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Abstract

In a recent paper we have classified scalar Ito equations which admits a standard sym-
metry; these are also directly integrable by the Kozlov substitution. In the present
work, we consider the diffusion (Fokker-Planck) equations associated to such symmet-
ric Ito equations.

1 Introduction

Symmetry methods [1–6] are a classical tool to attack nonlinear differential equations since
the work of S. Lie. This statement, strictly speaking, refers to deterministic differential
equations; but in more recent years it also extended to stochastic differential equations
[7–15].

In particular, work by R. Kozlov [17–20] showed that an Ito equation possessing a
Lie-point symmetry of a suitable type (see below for details) is integrable; moreover, this
result is constructive, in that once the symmetry has been determined one also knows the
change of variables taking the equation into directly integrable form.

Classification of symmetry properties for Ito equations – in particular, for the scalar Ito
equations we are considering in this work – has been performed several times, correspond-
ing to considering different classes of “admitted” Lie-point symmetries; see, in particular,
early work by Kozlov [18] considering a general class of what are now called deterministic
symmetries but allowing also transformations of time – which are not allowed by the in-
tegration scheme which was then devised by Kozlov himself (his classification work had a
more general scope).

More recently, it was observed that one can also consider so called random symmetries
[21,22]; in particular integration of an Ito equation is guaranteed – via the Kozlov scheme –
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once a random or deterministic standard symmetry for this is known (the word “standard”
is here meant as opposed to so called “W-symmetries”, see below).

In a recent paper, we have classified all the scalar Ito equations admitting a (deter-
ministic or random) standard symmetry, hence all the integrable scalar Ito equations [23].
This classification uses a well known preliminary standard change of variables [13] taking
the noise coefficient of the Ito equation to unity; the classification is completely explicit in
the case of autonomous equation and (in order to avoid exceedingly complicate formulas)
only partially explicit in the case of time-dependent Ito equations. In the present paper –
albeit also considering the general case where appropriate – we will first and mainly focus
on autonomous equations; this both for the sake of simplicity and because this suffices to
make our main point.

As well known, the statistical properties of an Ito equation are described by the as-
sociated Fokker-Planck equation; this is also known as the Kolmogorov forward equa-
tion [10, 14,16].

Given that integrable Ito equations are characterized by having non-trivial symmetry
properties, see above, it is natural to wonder if the corresponding Fokker-Planck equations
are also enjoying special symmetry properties. This will be made more precise in the
following, after describing what can be the symmetries of a general Fokker-Planck equation;
but roughly speaking one could expect for the Fokker-Planck equations associated to
integrable Ito equations to find either a maximal Lie symmetry algebra, isomorphic to
that of the heat equation (associated to the free Ito equation dx = dw); or at least a
non-generic one (as the Fokker-Planck equation is linear, certain symmetries will always
be present, see below).

The second option, i.e. that the Fokker-Planck equations associated to integrable Ito
equations have a nontrivial Lie symmetry algebra, is actually seemingly implied by an
old result by one of us and Rodŕıguez-Quintero [24,25], stating that symmetries of an Ito
equation (within a certain class, which includes what nowadays corresponds to determin-
istic symmetries, see below) are reflected into (projectable) symmetries of the associated
Fokker-Planck equation. Thus, given that one knows that generic Fokker-Planck equations
have a trivial symmetry algebra, this weaker conjecture appears to be surely, and trivially,
true; but, one should remember this is the case when we speak of the type of symmetries
considered in that work, i.e. (in nowadays language) deterministic symmetries.

It should be noted that not only the description of a system provided by these two
languages, i.e. by Ito and by Fokker-Planck equations, are intrinsically different from
a physical standpoint, but the notions of integrability for an Ito equation and for the
associated Fokker-Planck equation are also substantially different.

In fact, integrability of an Ito equation means this is integrable for each realization
of the driving Wiener process; note that this does not imply that we can predict the
behavior of the solution of an integrable Ito equation if we know the initial state, as we
cannot predict the behavior of the driving Wiener process.

On the other hand, the description provided by the Fokker-Planck equation does not
consider specific realizations of the driving Wiener process but only the evolution of a
general probability measure (thus an average – in probabilistic sense – over the possible
realizations of the Wiener process), and integrability means that if the initial probability
distribution is known, we can compute the probability distribution at any later time.

Thus, it is not apriori obvious that there should be a correspondence between integra-
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bility, and a fortiori symmetry, properties of an Ito and of the associated Fokker-Planck
equations.

However one could, as a naive guess, expect that to an integrable Ito equation (such
as the free one, whose solutions are just the realizations of Wiener process itself - and for
which the associated Fokker-Planck equation is just the heat equation) should correspond
a Fokker-Planck equation with maximal symmetry algebra (such as the heat equation).
We will see this is not the case. Actually, it turns out that to an Ito equation which is
integrable thanks to a random symmetry may correspond a Fokker-Planck equation which
has a trivial symmetry.1

2 General notations and background

We now first introduce general notation and then briefly describe background results on
Ito equations, Fokker-Planck equations, and their symmetries.

2.1 Ito equations

In this paper we consider scalar Ito equations [7–15], routinely written as

dx = f(x, t) dt + σ(x, t) dw ; (1)

here w = w(t) is the driving Wiener process, f is the drift coefficient and σ the noise
coefficient.2

If σ = 0 the equation is actually a deterministic one, and we consider it to be a trivial
Ito equation; we will only consider nontrivial Ito equations, i.e. always assume σ 6= 0.

We are specially interested in autonomous scalar equations, i.e. in the case where both
f and σ depend on x alone (possibly being actually constant),

dx = f(x) dt + σ(x) dw . (2)

The present discussion of general features will be conducted first in the general case (1),
but then specialized to the autonomous case (2).

Integrable scalar Ito equations have been recently classified [23]; as mentioned above
a previous classification – considering also time reparametrization, but not considering
random symmetries (see below) – had been obtained by Kozlov [18].

When looking for Lie-point symmetries of (1) or (2), we consider vector fields of the
form

X = ϑ(t) ∂t + ϕ(x, t;w) ∂x . (3)

The functional form of ϑ means that we admit at most a reparametrization of time (see
e.g. [21–32] for a discussion of admissible transformations in this context); on the other

1One should recall, in this respect, that integrability through a random symmetry is properly speaking
only formal, in that the change of variable taking the Ito equation to its explicitly integrable form actually
maps it into a generalized Ito equation. See the discussion in [26] for details.

2Note we might as well consider scalar equations depending on several independent driving Wiener
processes, with functionally independent noise coefficients. This setting is considered in [27]; but will not
be considered here.
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hand, admitting a w-dependence of ϕ means that the transformation of the dynamical
variable x can depend not only on x = x(t) itself and on time t, but also on the value w(t)
reached by the driving Wiener process at time t.

When ϑ = 0 we have time-preserving symmetries; they are related to the integrability
of the Ito equation via the Kozlov substitution, see below, and hence we will focus on
these.

For such symmetries, i.e. for symmetries generated by vector fields of the form

X = ϕ(x, t;w) ∂x , (4)

a generally accepted nomenclature – and anyway the one we will follow here – is that:

(a) when ϕw = 0 we have a deterministic standard symmetry, or simply a deterministic
symmetry ;

(b) when ϕw 6= 0 we have a random standard symmetry, or simply a random symmetry.3

Symmetries are determined as solutions to the determining equations; these are a set
of linear PDEs for ϕ = ϕ(x, t;w); in the scalar case (and for standard symmetries), these
are explicitly written as

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = ϑ ft , (5)

ϕw + σ ϕx − ϕσx = ϑσt . (6)

Note that for time-preserving symmetries the r.h.s. of both equations vanish; we will thus
deal with the slightly simpler – and homogeneous – equations

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = 0 , (7)

ϕw + σ ϕx − ϕσx = 0 . (8)

Here and below, ∆ is the Ito Laplacian [7–15]; in the scalar case this is given by

∆(φ) =
∂2φ

∂w2
+ 2σ

∂2φ

∂x∂w
+ σ2 ∂2φ

∂x2
. (9)

As well known, see e.g. [13], we can always reduce a nontrivial (that is, with σ 6= 0) Ito
equation (1) to the form with unit noise coefficient (σ = 1) by the change of variable

ξ =

∫

1

σ(x, t)
dx . (10)

Thus, it will suffice to consider the case with σ(x, t) = 1. The equation for ξ(t) is still an
Ito equation,

dξ = Φ(ξ, t) dt + dw ; (11)

3The qualification of “standard” symmetry serves not only to specify they are time-preserving but also
to avoid confusion with so called W-symmetries [29]; however we will not consider these in the present
setting, as they are on the one hand not useful to integrate Ito equations (see the discussion in [26]), and
on the other hand involve transformations of the Wiener process w(t), which itself does not appear in the
Fokker-Planck equation. We will thus mostly omit, in the present work, the specification “standard” when
referring to deterministic or random symmetries.
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the explicit expression of the new drift coefficient in terms of the old drift and noise
coefficients is easily derived (see e.g. Sect.4 in [23]) and it turns out to be4

Φ(ξ, t) =
f

σ
− 1

2
σx −

∫

σt
σ2

dx . (12)

In the case of time-preserving symmetries, we know [17–20] that an Ito equation (1)
admitting a symmetry in the form (4) is integrated through the Kozlov substitution, i.e.
passing to the dynamical variable

y =

∫

1

ϕ(x, t;w)
dx . (13)

The new equation for y is written in the form

dy = Φ(t;w) dt + S(t;w) dw ; (14)

when ϕw = 0 we also have Fw = Sw = 0 and hence a proper Ito equation, while for ϕw 6= 0
in general we get F and S also depending on w, hence a generalized Ito equation [23,26,27].

2.2 Fokker-Planck equations

Let us now come to consider Fokker-Planck equations. A general Fokker-Planck equation
for u = u(x, t) is written in the form

∂u

∂t
+

∂

∂x
[α(x, t) u] − 1

2

∂2

∂x2
[

β2(x, t) u
]

= 0 . (15)

Symmetry properties of Fokker-Planck equations in one spatial dimension were clas-
sified independently by Cicogna & Vitali [33, 34] (focusing in particular on the time-
autonomous case) and by Shtelen and Stognii [35]; see also Spichak and Stognii [36] and
Stognii [37] and the papers by Sastri and Dunn [38] and by Rudra [39]. The higher di-
mensional case was considered under additional assumptions by Spichak and Stognii [36]
and by Finkel [40], and then more generally by Kozlov [41]. Symmetries of the Fokker-
Planck equation in connection with those of the underlying Ito equations were considered
by Kozlov [41] (see also [42] for backward Kolmogorov equations), but at the time only
deterministic symmetries were considered.

Here – coherently with our approach focusing firstly and mostly on the simplest au-
tonomous case – we follow the simple discussion given in [34], which focuses on the au-
tonomous case (see eq.(1) therein).5

First of all we note that there are some trivial symmetries, and this independently of
the form of functions α(x, t) and β(x, t). In particular, we have (the vector field Z0 being
a symmetry only for the time-autonomous case)

Z0 =
∂

∂t
, Z1 = u

∂

∂u
, Zζ = ζ

∂

∂u
, (16)

4In the r.h.s. of this, x should be thought as a function of ξ and t through the change of variable inverse
to (10).

5We provide a sketch of the computations leading to the Cicogna-Vitali classification in Appendix A,
for convenience of the reader.
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where ζ is an arbitrary solution to the Fokker-Planck equation itself.
Here Z0 is, as mentioned above, only present for autonomous equations (and is absent

for general, time-dependent, Fokker-Planck equations), while Z1 and Zα are also present
in the general case; actually Z1 corresponds to the fact the Fokker-Planck equation is
homogeneous (of degree one) in u, and Zζ reflects the (linear) superposition principle for
solutions to linear homogeneous equations [1–6].

In this sense the symmetries (16) are trivial. We will not consider such symmetries
from now on, and only focus on nontrivial symmetries.

In the Cicogna-Vitali classification, one considers the function

γ(x) := − 1

2

(

α2 + β2 αx

)

x
. (17)

We have then different cases depending on properties of this function γ(x).

(i) If γxx = 0, the Fokker-Planck equation admits four non-trivial symmetries Xi; their
explicit expression (which is slightly involved) can be determined and is given in [34],
see eq. (9) therein (note these have a component along ∂t); they are also reported
in Appendix A here for ease of the reader. This means – when one considers also
the trivial symmetries listed in (16) – that in this case the symmetry algebra is
isomorphic to that of the heat equation [1].6

(ii) If γxx 6= 0 and the equation

G := (γx + ν1) (x + ν0) + 3 γ = 0 , (18)

where ν0, ν1 are constants, admits a solution then the Fokker-Planck equation admits
two nontrivial symmetries Xi; their explicit expression is given in [34], see eq. (12)
therein, and again they are also reported in Appendix A here.

(iii) Finally, if γxx 6= 0 but eq. (18) admits no solution, then the Fokker-Planck equation
admits only the trivial symmetries (16).

Summarizing, the nontrivial symmetry algebra of an autonomous Fokker-Planck equation
can be of dimension zero, two, or four.

Some remarks are in order about this conclusion:

1. In the first case (as already mentioned) the symmetry algebra is isomorphic to the
symmetry algebra of the heat equation, which is the Fokker-Planck equation corre-
sponding to α(x, t) = 0, β(x, t) = 1.

2. When both the drift and the diffusion coefficients do not depend on x, and hence
the Ito equation is immediately integrated, we have γ = 0 and hence we are in the
first case.

6We note that in the case β = 1 the equation γxx = 0 can be explicitly solved for α in terms of hyper-
geometric functions and Hermite polynomials, and this both for the autonomous and the non-autonomous
cases; thus this case can be explicitly characterized. Apparently this explicit characterization was not pur-
sued by Cicogna and Vitali and by other authors. This is discussed (for the autonomous case, α = α(x))
in Section 5 here.
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3. These conclusions may appear to be in some disagreement with what is obtained
in [24, 25]; but one should note that these papers considered, for what concerns
symmetries of the Fokker-Planck equation, only projectable symmetries, while here
we consider general ones.

2.3 Correspondence between an Ito and the associated Fokker-Planck
equation

The correspondence between an Ito equation and the associated Fokker-Planck equation
is very simple, even more so with the notation we are using. Indeed, we just have that
the coefficients α(x, t) and β(x, t) of the Fokker-Planck equation (15) associated to the Ito
equation (1) are given by

α(x, t) = f(x, t) , β(x, t) = σ(x, t) . (19)

(We did not use this notation from the beginning only to emphasize that the available
results about symmetries of Fokker-Planck equations are completely independent of their
relation with stochastic equations.)

As we want to consider Fokker-Planck equations associated to an Ito equation, we will
from now on write the Fokker-Planck equation in the form

ut + ∂x [f(x, t)u] − 1

2
∂2
x

[

σ2(x, t)u
]

= 0 . (20)

As mentioned above, for a nontrivial Ito equation we can always, by the change of variables
(10), reduce to σ = 1; correspondingly the associated Fokker-Planck equation will be of
the form

ut + (fx u + f ux) − 1

2
uxx = 0 . (21)

3 Symmetries of scalar Ito equations

We now come to discuss symmetries of the Ito equations.

First of all, we note that once we have a general Ito equation (and the associated Fokker-
Planck equation), we can always implement the change of variable (10) and reduce to the
case of constant – actually, unit – noise. The new Ito equation will have an associated
Fokker-Planck equation. As the change of variable is (by definition) an isomorphism, the
old and the new Fokker-Planck equations are also isomorphic, and in particular will have
isomorphic symmetry algebra, so we can just deal with the case of unit noise.

The classification of Ito equations of this type (that is, possibly non-autonomous) admit-
ting symmetries obtained in [23] is complete. We report here the result of that discussion.

Proposition 1. [23] A scalar Ito equation with unit noise,

dx = f(x, t) dt + dw , (22)

admits a time-preserving symmetry X = ϕ(x, t, w)∂x if and only if it corresponds to one
of the following types:
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(A) f(x, t) = h(t); in this case, denoting by H(t) a primitive of h(t), the symmetry is
identified by

ϕ = P (ζ) := P [x− w −H(t)] ,

with P an arbitrary smooth function.

(B) f(x, t) = h(t)+k(t)x; in this case, denoting by K(t) a primitive of k(t), the symmetry
is identified by

ϕ = exp[K(t)] .

(C) f(x, t) = h(t) + k(t) exp[βx], with β 6= 0 a real constant; in this case, denoting by
H(t) a primitive of h(t), the symmetry is identified by

ϕ = exp[β(x− w −H(t))] .

This Proposition can be immediately restricted to the case of autonomous Ito equation;
in this case we get (we stress that h and k are now real constants):

Corollary 1. [23] A scalar autonomous Ito equation with unit noise,

dx = f(x) dt + dw , (23)

admits a time-preserving symmetry X = ϕ(x, t, w)∂x if and only if it corresponds to one
of the following types. with h0 and k0 real constants:

(A) f(x) = h0; in this case the symmetry is identified by

ϕ = P (ζ) := P [x−w − h0t] ,

with P an arbitrary smooth function.

(B) f(x) = h0 + k0x; in this case the symmetry is identified by

ϕ = exp[k0t] .

(C) f(x) = h0 + k0 exp[βx], with β 6= 0 a real constant; in this case the symmetry is
identified by

ϕ = exp[β(x− w − h0t)] .

It is worth pausing a moment to note that while for Ito equations it makes perfect
sense to consider random symmetries, i.e. maps of the dynamical variable x depending
on the realization of the w(t) Wiener process, this makes little sense when we consider
the associated Fokker-Planck equation. In fact, the Fokker-Planck description does not
explicitly involve the driving Wiener process at all. (Actually, it involves it in an implicit
way, i.e. it describes an average over the realizations of the Wiener process; see the
discussion later on in Sect.4.4.)

This is a serious problem in view of the fact that in cases (A) and (C) of the above
classification, the symmetries do explicitly depend on w. It should be noted that in case
(A) we can somewhat escape this problem by considering just a constant function P (ζ),
in which case the dependence on w disappears; while this is not possible in case (C).
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4 Symmetries of the Fokker-Planck equations associated to

symmetric Ito equations

The prototypical (nontrivial) integrable Ito equation is of course dx = dw; its associated
Fokker-Planck equation is the heat equation ut = uxx, whose symmetry algebra is well
known [1–6]; in the present context, this is a maximal symmetry algebra for equations of
Fokker-Planck type. A naive expectation could be that the integrable Fokker-Planck equa-
tions corresponding to integrable Ito equations would have symmetry algebras isomorphic
to that of the heat equation. We will see this is not the case.

In this Section, unless the contrary is explicitly stated, we will deal with autonomous
Ito and Fokker-Planck equations.7

4.1 Explicit computations

As mentioned above, we can just consider the case where the noise coefficient is reduced
to unity. This means we are dealing with Fokker-Planck equations of the form

ut + f ux + fx u − 1

2
uxx = 0 . (24)

Also, for σ = 1 the function γ defined in (17) is given by

γ = − 1

2

(

f2 + fx
)

x
= − 1

2
(2 f fx + fxx) . (25)

We now get promptly

γxx =
1

2
(− 6 fx fxx − 2 f fxxx − fxxxx) . (26)

We will now consider the cases of integrable scalar autonomous Ito equations identified
in our previous work [23], see also Corollary 1 where they appear as cases (A), (B), and
(C).

It is immediate to check that in cases (A) and (B) above we get γxx = 0, so we are in
case (i) of the classification by Cicogna and Vitali.

In fact, in case (A) we have f(x, t) = h(t), and hence γ = 0. In case (B) we have
f(x, t) = h(t) + k(t)x; hence by (17) or (25) we get γ = −k(t)[h(t) + k(t)x], which of
course entails γxx = 0.

As for case (C), i.e.

f(x, t) = h(t) + k(t) eβx , (27)

some – fully standard – computations are needed. We obtain

γ = −1

2
β eβx k(t)

[

β + 2h(t) + 2 k(t) eβx
]

; (28)

and from this

γxx = − 1

2
β3 k(t) eβ x

[

β + 2h(t) + 8 k(t) eβx
]

. (29)

7We anticipate that this will identify a case in which the situation is different from what one could
naively expect; we will then also consider the corresponding case for non-autonomous equations.
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This is nonzero, except for the (degenerate) case where k(t) = 0 or/and β = 0; note in
this case we are back to case (A) above.

As γxx 6= 0, we have to look for solutions to the equation (18). The function G now
reads (omitting to indicate the t dependence of h and k for ease of writing)

G = (ν0 + x)

(

ν1 −
1

2
β2keβx(β + 2h+ 4keβx)

)

− 3

2
βkeβx(β + 2h+ 2keβx) .

The equation G = 0 admits two solutions:

ν1 = 0 , β = 0 ,

ν1 = 0 , k(t) = 0 .

These are exactly the conditions under which we had γ = 0; as already observed, in this
case we are then back to case (A).

In other words, we have obtained that the integrable Ito equation of case (C) does
correspond to a Fokker-Planck equation with trivial symmetry algebra.

This same result is also obtained by means of explicit direct computation, thus inde-
pendently of the Cicogna and Vitali classification; see Section 4.2.

4.2 Direct computation for case (C)

We have seen that the nontrivial phenomenon, i.e. having an integrable Ito equation while
the associated Fokker-Planck equation has only trivial symmetries, arises in case (C) of
our classification – which falls within case (iii) of the Cicogna-Vitali classification, see
Sect.2.2.

We want to show here that indeed the associated Fokker-Planck equation has only trivial
symmetries, not using the Cicogna-Vitali result but based on a direct explicit computation,
thus confirming by this our result.

We consider would-be symmetry vector fields in the general functional form (see e.g.
[33, 34] or [41] for the justification of such a restriction, which actually follows from the
determining equations through explicit computations, used here to keep the length of the
computation within reasonable limits)

X = τ(t) ∂t + ξ(x, t) ∂x + ϕ(x, t, u) ∂u . (30)

We proceed then by the standard procedure, i.e. first compute the second prolongation
X(2) of the vector field, then apply it to the Fokker-Planck equation, and then restrict
the result of this to the solutions of the Fokker-Planck itself (this is implemented by
substituting for ut according to the Fokker-Planck equation). The result of this is an
expression R(x, t, u, ux, uxx), and we should require this to vanish identically.

As the dependencies on ux and uxx are explicit, we require the vanishing of the coef-
ficients of any monomial in these variables; in particular we require the vanishing of the
coefficients for uxx and u2x, and this yields

ξ(x, t) = χ(t) +
1

2
x τ ′(t) , (31)

ϕ(x, t, u) = φ0(x, t) + φ1(x, t)u . (32)
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We then specialize to the f(x) corresponding to our case (C), i.e.

f(x) = h0 + k0 eβx (33)

and consider the coefficient of ux. This determines the function φ1(x, t) as

φ1(x, t) = Q(t) +
1

2

[

2 k0 e
βx χ(t) − 2xχ′(t) +

(

h0 + k0e
βx
)

x τ ′(t) − 1

2
x2 τ ′′(t)

]

.

(34)

At this point we look at the terms not depending on u in what remains of R. These
involve φ0, and more precisely their vanishing corresponds to

∂φ0

∂t
+

(

h0 + k0e
βx
) ∂φ0

∂x
+

(

k0 β eβx
)

φ0 − 1

2

∂2φ0

∂x2
= 0 . (35)

This is the requirement that φ0 satisfies the Fokker-Planck equation (with the choice (33)
for f), and we know this is always a solution in the case of linear equations.

At this point R = uR0; the condition R0 = 0 provides a rather involved differential
equation, which we do not report here. Taking its third x-derivative, we obtain

∂3R0

∂x3
=

1

4
k0 β

3 eβx
[

2β
(

2h0 + β + 16k0e
βx
)

χ(t)

+
(

5β + 40k0e
βx + β2x+ 16k0βxe

βx + 2h0(5 + βx)
)

τ ′(t)
]

.

Requiring this to vanish, we have

2β
(

2h0 + β + 16k0e
βx
)

5β + 40k0eβx + β2x+ 16k0βxeβx + 2h0(5 + βx)
= − τ ′(t)

χ(t)
. (36)

Here the l.h.s. is a function of x alone, while the r.h.s. is a function of t alone; thus
each of these must be equal to the same constant K. Looking at the r.h.s. of (36), this
yields immediately

χ(t) = −K τ ′(t) .

When we look at the l.h.s. of (36), things are more complex. We take the x derivative
of the l.h.s., and require this to vanish. This yields

16β2 k (2h0 + β) eβx − 512 (k0 β)
2 e2βx − 2β2 (2h0 + β)2 = 0 . (37)

This vanishes only for k0β = 0, i.e. when either k = 0 or β = 0 (or both). But in these
cases, we are back to

{

f(x) = h0 (k0 = 0),

f(x) = h0 + k0x (β = 0).

These fall in cases (A) and (B), respectively, of our classification (see Proposition 1 in
Sect.3).

This explicit computation does therefore confirm that in case (C) of our classification
(for autonomous equations) the associated Fokker-Planck equation admits only the trivial
symmetries (16).



78 ]ocnmp[ G. Gaeta & M.A. Rodŕıguez

4.3 Direct computation for the time-dependent case (C)

In our discussion we have identified an interesting phenomenon, i.e. the fact that to a
(formally) integrable Ito equation possessing a standard random symmetry corresponds a
Fokker-Planck equation with trivial symmetry algebra.

Our discussion was based on autonomous scalar Ito equations, as these were sufficient
to display the phenomenon mentioned above. On the other hand, as recalled in Section 3,
we also have a classification for time-dependent integrable Ito equations, see Proposition
1. In this case too we have one case – again case (C) – in which integrability is due to the
presence of a random symmetry. Actually the functional form of the concerned integrable
Ito equation is just the same as above, except that the constants h0 and k0 of eq.(33) are
now replaced by smooth functions h(t) and k(t), see Proposition 1. Needless to say, adding
a time-dependence is expected to just reduce the symmetry algebra of the equation, hence
preserve the phenomenon of trivial symmetry algebra for the associated Fokker-Planck
equation; but here we check again that this is the case by means of a direct computation.

We consider the associated Fokker-Planck equation, write down the determining equa-
tions, and separate the solutions corresponding to an arbitrary function ζ(x, t) satisfying
the Fokker-Planck equation itself for a vector field of the form (30). We will refer to the
remaining expression for the action of X on the equation as E ; the coefficients of the
various terms in it are the determining equations. The formulas (31) and (32) apply in
this case as well. Next, instead of (33) we set

f(x, t) = h(t) + k(t) exp [β x] . (38)

The equation corresponding to (the vanishing of) the coefficient of ux, differentiated three
times w.r.t. x, yields a third order equation for φ1(x, t), which can be explicitly solved. It
results

φ1(x, t) = q0(t) + q1(t)x + q2(t)x
2

+
1

2
eβx

(

x k(t) τ ′(t) +
2

β

(

k′(t) τ(t) + β k(t)χ0(t)
)

)

. (39)

This simplifies the coefficient of ux; we then consider its derivative w.r.t. x: its vanishing
corresponds to an equation which can now be solved, yielding

q2(t) = − 1

4
τ ′′(t) . (40)

Finally we consider the coefficient of ux itself; this yields – when we require its vanishing
– an equation which is promptly solved, providing

q1(t) = h′(t) τ(t) +
1

2
h(t) τ ′(t) − χ′

0(t) . (41)

At this point E does not contain any ux term any more; moreover now all the x and u
dependencies are explicit, and we can thus consider the coefficients of different terms in
these variables.

In particular, the coefficient of xe2βxu is made of only one term, i.e.

1

2
β k2(t) τ ′(t) .
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As both β and k are assumed to be nonzero, this implies

τ(t) = c1 . (42)

Similarly, the coefficient of e2βxu yields

χ0(t) = − c1
β

k′(t)

k(t)
. (43)

Looking now at the coefficient of eβxu, we have

c1

(

k(t)h′(t) − (k′(t))2

β k(t)
+

k′′(t)

β

)

= 0 . (44)

This requires (case a)

c1 = 0 , (45)

unless (case b) the functions h(t) and k(t) satisfy the relation

h(t) = c2 − k′(t)

β k(t)
. (46)

Case (a)

In case (a), i.e. for c1 = 0, the full expression E is now reduced to uq′0(t), hence we get

q0(t) = c2 . (47)

In the end, we have (beside the symmetries Xζ = Zζ which we have not considered in
this computation, see above), only one symmetry, i.e.

X = u∂u = Z1 . (48)

Note that in this case the symmetry Z0 appearing in (16) is obviously absent, as we deal
with a non-autonomous Fokker-Planck equation.

Case (b)

In case (b), i.e. for c1 an arbitrary function and h(t) satisfying (46), again the full expres-
sion E is now reduced to uq′0(t), and we get (47). In this way we have got

τ = c1 ,

ξ = − c1
β

k′(t)

k(t)
,

φ1 = c2 u .

In other words we have (beside the symmetries Xζ = Zζ) two symmetries

X1 = ∂t −
(

k′(t)

β k(t)

)

∂x , (49)

X2 = u∂u . (50)

Note that the first one acts on the time variable; the second one is just the generator of a
scaling symmetry u → λu, and corresponds to the linear character of the equation.
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4.4 Discussion

The naive expectation that to an integrable Ito equation should correspond a Fokker-
Planck equation with maximal symmetry algebra is confirmed for integrable Ito equations
of types (A) and (B) in the classification provided by Proposition 1. On the other hand, for
integrable Ito equations of type (C) not only this expectation is not confirmed, but actually
the associated Fokker-Planck equation turns out to have a trivial symmetry algebra.

There are two problems raised by this conclusion:

(a) This seems to be in contradiction with the result, mentioned above, according to
which symmetries of an Ito equation are reflected into symmetries of the corre-
sponding Fokker-Planck equation [24];

(b) This is apparently contradicting the very idea of integrable equation.

The situation needs some discussion.

As for the point (a), it should be noted that the result in [24] concerned (in the language
used in the present note) the correspondence between deterministic symmetries of the
Ito equation and (projectable) symmetries of the associated Fokker-Planck equation. Or,
type (C) integrable Ito equations have a random symmetry; see Proposition 1. Random
symmetries can not be reflected in symmetries of the Fokker-Planck equation, as the latter
does not involve any Wiener process. Thus this type of problem is not a real one.

The situation is more delicate concerning the – more substantial – point (b). In order to
better understand the situation, it is convenient to consider how the symmetry integration
takes place in this context, i.e. for random symmetries. (This point is discussed in some
detail in a recent paper of ours [26], so we will be rather quick, referring to that paper for
details.)

Essentially, and along exactly the same path as in symmetry integration or reduction of
deterministic ordinary differential equations [1–6], once a symmetry (4) of the Ito equation
(1) has been determined, integration proceeds by a change of variable (x, t, w) → (y, t;w)
with y = y(x, t;w) such that in the new variables the symmetry vector field is written
as X = ∂y. This is a standard problem in the theory of characteristics [43, 44], and the
solution is provided by the Kozlov substitution (13).

Now, the point is that if we are dealing with a deterministic symmetry, i.e. if ϕ =
ϕ(x, t), this yields a proper change of coordinates in the (x, t) space, i.e. y = y(x, t), and
we have a new Ito equation which is promptly integrated. To this integrable Ito equation
corresponds a new Fokker-Planck equation, in the form (21), which has maximal symmetry
algebra (in fact, in the autonomous case for this it results γ = 0, where γ is the function
defined by Cicogna and Vitali).

But, in the case of random symmetries, i.e. for ϕ actually depending on w, the change
of variables depends on the specific realization of the driving Wiener process. In fact, in
this case the Ito equation (1) is transformed into a generalized Ito equation (see [26] for
details), of the form

dy = F (t;w) dt + S(t;w) dw . (51)



]ocnmp[ Integrable Ito and associated Fokker-Planck equations 81

As both F and S do not depend on the new dynamical variable y, this is integrable: for
each realization of the driving process w = w(t) we can perform integration and obtain

y(t) = y(0) +

∫ t

0
F [s,w(s)] ds +

∫ t

0
S[s,w(s)] dw(s) .

On the other hand, the change of variable depends on the realization of the driving
Wiener process, and indeed the transformed equation (51) is not of proper Ito type, and
hence has not an associated Fokker-Planck equation.

In intuitive term, the Fokker-Planck equation is providing an average of the evolution
described by the Ito equation under different realizations of the Wiener process, and things
become elementary for integrable Ito equations; but in this case the Ito equation corre-
sponding to different realizations of the Wiener process are actually different equations,
so their diffusion properties are also different.

5 Characterization of drifts in the case (A)

As mentioned in Section 2.2, it is actually possible to fully classify the drifts falling in case
(i) of the Cicogna-Vitali classification [33, 34], hence the (autonomous) Fokker-Planck
equations having a symmetry algebra isomorphic to that of the heat equation. In this Sec-
tion, we show this and provide explicit formulas. Another phenomenon defeating naive ex-
pectations will show up as a byproduct of such a classification: we can have Fokker-Planck
equations with maximal symmetry while the associated Ito equation has no symmetry.

We consider γ as defined by (17), and set σ = 1; as discussed above, this is always
possible via the change of variable (10). The Fokker-Planck equations we are considering
are hence of the form (21).

The condition for this equation to have a symmetry group isomorphic to that of the
heat equation can be written [34] as γxx = 0. In view of the definition (17) of γ, this
corresponds to a differential equation to be satisfied by the drift f = f(x), i.e.

(

f2 + f ′)

xxx
= 0 (52)

This is a fourth order nonlinear ordinary differential equation, written explicitly as8

f (4) + 2 f f ′′′ + 6 f ′ f ′′ = 0 . (53)

However, due to its particular form it is clear that (52) can be written as a first order
differential equation:

f ′ + f2 = p(x) , (54)

p(x) := µ0 + µ1 x + µ2 x
2

where µi (i = 0, 1, 2) are arbitrary constants.

8We mention that feeding this into Mathematica, or a similar symbolic manipulation program, one
obtains an explicit solution; the expression of this, however, is quite complex and not illuminating. We
will see that one instead can make contact with classical (special) functions.
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This is not the most appropriate form to study the equation according to the classical
theory of special functions. We thus define a new function u(x) > 0 via

f(x) =
d

dx
log u(x) =

u′(x)

u(x)
(55)

and substitute into the equation (54), getting

u′′

u
− u′2

u2
+

u′2

u2
= p(x) ; (56)

that is,

u′′(x) − p(x)u(x) = 0 . (57)

This is a second order linear equation, known as the Weber equation; its solutions are the
parabolic cylinder functions9 and denoted as D.

The standard Weber equation (originated in the separation of the Laplace equation in
parabolic cylinder coordinates), providing the parabolic cylinder functions, is written as

v′′(z) +

(

λ +
1

2
− 1

4
z2
)

v(z) = 0 (58)

with general solution

v(z) = c1 D(λ, z) + c2 D(−1− λ, i z) (59)

The parabolic cylinder functions are related to Hermite polynomials when the param-
eter λ is an integer n ≥ 0,

D(n, z) = 2−n/2 e−z2/4 Hn

(

z/
√
2
)

. (60)

Let us construct a change of variables in equation (57) leading to the classical Weber
equation (58). The second degree polynomial p(x) can be written (in a generic case) as

p(x) = µ2 x
2 + µ1 x + µ0

= µ0 − µ2
1

4µ2
+

(

√
µ2 x +

µ1

2
√
µ2

)2

, (61)

and the equation (57) is then

u′′ +

[

µ2
1

4µ2
− µ0 −

(

√
µ2 x +

µ1

2
√
µ2

)2
]

u(x) = 0 . (62)

Let us introduce the new variable z

z :=

(

4

µ2

)1/4 (

√
µ2 x +

µ1

2
√
µ2

)

, (63)

9Properties of parabolic cylinder functions and details about them are given e.g. in
https://dlmf.nist.gov/12.
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so that

d2u

dx2
= 2

√
µ2

d2u

dz2
. (64)

The new equation is

2
√
µ2 u

′′ +

[

µ2
1

4µ2
− µ0 −

√
µ2

2
z2
]

u(x) = 0 ; (65)

this can be rearranged to give

u′′ +

[

µ2
1

8µ
3/2
2

− µ0

2
√
µ2

− z2

4

]

u(x) = 0 . (66)

We define the parameter λ as

λ =
µ2
1

8µ
3/2
2

− µ0

2
√
µ2

− 1

2
. (67)

Then the drift f(x) can be written as solutions to this equation (66), hence in terms of
parabolic cylinder functions.

5.1 A simple example

Since parabolic cylinder functions are related to Hermite polynomials for certain values of
the parameters, let us construct a particular solution in this case. Take µ0 = 0, µ1 = 2

√
3

and µ2 = 1. Then,

λ = 1 (68)

and a solution of the Weber equation is:

u(z) = D(1, z) = 2−1/2 e−z2/4H1(z/
√
2) = z e−z2/4 (69)

The original variable x is:

z =
√
2x +

√
6 (70)

and then,

u(x) = (
√
2x +

√
6) e−x2/2+

√
3x− 3/2 (71)

Finally

f(x) =
u′(x)

u(x)
=

d

dx
log u(x) =

1

x+
√
3

−
(

x+
√
3
)

(72)

It is straightforward to check that this drift satisfies γxx = 0, and then the corresponding
Fokker-Planck equation is equivalent to the heat equation and maximally integrable (with
a parametric group of six parameters).
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As for the Ito equation, with this drift we have

dx =

(

1

x+
√
3

− x−
√
3

)

dt+ dw . (73)

This Ito equation does not admit any symmetry, as follows from the classification in [23],
and as can also be checked by direct computation with the determining equations (7), (8).
(The direct computation yields the same result – that is, no symmetry – also considering
the determining equations for W-symmetries. Similarly, a direct computation can be
performed to check this Fokker-Planck equation has indeed maximal symmetry.)

Thus, this example provides a counterpart to the situation examined in Sections 4.2
and 4.3, and discussed in some detail in Section 4.4. In that case, we had a symmetric
Ito equation (more precisely, a W-symmetric one) whose associated Fokker-Planck equa-
tion admitted no symmetry. Here we have met a Fokker-Planck equation with maximal
symmetry whose associated Ito equation admits no symmetry.

6 Conclusions

We have considered the correspondence between symmetries of integrable scalar (au-
tonomous) Ito equations and those of the associated Fokker-Planck equations. We have
found that in the case of Ito equations which possess standard deterministic symmetries
– and hence are integrated via the Kozlov procedure by passing to variables adapted to
such symmetries – the associated Fokker-Planck equations possess a maximal symmetry
algebra, i.e. an algebra isomorphic to that of the heat equation, which in this context
should be seen as the Fokker-Planck equation associated to the free Ito equation dx = dw.
On the other hand, for Ito equations which possess standard random symmetries – and
hence are formally integrated via the Kozlov procedure by passing to variables adapted to
such symmetries – the associated Fokker-Planck equations possess only a trivial symmetry
algebra, i.e. an algebra corresponding to “generic” Fokker-Planck equations.

Having identified the “interesting” phenomenon in the autonomous case, we then passed
to consider the general, non-autonomous, case; we have checked, by explicit computations,
that the phenomenon we identified is also present in this general time-dependent case.

In Section 5 – while providing a full description of autonomous Fokker-Planck equa-
tions with maximal symmetry in terms of classical special functions (which appears to be
new) – we have seen that this “interesting phenomenon” has a counterpart with roughly
inverted roles between the Ito and the Fokker-Planck equations: we can have a Fokker-
Planck equation with maximal symmetry algebra and the associated Ito equation having
no symmetry (both standard symmetry and W-symmetry) at all.

Our work confirms what was stated by Kozlov (dealing with a different set of admitted
transformations). In the conclusions of his work [41], he writes: “using symmetries of
stochastic differential equations we can obtain only partial results for symmetries of the
Fokker-Planck equation”.

We have shown that this is even more true when one considers also random symmetries.
In fact – contrary to the naive expectations one could have – it turned out that to an Ito
equation which is integrable thanks to a random symmetry may correspond a Fokker-
Planck equation which has only a trivial symmetry.
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Finally we note that this conclusion calls for an intrinsic characterization of Fokker-
Planck equations corresponding to Ito equations which are (formally) integrable via stan-
dard random symmetries. Such a characterization can of course be obtained by just listing
the Fokker-Planck equations corresponding to the Ito equations with the property men-
tioned above – which were classified in our recent work [23]; but one wonders what these
Fokker-Planck equations have in common in intrinsic terms, i.e. without looking at the
associated Ito equations.
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A Nontrivial symmetries of the autonomous

Fokker-Planck equation

In this Appendix we sketchily review, for convenience of the reader, the computations leading to
the Cicogna-Vitali classification [33, 34] of the symmetries of autonomous scalar Fokker-Planck
equation we have been using – but of course adapting their notation to the one we are using here.
We will just consider the case where σ = 1, as one can always reduce to this case in a standard
and simple way, see (10). That is, we consider symmetries of (21).

Consider a vector field:

X = τ(t, x, u) ∂t + ξ(t, x, u) ∂x + φ(t, x, u) ∂u (74)

In order that X be a symmetry of the Fokker-Planck equation, their coefficients must satisfy the
determining equations which are obtained from its second order prolongation, when applied to the
Fokker-Planck equation [1]:

pr(2)X = X + φx∂ux
+ φt∂ut

+ φxx∂uxx
= 0 (75)

Once the Fokker-Planck equation has been used to eliminate the term uxx, the determining
equations reduce the dependence of the unknown functions ξ, τ, φ on the variables x, t, u; more
precisely, we get











τ(t, x, u) = τ(t) ,

ξ(t, x, u) = ξ(t, x) ,

φ(t, x, u) = φ0(t, x) + φ1(t, x)u .

(76)

Using this result we get a set of four differential equations (since the dependence on u is explicit).
The first one is:

ξx =
1

2
τt , (77)

which can be easily integrated (up to now, χ(t) is an arbitrary function of t) as

ξ(x, t) =
1

2
x τt(t) + χ(t) . (78)
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The second equation is

φ0,t − 1

2
φ0,xx + fx φ0 + f φ0,x = 0 ; (79)

this expresses the fact that φ0(x, t) is a solution of the equation. The two other equations can be
written as:

φ1,x =
∂

∂x

(

− xχt + χ f +
1

2
x f τt − 1

4
x2 τtt

)

, (80)

φ1,t = − χ fxx − 1

2
(x f)xx τt +

1

2
φ1,xx − φ1,x f . (81)

Equation (80) can be easily integrated, yielding

φ1(x, t) = − xχt(t) + χ(t) f(x) +
1

2
x f(x) τt(t) − 1

4
x2 τtt(t) + g(t) (82)

where g(t) is an arbitrary function of t. Substituting in (81) and defining [34]

γ(x) = − 1

2

(

f(x)2 + fx(x)
)

x
, (83)

we get

xχtt + γ χ = −1

2

(

1

2
x2 τttt −

(

−x γ + fx + f2
)

τt

)

+
τtt
4

+ gt . (84)

This is an equation mixing functions of x and t (and their derivatives). If we take successive
derivatives in x, we get the equations:

χtt + γx χ = − 1

2
(x τttt + (3 γ + x γx) τt) , (85)

γxx χ = − 1

2
(τttt + (4 γx + x γxx) τt) , (86)

γxxx χ = − 1

2
(5 γxx + x γxxx) τt . (87)

We will distinguish the following cases.

A.1 Case (i)

Assume γxx = 0; that is,

γ(x) = −µ2 x − 1

2
µ1 . (88)

Then

f ′(x) = µ0 + µ1 x + µ2 x
2 − f(x)2 , (89)

where µi, i = 0, 1, 2 are arbitrary constants (we will not need the explicit form of f(x), which in
the general case is rather complicated). We get an equation for τ

τttt − 4µ2 τt = 0 . (90)

Substituting into (85) we have

χtt − µ2 χ =
3

4
µ1 τt , (91)



]ocnmp[ Integrable Ito and associated Fokker-Planck equations 87

and equations (90) and (91) allow to compute h(t) and τ(t) easily.
As discussed in [34] the condition γxx = 0 allows to transform the Fokker-Planck equation

into the heat equation, and then, in this case, the symmetry group of the Fokker-Planck equation
is isomorphic to that of the heat equation. Let us compute the symmetry vector fields for the
Fokker-Planck equation. Solving equation (90) we have

τ(t) = λ1 e
2
√
µ2 t + λ2 e

−2
√
µ2 t + λ3 . (92)

We then compute χ(t) and finally g(t). The nontrivial symmetry vector fields are

X1 =
e2

√
µ2t

2
√
µ2

∂t +
1

2

(

x+
µ1

2µ2

)

e2
√
µ2t ∂x

+
1

2
e2

√
µ2t

(

f(x)

(

x+
µ1

2µ2

)

− ζ − 1

2

)

u ∂u ,

X2 = − e−2
√
µ2t

2
√
µ2

∂t +
1

2

(

x+
µ1

2µ2

)

e−2
√
µ2t ∂x

+
1

2
e−2

√
µ2t

(

f(x)

(

x+
µ1

2µ2

)

+ ζ − 1

2

)

u ∂u ,

X3 = e
√
µ2t ∂x + e

√
µ2t

(

f(x) − √
µ2

(

µ1

2µ2
+ x

))

u ∂u ,

X4 = e−
√
µ2t ∂x + e−

√
µ2t

(

f(x) +
√
µ2

(

µ1

2µ2
+ x

))

u ∂u . (93)

Here we have written

ζ :=
√
µ2 x

2 +
µ1√
µ2

x +
µ0

2
√
µ2

+
µ2
1

8µ2
√
µ2

. (94)

Note that X1 and X2 have a component along ∂t, while X3 and X4 do not.

A.2 Case (ii)

Let us now consider the case where γxx 6= 0 and γxxx 6= 0 as well. Now we get

χ = −
(

5 γxx
2 γxxx

+
x

2

)

τt , (95)

which implies

5 γxx
2 γxxx

+
x

2
= −1

2
ν0 ; (96)

this has solution [34]

γ(x) = c − b

(x + ν0)3
− ν1

4
x . (97)

This equation yields a special form of the drift, which satisfies the equation

f ′(x) = − f(x)2 − b

(ν0 + x)2
− 2 c x +

ν1
4

x2 + ζ . (98)

The equations for τ(t) and χ(t) are:

τ ′′′ − ν1 τ
′ = 0 , χ(t) =

1

2
ν0 τ

′ . (99)
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Solving the equation for g(t) appearing in (82), we find the constraint:

c = − 1

4
ν0 ν1 (100)

and this yields, after a straightforward computation, the vector fields

X1 =
e
√
ν1t

√
ν1

∂t +
1

2
(x+ ν0) e

√
ν1t ∂x

+
1

2
e
√
ν1t

(

f(x) (x + ν0) −
√
ν1

2
(x+ ν0)

2 +
ρ

√
ν1

− 1

2

)

u ∂u ,

X2 = − e−
√
ν1t

√
ν1
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1

2
(x + ν0) e

−
√
ν1t ∂x

+
1

2
e−

√
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(

f(x) (x + ν0) +

√
ν1
2

(x+ ν0)
2 − ρ

√
ν1

− 1

2

)

u ∂u .

Here we have written:

ρ :=
ν20 ν1
4

− ζ .

A.3 Case (iii)

Finally, consider the case where γxx 6= 0 with γxxx = 0. Now eq. (87) reads

γxxx χ = − 1

2
(5 γxx + x γxxx) τt ; γxx τt = 0 . (101)

Then τ(t) = κ, a constant, and χ(t) = 0 [34]. In this case the symmetry vector field is

X = κ ∂t + (λu + µ(x, t)) ∂u (102)

where κ, λ are arbitrary constants and µ(x, t) is a solution of the Fokker-Planck equation itself;
that is, we get only trivial symmetries.
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