly
indebted to him for having taught me many topics used in mathematical physics, like
group theory, symmetries of differential equations, physics of nonlinear systems, qualita-
tive and quantitative analysis of solutions of differential equations and others. For my
own teaching, I still use some of the material that I collected from his courses.

For a period just before 2014, I was hosted by Decio in his office as a researcher. I
remember the talks on disparate subjects, like religion, literature, politics, society and,
obviously, our research. The talks would then continue during the lunch break, usually
in Via Marconi, with Orlando and the other members of the very stimulating group of
young researchers that was gathered at Roma Tre in that period, including Fabio Musso,
Matteo Petrera, Christian Scimiterna, Danilo Riglioni, Riccardo Droghei, and later Giorgio
Gubbiotti and Danilo Latini, all led by Decio and Orlando. I’ll always keep these beautiful
memories with me.

3 The map (P.iv) and the geometry of its solutions

Discrete integrable systems can be constructed by applying an appropriate discretization
procedure to continuous ones, and historically this is how many examples of discrete
integrability were first discovered [15, 22]. However, from both a theoretical point of view
and a practical one, it is important to have a notion of integrability for discrete systems
that does not require making reference to some underlying continuous system, whether
this be for lattice equations [16], or for integrable maps [2, 18, 24]. While integrable maps
in two and three dimensions lead to families of invariant curves (as the level sets of first
integrals), the case of four dimensions can lead to new features, namely invariant tori of
dimension two.

In [8], Gubbiotti et al. presented a classification of four-dimensional birational maps of
recurrence type, that is

ϕ : (w0, w1, w2, w3) 7→
(
w1, w2, w3, F (w0, w1, w2, w3)

)
, (3.1)

for a suitable rational function F of the affine coordinates (w0, w1, w2, w3) ∈ C
4, where the

map ϕ is required to be invariant under the involution ι : (w0, w1, w2, w3) 7→ (w3, w2, w1, w0),
and to possess two independent polynomial invariants, H1, H2 say, with specific degree
patterns (degw0

Hj,degw1
Hj,degw2

Hj,degw3
Hj) = (1, 3, 3, 1) and (2, 4, 4, 2) for j = 1, 2,
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respectively. The result of this classification was six maps with parameters, labelled (P.i-
vi), together with six associated maps, denoted (Q.i-vi) respectively. Each of the “Q”
maps arises from a corresponding “P” map, as a discrete integrating factor for linear
combinations of the first integrals, so they are dual to one another in the sense of [19].

As described previously, first in [13] and then [7], the original motivation for classifying
such maps was to understand autonomous versions of the fourth-order members of hierar-
chies of discrete Painlevé I/II equations from [5]; but, aside from the latter connection, the
“P” in this nomenclature has nothing to do with the usual labelling of continuous Painlevé
equations. From our point of view, the most interesting cases are the maps labelled (P.iv),
(P.v) and (P.vi), since (from Table 1 in [8]) these are the only ones arising from a discrete
variational principle (Lagrangian), leading to a non-degenerate Poisson bracket in four
dimensions, such that the two first integrals H1, H2 are in involution; this means that
in the real case the Liouville tori are two-dimensional. Subsequently, Gubbiotti obtained
these 4D integrable maps via an alternative method, by classifying fourth-order difference
equations with a discrete Lagrangian structure [9].

Here we begin with the case of (P.iv), which is the birational map given in affine
coordinates by the recurrence

wn+4wn+3wn+2 + wn+2wn+1wn + 2w2
n+2(wn+3 + wn+1) + w3

n+2

+wn+2(w
2
n+3 + wn+3wn+1 + w2

n+1) + νwn+2(wn+3 + wn+2 + wn+1) + bwn+2 + a = 0.
(3.2)

This map has three essential parameters a, b, ν (in the formulae from [8] we have set the
parameter d = 1, which can be achieved by a simple rescaling), and it is of the form (3.1),
with F given by

−
w0w1w2 + w1w2w3 + w2

1w2 + w2w
2
3 + 2w1w

2
2 + 2w2

2w3 + w3
2 + ν(w1w2 + w2w3 + w2

2) + bw2 + a

w2w3

;

this F is the rational function of w0, w1, w2, w3 obtained by solving for w4 in (3.2) with
n = 0.

The first integral denoted IP.ivlow in [8] is given in affine coordinates by

H1 = w1w2

(
w2w3 +w0w1 −w0w3 +(w1 +w2)

2 + ν(w1 +w2)+ b
)
+ a(w1 +w2). (3.3)

The latter has the degree pattern (1, 3, 3, 1). In particular, it is linear in w3, which implies
that, on each three-dimensional level set H1 = h1 = const, the map (3.2) reduces to a
birational map in three dimensions, given by the recurrence

wn+3wn+2wn+1(wn+2 − wn) + wn+2w
2
n+1wn +wn+2wn+1(wn+1 + wn+2)

2

+ν wn+2wn+1(wn+1 + wn+2) + bwn+2wn+1 + a (wn+1 + wn+2) = h1.

A second independent invariant for (3.2), with degree pattern (2, 4, 4, 2), is given by

H2 = w1w2




w2
0w1 + w2

3w2 + w0w3(w1 + w2) + w0(w
2
2 + 2w2

1) + w3(w
2
1 + 2w2

2)
+ 3(w0 + w3)w1w2 + (w1 + w2)

3

+ν
(
w0w3 + (w0 + w3)(w1 + w2) + (w1 + w2)

2

)
+ b (w0 + w1 + w2 + w3)




+a
(
w0w1 + w3w2 + (w1 + w2)

2

)
.

(3.4)
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This differs slightly from the second invariant presented in [8], which is IP.ivhigh = H2 − νH1.

The nondegenerate Poisson bracket between the coordinates, which was obtained in [8]
by making use of a discrete Lagrangian for (3.2), is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

wn+1

, {wn, wn+3 } = −
wn + 2wn+1 + 2wn+2 + wn+3 + ν

wn+1wn+2

, (3.5)

for all n. So (3.1) is a Poisson map, in the sense that {ϕ∗G,ϕ∗H } = ϕ∗{G,H } for all
functions G,H on C

4. The two independent invariants given in [8] are in involution with
respect to this bracket, which is equivalent to the involutivity of functions (3.3) and (3.4),
that is to say

{H1,H2 } = 0.

Hence the four-dimensional map defined by (3.2) is integrable in the Liouville sense.
Computing the Hamiltonian vector field for the first flow, generated by H1, we find

that this takes the form

dwn

dt
= wn(wn+1 − wn−1) (3.6)

for n = 1, 2. However, since (3.2) is a Poisson map that commutes with this flow, it
follows that the relation (3.6) extends to all n ∈ Z. Thus the combined solutions of the
map and the flow, which are compatible with one another, generate a sequence of functions(
wn(t)

)
n∈Z

satisfying (3.6), which is the Volterra lattice equation, first considered by Kac
and van Moerbeke [14]. Hence, in a certain sense that can be made precise, these will turn
out to be genus 2 solutions of this lattice hierarchy.

The complex geometry of the solutions of the map defined by (3.2) is related to a family
of hyperelliptic curves of genus 2, given by the Weierstrass quintic

Γ : y2 = (1 + νx+ bx2)2 + 4a(1 + νx+ bx2)x3 + 4h1x
4 + 4(h2 + νh1)x

5. (3.7)

On any genus 2 curve Γ of the above form, we take the meromorphic function F given by

F =
y + P(x)

Q(x)
=

R(x)

y − P(x)
, (3.8)

where P,Q,R are polynomials in the spectral parameter x, given by

P(x) = 1 + p1x+ p2x
2, Q(x) = 2 + q1x+ q2x

2, R(x) = r1x+ r2x
2 + r3x

3, (3.9)

which are required to satisfy

P(x)2 +Q(x)R(x) = f(x), (3.10)

with f(x) = (1+νx+ bx2)2+4a(1+νx+ bx2)x3+4h1x
4+4(h2+νh1)x

5 being the quintic
on the right-hand side of (3.7). Then the key to the construction in [12] is to expand the
function F as a continued fraction of Stieltjes type (S-fraction), that is

F = 1−
w1x

1−
w2x

1−
w3x

1− · · ·

, (3.11)
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and by iterating from one line of the fraction to the next we find that we obtain a recurrence
for the coefficients wj . More precisely, the non-trivial coefficients of the polynomials (3.9)
are given in terms of wj and the parameters by

p1 = 2w0 + ν, p2 = 2w0(w1 + w0 + w−1) + b, 1
2q1 = w0 + w1 + ν,

1
2q2 = w0w−1 + w1w2 + (w1 + w0)

2 + ν(w0 + w1) + b, r1 = −2w0;

there are similar (but slightly more unwieldy) expressions for r2 and r3, which are omitted
here, but are easily obtained from the relation (3.10). With these identifications, the
iteration of the S-fraction (3.11) for F becomes precisely the map (P.iv) in terms of the
affine coordinates wj, as given by (3.2).

In [12] it was also shown that each iteration of the continued fraction is equivalent to
the discrete Lax equation

L(x)M(x) = M(x)L̃(x) ,

where

L(x) :=

(
P(x) R(x)
Q(x) −P(x)

)
, M(x) :=

(
1 −w1x

1 0

)
.

Furthermore, we found that each generic common level set of the two invariants H1,H2

is isomorphic to an affine part of the Jacobian of the associated spectral curve Γ (or
rather, of its completion), and each iteration of the map corresponds to a translation on
the Jacobian by the divisor class [(0,−1) −∞]. Thus, in addition to being integrable in
the Liouville sense, the map (3.2) is an algebraic completely integrable system, being a
discrete analogue of an a.c.i. system (see [1, 23]).

The map (3.2) can also be rewritten in terms of tau functions τn, related to wn via

wn =
τnτn+3

τn+1τn+2
.

These tau functions satisfy a Somos-9 recurrence, that is

α1 τn+9τn + α2 τn+8τn+1 + α3 τn+7τn+2 + α4 τn+6τn+3 + α5 τn+5τn+4 = 0, (3.12)

with coefficients αj that depend on a, b, ν and the values of H1,H2 along each orbit of
(3.2); for details see Proposition 2.1 in [12]. Note that the general Somos-9 relation is
not integrable, so the initial conditions for (3.12) cannot be freely chosen in a space of
dimension 9. However, as explained in [10], such higher order Somos equations arise as
linear relations between weight 2 products of sequences of Riemann theta functions.

Using the S-fraction (3.11), we were also able to write explicit Hankel determinant
formulae for these tau functions τn, analogous to results for Somos sequences in genus
1 [3], and other Hankel determinant formulae for solutions of the Volterra lattice [4].
Furthermore, we found a Miura map relating the solutions of (P.iv) to one of the maps
derived from J-fractions in [11], using the classical method of contraction of continued
fractions due to Stieltjes [21] (see also [20]), which in this case turned out to provide
solutions of the infinite Toda lattice.

In what follows, we will present analogous properties for the maps (P.v) and (P.vi),
and point out how they are closely connected to (P.iv).
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4 The map (P.v)

The map (P.v) is given by the recurrence

wn+4w
2
n+3w

2
n+2 + w2

n+2w
2
n+1wn + w3

n+2(wn+1 +wn+3)
2

+ ν̃w2
n+2(wn+1 + wn+3) + c̃wn+2 + ã = 0,

(4.1)

with three essential parameters ã, c̃, ν̃ (compared with [8] we have put tildes here to dis-
tinguish them from the parameters in (3.2), and rescaled so that the parameter d → 1).

The lowest degree first integral of the map defined by (4.1), with degree pattern
(1, 3, 3, 1), is given by

H1 = w3w
3
2w

2
1 +w2

2w
3
1w0 −w3w

2
2w

2
1w0 +w3

2w
3
1 + ν̃w2

2w
2
1 + c̃w2w1 + ã(w2 +w1), (4.2)

and this is the same as IP.vlow in [8]. Another first integral, with degree pattern (2, 4, 4, 2),
is

H2 = w2
2w

2
1

(
(w3w2 + w1w0 + w2w1)

2 + ν̃(w3 +w1)(w2 + w0)
)

+c̃w2w1(w3w2 + w1w0 + w2w1) + ã(w3w
2
2 + w2

1w0 + w2
2w1 + w2w

2
1).

(4.3)

The second invariant presented in [8] is IP.vhigh = H2 − ν̃H1.

The nondegenerate Poisson bracket between the coordinates is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

w2
n+1

,

{wn, wn+3 } = −
2(wnwn+1 +wn+1wn+2 + wn+2wn+3) + ν̃

w2
n+1w

2
n+2

.

The independent first integrals (4.2) and (4.3) are in involution with respect to this bracket,
which shows that the map (4.1) is Liouville integrable.

Computing the Hamiltonian vector field for the first flow, generated by H1, we find
that this takes the form

dwn

dt
= w2

n(wn+1 − wn−1) (4.4)

for n = 1, 2. However, since the map (4.1) is Poisson and commutes with the flow {·,H1},
the equation (4.4) holds for all n ∈ Z. Thus the compatible solutions of the map and the
flow together provide a sequence of functions

(
wn(t)

)
n∈Z

which satisfy (4.4), which is a
degenerate case of the modified Volterra lattice equation [27].

If we make the tau function substitution

wn =
τnτn+2

τ2n+1

(4.5)

for (P.v), then we find that the sequence (τn) satisfies a Somos-8 relation. More precisely,
by direct computer algebra calculations we can show the following:
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Proposition 4.1. Whenever wn is a solution of (4.1), the sequence (τn) satisfies the
following Somos-8 recurrence, with coefficients that are functions of the Hamiltonians
H1,H2 as in (4.2) and (4.3) above (constant along each orbit):

α1 τn+8τn + α2 τn+7τn+1 + α3 τn+6τn+2 + α4 τn+5τ3 + α5 τ
2
n+4 = 0, (4.6)

where the coefficients are given by

α1 = H1, α2 = ãH2, α3 = ã2H2 −H3
1 ,

α4 = ã
(
H2

2 + ν̃H1H2 + c̃H2
1 + ã2H1

)
, α5 = −H1

(
H2

2 + ν̃H1H2 + c̃H2
1 + ã2H1

)
.

The reader should note that, just as is the case with (3.12), general higher order rela-
tions such as (4.6) (generic Somos-k for k ≥ 8) should not be regarded as discrete integrable
systems in their own right, since the coefficients are not arbitrary, and the initial values
cannot be freely chosen in a space of dimension 8. Nevertheless, bilinear relations of this
type appear naturally as tau function constraints arising in Hermite-Padé approximation
problems (see [6]).

Let us denote a solution of the Volterra lattice (3.6) by ŵn. Then the Miura map from
the modified Volterra lattice (4.4) takes the form

ŵn = wn+1wn. (4.7)

This Miura map remains valid at the level of the maps (3.2) and (4.1), in the following
sense.

Theorem 4.2. Let wn be a solution of (4.1) with parameters ã, c̃, ν̃, lying on the level set
H1 = h̃1, H2 = h̃2, of the first integrals (4.2) and (4.3). Then ŵn given by the Miura map
(4.7) is a solution of (3.2) with parameters

ν = ν̃, b = c̃, a = h̃1.

Furthermore, on this solution ŵn, the values h1, h2 of the first integrals (3.3) and (3.4) for
the map (3.2) are given by

h1 = h̃2, h2 = −ã2 − ν̃h̃2 − c̃h̃1.

Proof: The first part of this result is verified by substituting the Miura formula (4.7)
directly into (3.2), using (4.1) to eliminate wn+5 followed by wn+4, and then using the
formula for H1 in (4.2) to eliminate wn+3 on the level set H1 = h̃1. Analogous calculations,
rewriting (3.3) and (3.4) in terms of wn satisfying (4.1) and comparing with h̃2, the value
of the first integral (4.3) for the latter map, yield the above expressions for h1, h2. �

It is worth commenting on the meaning of the Miura formula (4.7), restricted to this
finite-dimensional setting. Given initial data w0, w1, w2, w3 for the map (4.1), we can fix
a level set H1 = h̃1 to write

ŵ0 = w0w1, ŵ1 = w1w2, ŵ2 = w2w3, ŵ3 = w3 G(w1, w2, w3, h̃1),

for some rational function G, obtained by using the formula (4.2) for H1 to eliminate
w4. Similarly, we can use H1 to eliminate w0 above in terms of w1, w2, w3 and h̃1, and
after taking resultants we can do further elimination to solve for each of w0, w1, w2, w3 as
algebraic functions of ŵ0, ŵ1, ŵ2, ŵ3 and h̃1. So this leads to an explicit inverse of (4.7),
at least in the form of an algebraic correspondence.
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5 The map (P.vi)

The map (P.vi) is given by

wn+4(w
2
n+3 − δ2)(w2

n+2 − δ2) + wn(w
2
n+1 − δ2)(w2

n+2 − δ2)

+wn+2

(
(w2

n+2 − δ2)(wn+3 + wn+1)
2 + c̄− δ4

)
+ ν̄(w2

n+2 − δ2)(wn+3 + wn+1) + ā = 0.
(5.1)

This depends on only three essential parameters ā, c̄, ν̄; compared with [8] we have replaced
a → ā, c → c̄, d → −ν̄ and δ → δ2. Note the map P(v) in the previous section arises
from P(vi) in the limit δ → 0, while for δ 6= 0 the map can always be rescaled so that
δ → 1, but it will be convenient to retain this parameter which has the same weight as wn

in (5.1).
The lowest degree first integral of the map defined by (5.1), with degree pattern

(1, 3, 3, 1), is given by

H1 =
(
w2
1w

2
2 − δ2(w2

1 + w2
2)
)(

w3w2 + w0w1 + w1w2 − w3w0 + ν̄
)

δ4(w3w2 + w0w1 −w0w3) + c̄w2w1 + ā(w2 + w1).
(5.2)

A nondegenerate Poisson bracket between the coordinates is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

w2
n+1 − δ2

,

{wn, wn+3 } = −
2(wnwn+1 +wn+1wn+2 + wn+2wn+3) + ν̄

(w2
n+1 − δ2)(w2

n+2 − δ2)
,

and was derived in [8] using a discrete Lagrangian structure for (5.1). A second indepen-
dent first integral H2 was given in [8], which is in involution with H1 with respect to this
bracket. Here we take the second independent quantity as

H2 = (w2
1 − δ2)(w2

2 − δ2)2 w2
3 + (w2

1 − δ2)2(w2
2 − δ2)w2

0 + (2w1w2 + ν̄)(w2
1 − δ2)(w2

2 − δ2)w3w0

+
(
2w3

1w
2
2 + ν̄w2

1w2 + c̄w1 + ā− (2w1w
2
2 + ν̄w2)δ

2 − w1δ
4
)
(w2

2 − δ2)w3

+
(
2w2

1w
3
2 + ν̄w1w

2
2 + c̄w2 + ā− (2w2

1w2 + ν̄w1)δ
2 − w2δ

4
)
(w2

1 − δ2)w0

+w4
1w

4
2 + ν̄w3

1w
3
2 + c̄w2

1w
2
2 + āw1w2(w1 + w2)

−
((

w2
1w

2
2 + ν̄w1w2

)
(w2

1 + w2
2) + ā(w1 + w2)

)
δ2

+(w2
1w

2
2 + ν̄w1w2 − c̄)δ4 − (w2

1 + w2
2)δ

6;

(5.3)

so the map (5.1) is Liouville integrable.
The Hamiltonian vector field for the first flow, generated by H1, takes the form

dwn

dt
= (w2

n − δ2)(wn+1 − wn−1) (5.4)

for n = 1, 2, and once again, since the Poisson map (5.1) is compatible with the flow
{·,H1}, the equation (5.4) holds for all n ∈ Z, and thus the map and the flow together
produce a sequence of functions

(
wn(t)

)
n∈Z

satisfying (5.4), which (up to rescaling) is the
general form of the modified Volterra lattice equation. If we set δ → 0 in (5.4), then
the equation (4.4) is recovered, corresponding to the same limit that reproduces (4.1) as a
degenerate case of (5.1). However, the behaviour of the degenerate map (4.1) is sufficiently



10 ]ocnmp[ A N W Hone, J A G Roberts, P Vanhaecke and F Zullo

different compared with (5.1) e.g. with respect to singularity structure, that it is worth
giving it a separate analysis as we have done here.

Let us denote a solution of the Volterra lattice (3.6) by ŵn. Then the Miura map from
the modified Volterra lattice (5.4) takes the form

ŵn = (wn+1 ∓ δ)(wn ± δ), (5.5)

(so there are effectively two maps, with an opposite choice of sign in each factor on the
right-hand side above). Moreover, this persists at the level of the maps (3.2) and (5.1), in
the following sense.

Theorem 5.1. Let wn be a solution of (5.1) with parameters ā, c̄, ν̄, lying on the level set
H1 = h̄1, H2 = h̄2 of the first integrals (5.2) and (5.3). Then for either choice of signs, ŵn

given by the Miura map (5.5) is a solution of (3.2) with parameters

ν = ν̄ + 6δ2, b = c̄+ 4ν̄δ2 + 7δ4, a = h̄1 + c̄δ2 + ν̄δ4 − δ6.

Moreover, on either solution ŵn, the values h1, h2 of the first integrals (3.3) and (3.4) for
the map (3.2) are given by

h1 = h̄2 + 2δ8, h2 = −ā2 − ν̄h̄2 − c̄h̄1 − 2h̄2δ
2 + (h̄1 − ν̄c̄)δ4 − ν̄δ8 − 4δ10.

Proof: The first part of this result is verified by substituting the Miura formula (5.5)
directly into (3.2), using (5.1) to eliminate wn+5 followed by wn+4, and then using (5.2) to
eliminate wn+3 on the level set H1 = h̄1. After the initial substitution of the Miura map
and eliminating, all the final results are quadratic in δ, so do not depend on the choice of
sign in (5.5). Similar calculations using the same substitutions in the formulae (3.3) and
(3.4), together with the expression (5.3) on the level set H2 = h̄2, produce the expressions
for h1, h2, which are the corresponding values of the first integrals for (3.2). �

We can also make use of a tau function substitution for (P.vi), which has the more
complicated structure

wn + δ = ρn
σn+2τn

σn+1τn+1
, (5.6)

wn − δ =
1

ρn+1

σnτn+2

σn+1τn+1
, (5.7)

with
ρn+2 = ρn.

This implies that

ŵ(+)
n = (wn − δ)(wn+1 + δ) =

σnσn+3

σn+1σn+2
, (5.8)

ŵ(−)
n = (wn + δ)(wn+1 − δ) =

τnτn+3

τn+1τn+2
(5.9)

are both solutions of (3.2), and both sequences (σn) and (τn) satisfy the same Somos-9
relation, of the form (3.12) (see Proposition 2.1 in [12]). Thus the two different formulae
for the Miura map in (5.5) can be regarded as defining a Bäcklund transformation for the

discrete equation (3.2) with parameter δ, since given ŵ
(−)
n and a solution wn of (5.1), a

new solution ŵ
(+)
n of (3.2) is generated by taking

ŵ(+)
n = ŵ(−)

n + 2δ(wn+1 − wn).
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6 Conclusion

We have shown that the integrable maps (P.iv), (P.v) and (P.vi) from [8] are closely related
to one another, via Miura-type transformations, and they provide genus two solutions of
Volterra and modified Volterra lattices, respectively. So far we do not have a complete
understanding of what the relations between these maps mean geometrically, particularly
from the Poisson and algebro-geometric points of view. However, since the construction of
the integrable maps Vg presented in [12] is valid for any g ≥ 1, this strongly suggests that
(P.v) and (P.vi) should each be the g = 2 members of a family of maps defined for any g. In
the elliptic case (g = 1) we have constructed elliptic solutions of the modified Volterra and
Volterra lattices, and showed how they are linked by the Miura transformation, essentially
recovering the solutions found in [26], which can be interpreted in terms of integrable
maps in the plane (QRT type). The complete description of these results, together with
the proposed extension to families of maps for all g ≥ 1, is planned for future work.

Acknowledgements

The research of ANWH was supported by Fellowship EP/M004333/1 from the Engineering
& Physical Sciences Research Council, UK, extended by EP/V520718/1 COVID 19 Grant
Extension Allocation University of Kent, and the grant IEC\R3\193024 from the Royal
Society; he is also grateful to the School of Mathematics and Statistics, University of
New South Wales, for hosting him during 2017-2019 as a Visiting Professorial Fellow with
funding from the Distinguished Researcher Visitor Scheme, and to Wolfgang Schief, who
provided additional support during his time in Sydney. ANWH also thanks DICATAM
for supporting his visit to Brescia in November 2022. FZ acknowledges the support of
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