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Abstract

Finite-difference schemes for the one-dimensional shallow water equations in the
presence of a magnetic field for various bottom topographies are constructed. Based
on the results of the group classification recently carried out by the authors, finite-
difference analogues of the conservation laws of the original differential model are
obtained. Some typical problems are considered numerically, for which a comparison
is made between the cases of a magnetic field presence and when it is absent (the
standard shallow water model). The invariance of difference schemes in Lagrangian
coordinates and the energy preservation on the obtained numerical solutions are also
discussed.

1 Introduction

The consideration of the shallow water equations in the presence of a magnetic field
(SMHD) is a relatively new area of magnetohydrodynamics. One of the first models
to describe SMHD was presented in [1] (the Gilman model), and since then, many papers
by various authors have been devoted to studying this model, including its stability [2],
numerical simulation [3–8], and conservation laws [9,10] (see, for example, a more detailed
review in [9]).
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Initially, the SMHD equations were used to model the behavior of the solar tachocline,
which is a thin layer at the base of the Sun’s convection layer. Toroidal magnetic fields
are usually considered in this case, which can be assumed to act approximately in the
tachocline plane, so that the model [1] describes two-dimensional flows. In some papers
(e.g., [9, 11]), one-dimensional SMHD equations are considered. In [9], one-dimensional
SMHD equations with arbitrary bottom topography were studied in Lagrangian coordi-
nates. In this case, most of the equations of the SMHD system are integrated, and only
one equation remains unintegrated. For this equation in [9], a group classification was
carried out according to the function describing the topography of the bottom. Conserva-
tion laws and invariant solutions in Lagrangian and Eulerian coordinates were obtained.
It was found that in Lagrangian coordinates, the one-dimensional SMHD equations dif-
fer from the standard one-dimensional shallow water equations [12, 13] only by a linear
term. Thus, based on the known results for the shallow water equations in Lagrangian
coordinates, the conservation laws for SMHD was constructed, which can be done both
for differential equations and for their discretizations.

It is known [14,15] that the presence of conservation laws for equations is closely related
to the symmetries of the equations. The inheritance of symmetries and conservation laws
is also important in the discretization of equations and numerical modeling [16–20]. The
study of symmetries and conservation laws of discrete models, including finite-difference
equations, is the subject of a significant number of works, such as [16–22]. We would
like to emphasize significant contributions of Professor Decio Levi to the study of dis-
crete dynamical system symmetries [18] and nonlinear differential difference equations
as Bäcklund transformations, elucidating their connection to continuous evolution equa-
tions [23]. D. Levi has also stated conditions for the existence of higher symmetries [24]
and contact transformations [25,26] for discrete equations. Comprehensive research in the
area of symmetries and integrability of discrete equations has been reflected in a recent
book [27] by D. Levi, P. Winternitz and I. R. Yamilov.

As part of the development of methods of group analysis of discrete equations, in [28,
29], finite-difference analogues of the Lagrangian and Hamiltonian formalisms were pro-
posed, which simplify the construction of invariant (symmetry-preserving) schemes and
the derivation of their conservation laws. If no invariant Lagrangian or Hamiltonian exists,
the alternative method was introduced in [30]. Practically, to construct invariant schemes
for partial differential equations it is often more convenient to utilize the so-called di-
rect method [31–33], which was recently used to obtain invariant conservative schemes for
various equations of hydrodynamic type [31,34–39].

In the recent papers [31, 34] the authors constructed finite-difference schemes for the
one-dimensional shallow water equations in Lagrangian coordinates, which admit symme-
tries and possess finite-difference analogues of the conservation laws of the original model.
On their basis, new schemes were also constructed for various extended models, such as the
Green–Naghdi equations [36] and the modified shallow water equations [35]. In the present
paper, based on the results of [31, 34] and the paper [32] devoted to the construction of
schemes for wave equations, the authors construct and implement new finite-difference
schemes for the one-dimensional SMHD equations in Lagrangian coordinates and in mass
Lagrangian coordinates.

The paper is organized as follows. In Section 2, the SMHD equations in Eulerian and
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Lagrangian coordinates are considered and their dimensionless forms are given. Sections 3
and 4 are devoted to the construction of schemes for the SMHD equations in Lagrangian
and mass Lagrangian coordinates and their conservation laws are listed for various bottom
topographies according to the group classification results. In Section 5 invariance of finite-
difference schemes in Lagrangian coordinates and invariance the constructed schemes in
particular are discussed. Section 6 is devoted to the numerical implementation of the
schemes. The results are summarized in Conclusion.

2 The one-dimensional SMHD equations in Lagrangian co-
ordinates

The SMHD model proposed in [1] in Eulerian coordinates has the form

ht +∇′ · (hu) = 0, (1a)

ut = −∇
(u · u

2

)
+∇

(
H ·H

2

)
− (k̂× u)k̂ · ∇× u+ (k̂×H)k̂ · ∇×H− g∇h, (1b)

Ht = ∇× (u×H) + (∇′ · u)H− (∇′ ·H)u, (1c)

∇′ · (hH) = 0, (1d)

where u = (u, v, 0) and H = (Hx, Hy, 0) are the two-dimensional velocity and magnetic
filed vectors, k̂ = (0, 0, 1) denotes the unit vector in the vertical direction, ∇′· is the
horizontal divergence operator, k̂ · ∇× is the vertical component of the curl operator,
and the constant g ̸= 0 characterizes the gravitational acceleration. Here h = h0 + η
is the depth of the fluid, where η characterizes a deviation of the free surface from the
undisturbed level h0 > 0. It is also considered |η| < h0.

By analogy with the standard shallow water equations, one introduces the function b(x, y)
characterizing topography of the bottom [9,40]. Then, one writes system (1) with uneven
bottom in coordinate form as

ht + uhx + hux + vhy + hvy = 0, (2a)

ut + uux + vuy −HxHx
x −HyHx

y + ghx = bx, (2b)

vt + uvx + vvy −HxHy
x −HyHy

y + ghy = by, (2c)

Hx
t + uHx

x + vHx
y − uxH

x − uyH
y = 0, (2d)
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Hy
t + uHy

x + vHy
y − vxH

x − vyH
y = 0, (2e)

hxH
x + hHx

x + hyH
y + hHy

y = 0. (2f)

Assuming that h, b, u and H only depend on the single space variable x, the latter system
is brought to the form

ht + uhx + hux = 0, (3a)

ut + uux −HxHx
x + ghx = b′, (3b)

vt + uvx −HxHy
x = 0, (3c)

Hx
t + uHx

x − uxH
x = 0, (3d)

Hy
t + uHy

x − vxH
x = 0, (3e)

hxH
x + hHx

x = 0. (3f)

Using (3a) and (3f) one can rewrite (3d) as

0 = htH
x + hHx

t = (hHx)t.

Thus, by means of (3f),

hHx = a,

where a is constant that characterizes magnitude of the magnetic force.

Further we consider the model in mass Lagrangian coordinates that is(
1

h

)
t

− us = 0, (4a)

ut − a2
(
1

h

)
s

− ghhs − b′ = 0, (4b)
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hHx = a, (4c)

vt − aHy
s = 0, (4d)

Hy
t − avs = 0, (4e)

where the Lagrangian coordinates are introduced similarly to the gas dynamics equations
[41] through the relations

φt(s, t) = u(s, t), φs(s, t) =
1

h(s, t)
(5)

in such a way that the following relation for the differentials dt, ds and dx holds [42]

ds = h dx− hu dt,

and,

st = −hu, sx = h.

The d’Alembert solution of the acoustic equations (4d), (4e) has the form

v = f1(s+ at) + f2(s− at), Hy = f1(s+ at)− f2(s− at), (6)

where f1 and f2 are arbitrary functions of their arguments. Thus, as they are integrated,
we can exclude them from consideration when performing numerical modeling.

Notice that in the variables φ, t and s the system is reduced to the single equation [9]

φtt − a2φss +

(
g

2φ2
s

)
s

− b′ = 0, (7)

which is more suitable for constructing numerical schemes [31,34–36].

The dimensionless form of system (4) is the following(
1

h̃

)
t̃

− ũs̃ = 0, (8a)

ũt̃ − α2

(
1

h̃

)
s̃

− g1h̃h̃s̃ − b̃′ = 0, (8b)

ṽt̃ − α2H̃y
s̃ = 0, (8c)
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H̃y

t̃
− ṽs̃ = 0, (8d)

h̃H̃x = 1, (8e)

where α and g1 are dimensionless constants characterizing intensity of magnetic and grav-
ity fields. Then, the solution (6) becomes

ṽ = αf1(s̃+ αt̃) + αf2(s̃− αt̃), H̃y = f1(s̃+ αt̃)− f2(s̃− αt̃).

The dimensionless form of (7) is

φ̃t̃t̃ − α2φ̃s̃s̃ +

(
g1
2φ̃2

s̃

)
s̃

− b̃′ = 0. (9)

Further we consider the dimensionless equations, and symbol˜is omitted for brevity. We
also assume g1 = 2 by means of equivalence transformations [9].

The local conservation laws of (9) have been obtained in [9]. They are listed below
depending on the bottom topography according to the results of the group classifications
with respect to the function b′.

• Case b′ is arbitrary. Conservation laws of momentum and energy are

(φtφs)t −
(
φ2
t + α2φ2

s

2
− 2

φs
+ b

)
s

= 0,

(
φ2
t + α2φ2

s

2
+

1

φs
− b

)
t

+

(
φt

φ2
s

− α2φtφs

)
s

= 0,

and the conservation law of mass is just the relation φts = φst;

• Case b′ = 0 (a horizontal bottom). Center-of-mass motion law

(tφt − φ)t +

(
tg

2φ2
s

− tα2φs

)
s

= 0,

and the following alternative form of the conservation law of momentum.

(φt)t +

(
1

φ2
s

− α2φs

)
s

= 0;

• The case of inclined bottom topography (b′ = C) is reduced to the case of horizontal
bottom topography by means of the transformation [43,44]

φ 7→ φ+
Ct2

2
; (10)
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• Case b′ = φ (a parabolic bottom, concave up).

(
(φ− φt − φs) e

t
)
t
+

((
α2φs + φt + φ− 1

φ2
s

)
et
)

s

= 0,

(
(φt + φs + φ) e−t

)
t
+

((
φ− α2φs − φt +

1

φ2
s

)
e−t

)
s

= 0;

• Case b′ = −φ (a parabolic bottom, concave down).

(φ sin t+ φt cos t)t −
((

α2φs −
1

φ2
s

)
cos t

)
s

= 0,

(φ cos t− φt sin t)t +

((
α2φs −

1

φ2
s

)
sin t

)
s

= 0.

3 Schemes for the SMHD equations in Lagrangian coordi-
nates φ(t, s)

Further, to avoid confusion with the standard finite-difference notation, we denote h = ρ
and φ = x. The standard notation [45] is used where f̂ and f̌ denote the values of f =
f(t, s) at the point shifted up and down along the time axis. Similarly f+ and f− (or f+

and f−) denote right and left shifts along the space axis. The total differentiations are
defined as follows

ft =
1

τ
(f̂ − f), fť =

1

τ
(f − f̌), fs =

1

h
(f+ − f), fs̄ =

1

h
(f − f−).

This notation should not cause confusion with standard partial derivatives, since the rest
of the discussion is dedicated to finite differences.

The authors would like to emphasize here that the main goal of the present publication is
the construction of symmetry-preserving finite-difference schemes that possess the largest
possible number of conservation laws. The study of such issues as convergence and stability
of the constructed schemes, their well-posedness and regularity of solutions goes beyond
the scope of our work. The interested reader can find a detailed discussion of nonlinear
stability of schemes for hyperbolic systems and related issues, e.g., in [46].

Considering the form of (9), one notices that in case α = 0 (i.e., magnetic field is absent)
one gets the one-dimensional shallow water equations in Lagrangian coordinates (see,
e.g., [13]). Finite-difference schemes for the shallow water equations have been constructed
by the authors in their recent publications [31, 34]. Here, equation (9) differs from the
shallow water equations only by a linear term α2φss, which can be easily approximated.
The construction can be accomplished by combining the schemes previously obtained
in [31] and the scheme for the linear wave equation derived in [32]. Thus, one writes the
following finite-difference scheme on an orthogonal uniform mesh

xtť − α2xss̄ +

(
1

x̂sx̌s

)
s̄

− B̌ = 0, (11a)
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h+ = h− = h, τ̂ = τ̌ = τ, h⃗ · τ⃗ = 0, (11b)

where h and τ are steps along the space and time axes, and B̌ is some approximation for
b′. Scheme (11) has the second order of approximation in h and τ .

The conservation laws for the scheme are derived by straightforward extension of the
previous results [31,32]. Recall that any (local) conservation law of (11) can be represented
in the divergent form

Tt + Ss = Λ

(
xtť − α2xss̄ +

(
1

x̂sx̌s

)
s̄

− B̌

)
= 0, (12)

where T and S are conserved quantities of the conservation law, and Λ is called a conser-
vation law multiplier.

The finite-difference counterparts of the conservation laws listed in Section 3 possessed
by scheme (11) and the corresponding conservation law multipliers are listed below. One
can verify by direct calculations that these conservation laws are satisfied on the solutions
of scheme (11) (and therefore can also be represented in form (12)). To do this, it suffices,
for example, to solve the equations of the scheme with respect to xt, h+, and τ̂ and
substitute the result and its finite-difference shifts into the conservation laws.

• In case b(x) = const (B̌ = 0), the conservation laws are the following.

1. mass

(x̂s)ť − (x+t )s̄ = 0;

2. momentum

Λ1 = 1, (xt)ť +
(
(x̂sx̌s)

−1 − α2xs
)
s̄
= 0;

3. center-of-mass law

Λ2 = t, (txt − x)ť +
(
t(x̂sx̌s)

−1 − tα2xs
)
s̄
= 0;

4. energy

Λ3 =
xt + x̌t

2
,

1

2
(x2t+x−1

s +x̂−1
s +α2xsx̂s)ť+

1

2

(
(x+t + x̌+t )

(
(x̂sx̌s)

−1 − α2xs
))

s̄
= 0.

• The case of inclined bottom (B̌ = C) is reduced to the case of horizontal bottom
topography by means of the following finite-difference analogue of (10) (see [43]).

x 7→ x+
Ctt̂

2
. (13)
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• For the parabolic bottom b(x) =
x2

2
(see also [34]),

B̌ =
2(cosh τ − 1)

τ2
x

there are two additional conservation laws

Λ+
a1 = et,

(
x
et̂ − et

τ
− etxt

)
ť

−
(
et((x̂sx̌s)

−1 − α2xs)
)
s̄
= 0,

Λ+
a2 = e−t,

(
x
e−t − e−t̂

τ
− e−txt

)
ť

−
(
e−t((x̂sx̌s)

−1 − α2xs)
)
s̄
= 0.

• For the parabolic bottom b(x) = −x2

2
(see also [34]),

B̌ =
2(cos τ − 1)

τ2
x

there are two additional conservation laws

Λ−
a1 = sin t,

(
xt sin t− x

sin t̂− sin t

τ

)
ť

+
(
sin t ((x̂sx̌s)

−1 − α2xs)
)
s̄
= 0,

Λ−
a2 = cos t,

(
xt cos t− x

cos t̂− cos t

τ

)
ť

+
(
cos t ((x̂sx̌s)

−1 − α2xs)
)
s̄
= 0.

• In case the bottom is arbitrary (b = b(x)), one can preserve the conservation law of
energy by modifying the first equation of the scheme as follows (see also [31]).

xtť − α2xss̄ +

(
1

x̂sx̌s

)
s̄

− bt + b̌t
xt + xť

= 0. (14)

Then, the conservation law of energy becomes

(x2t + x−1
s + x̂−1

s + α2xsx̂s − b̂− b)ť +
(
(x+t + x̌+t )

(
(x̂sx̌s)

−1 − α2xs
))

s̄
= 0.

4 Schemes for the SMHD equations in mass Lagrangian co-
ordinates

Instead of the three-layer scheme in Lagrangian coordinates one can consider a two-layer
scheme in mass Lagrangian coordinates. This can be achieved by introducing a specific
approximation of the ‘state equation’ p = ρ2 and for the transformation (5) as it was
previously done in [31,34–36]. The resulting scheme is

ρť +
1

2
ρρ̌ (us + ǔs) = 0,

uť +Qs̄ − B̌ = 0,

xt = u, x̌s + xs =
1√
p̌
+

1
√
p
=

2

ρ̌
,

hs+ = hs− = h, τ̂ = τ̌ = τ, h⃗ · τ⃗ = 0,

(15)
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where the quantity Q is given by

Q =

(
4

ρρ̌
− 2

√
p

(
1

ρ
+

1

ρ̌

)
+

1

p

)−1

− α2

√
p
, (16)

and the equation

1√
p̌
+

1
√
p
=

2

ρ̌
(17)

approximates the equation p = ρ2. Scheme (15) along with equation (17) have the first
order of approximation in h and τ .

In mass Lagrangian coordinates, the conservation laws are the following.

• In case b(x) = const (B̌ = 0):

1. mass (
1

ρ

)
ť

−
(
u+ + ǔ+

2

)
s̄

= 0;

2. momentum

uť +Qs̄ = 0;

3. center-of-mass law

(tu− x)ť + (tQ)s̄ = 0;

4. energy(
u2

2
+

p

2
√
p− ρ

+
α2(2

√
p− ρ)

2pρ

)
ť

+

(
u+ + ǔ+

2
Q

)
s̄

= 0.

• As mentioned above, the case of an inclined bottom is reduced to the case of a
horizontal bottom.

• For the parabolic bottom b(x) =
x2

2
:(

x
et̂ − et

τ
− etu

)
ť

−
(
etQ

)
s̄
= 0,

(
x
e−t − e−t̂

τ
− e−tu

)
ť

−
(
e−tQ

)
s̄
= 0.

• For the parabolic bottom b(x) = −x2

2
:(

x
sin t̂− sin t

τ
− u sin t

)
ť

− (Q sin t)s̄ = 0,

(
x
cos t̂− cos t

τ
− u cos t

)
ť

− (Q cos t)s̄ = 0.
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• In case the bottom is arbitrary (b = b(x)), the conservation law of energy is(
u2

2
+

p

2
√
p− ρ

+
α2(2

√
p− ρ)

2pρ
− b̂+ b

2

)
ť

+

(
u+ + ǔ+

2
Q

)
s̄

= 0. (18)

As in the case of scheme (11), the validity of the listed conservation laws on solutions
of (15) can be verified by direct calculations.

5 Discussion on the invariance of the constructed schemes

In the previous sections we focused on the conservation laws of the constructed finite-
difference schemes. Here we mention that the constructed schemes are not only conser-
vative (i.e., possessing conservation laws), but also invariant, that is, they preserve the
symmetries of the original differential model.

Recall that there is a close relationship between conservation laws and symmetries of
an equation, which can be expressed in the form of Noether’s theorem [14, 15]. In the
finite-difference case for ordinary difference equations, there is a finite-difference analogue
of Noether’s theorem [20, 28], which makes it possible to derive conservation laws from
known symmetries admitted by the equation. In the case of finite-difference schemes for
partial differential equations, conservation laws are usually established using the direct
method [31, 32] or algebraic transformations [37–39, 45, 47]. In the latter case, knowledge
of the symmetries and conservation laws of the original differential model may suggest the
form of finite-difference conservation laws [37–39]. As far as the authors know, there is no
rigorous proof of the converse statement, i.e., from the existence of a conservation law for
a scheme, in general, it does not follow that the scheme admits a symmetry corresponding
to the conservation law. At the same time, a large number of examples [31, 32, 34–38]
indirectly indicate the existence of such a connection. In particular, as can be verified,
scheme (11) for various bottom topographies admits the same sets of symmetries (Lie
algebras) as equation (9). Here we refer to [9] where the Lie algebras admitted by (9) are
stated as a result of the group classification procedure.

The second significant factor that should be taken into account when constructing
invariant finite-difference schemes is the preservation of the orthogonality and uniformity
of the finite-difference mesh by group transformations. The corresponding mesh invariance
criteria are given in [20,48]. In contrast to Eulerian coordinates, in Lagrangian coordinates
in the one-dimensional case, these criteria are usually satisfied (this was the case for the Lie
algebras admitted by the schemes for shallow water equations [31], modified shallow water
equations [35], Green–Naghdi equations [36], and this is also true for the obtained SMHD
schemes (11) and (15)). Thus, the advantage of using Lagrangian coordinates for one-
dimensional equations is the possibility of constructing symmetry-preserving schemes on
simple orthogonal uniform meshes. We note that in higher-dimensional cases the situation
becomes more complicated and some symmetries, such as relabeling symmetries, may
not satisfy the criteria as it was stated in [49]. As simplicial meshes are often used in
practical applications for numerical calculations in two and three spatial dimensions, the
orthogonality requirement in this case turns out to be quite severe. It can be weakened
with the loss of some symmetries (for example, relabeling symmetries seem not to be
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generally admitted by simplicial meshes). Although such meshes may naturally arise in
the construction of schemes admitting certain Lie algebras, this is primarily refers to the
finite element or finite volume method, the discussion of which is beyond the scope of our
study.

6 Numerical implementation of the constructed schemes

In the present section, some typical problems are solved numerically using schemes of the
form (15) in mass Lagrangian coordinates. The numerical implementation is carried out
using pseudo-viscosity, which often leads to a loss of accuracy at discontinuities, but which
is quite enough to evaluate the qualitative picture of solutions. Scheme (15) is linearized
using the Newton method (see, e.g., [45]), after which it is transformed to a form suitable
for solving through an iterative algorithm and the tridiagonal matrix method [50]. Since
the linearized version of the scheme may include derivatives of approximations of the
function describing the bottom topography, we first discuss the possible forms of these
approximations.

6.1 Remark on approximations for the function describing the bottom
topography

As it was mentioned above, B̌ is some approximation of the derivative b′ of the function b
that describes the bottom topography. For the linearization purposes, we need to know
the set of variables on which approximations B̌ may depend. According to the group
classification [9], there the following possibilities are of interest: b = C, b = Cx, b = ±x2

2 ,
b = lnx, and b = b(x). As in (14), we consider approximations

B̌ =
[b(x) + b(x̌)]t

xt + x̌t
.

The approximations for the listed topographies are the following.

1) In case b = C one gets B̌ = 0.

2) In case b = Cx one gets B̌ = C.

3) In case b = ±x2

2 ,

B̌ = ±x± τ2

2
ǔt = ±x+ x̌

2
± τ

2
u.

4) In case b = lnx,

B̌ =
1

τ(u+ ǔ)
ln

x+ τu

x− τ ǔ
=

1

x+ τu− x̌
ln

x+ τu

x̌
=

1

x
+O(τ2).

Thus, in general we can restrict our consideration to the function B̌ = B̌(x, x̌, u), or

B = B(x̂, x, û).
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6.2 Linearization of the schemes

We utilize Newton’s linearization method, for which we first augment scheme (15) with
the equation [45]

ω − Ω(ρ, us) = 0,

where

Ω(ρ, us) =
1

2
νρ(us − |us|) +

1

2
µρ|us|(us − |us|).

The grid function ω introduces linear and quadratic pseudo-viscosities characterized by
the corresponding coefficients ν and µ. When implementing scheme (15), for the equation
of motion, instead of (16) we also consider the quantity Θ = Q− ω.

Linearizing the scheme, one derives the equations(
1 +

τ

2h

(
(k)
u i+1 −

(k)
u i + uji+1 − uji

)
ρji

)(
(k+1)
ρ i −

(k)
ρ i

)
+

τ

2h
ρji

(k)
ρ i

(
(k+1)
ui+1 −

(k)
ui+1 −

(k+1)
ui +

(k)
ui

)
= −

(k)

f1,i,(
1− τ

∂

∂
(k)
ui

B

(
(k)
xi , x

j
i ,

(k)
ui

))(
(k+1)
ui −

(k)
ui

)
− τ

∂

∂
(k)
xi

B

(
(k)
xi , x

j
i ,

(k)
ui

)(
(k+1)
xi −

(k)
xi

)
+
τ

h

(
(k+1)

Θi −
(k)

Θi −
(k+1)

Θi−1 +
(k)

Θi−1

)
= −

(k)

f2,i,

(k+1)
xi −

(k)
xi = −

(k)

f3,i,

(k+1)

Pi −
(k)

Pi = −
(k)

f4,i,



(k+1)
ωi −

(k)
ωi +

1

h

(
ν

(
(k)
ui+1 −

(k)
ui

)
− µ

(
(k)
ui+1 −

(k)
ui

)2
)
(
(k+1)
ρi −

(k)
ρi )

+
1

h

(k)
ρi

(
ν − 2µ

(
(k)
ui+1 −

(k)
ui

))(
(k+1)
ui+1 −

(k)
ui+1 −

(k+1)
ui +

(k)
ui

)
= −

(k)

f5,i, if
(k)
ui+1 <

(k)
ui

(k+1)
ωi −

(k)
ωi = −

(k)

f5,i, otherwise;

(k+1)

Θi −
(k)

Θi −
(k+1)
ωi +

(k)
ωi +

(
(k+1)
ρi −

(k)
ρi

)


2

(
(k)

Pi

)3

ρji

(ρji − 2
(k)

Pi)(
(k)
ρi − 2

(k)

Pi)2



+

(
(k+1)

Pi −
(k)

Pi

)
2
(k)

Piρ
j
i

(k)
ρi

(
(ρji +

(k)
ρi )

(k)

Pi − ρji
(k)
ρi

)

(ρji − 2
(k)

Pi)2(
(k)
ρi − 2

(k)

Pi)2
− α2(

(k)

Pi

)2

 = −
(k)

f6,i,
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where P = p2,
(k)
q denotes the value of the quantity q on the k-th iteration, and

(k)

f1,i =
(k)
ρi − ρji +

τ

2h
ρji

(k)
ρi

(
(k)
ui+1 −

(k)
ui + uji+1 − uji

)
,

(k)

f2,i =
(k)
ui − uji +

τ

h

(
(k)

Θi −
(k)

Θi−1

)
− τB

(
(k)
xi , x

j
i ,

(k)
ui

)
,

(k)

f3,i =
(k)
xi − xji − τuji ,

(k)

f4,i =
(k)

Pi −
ρjiP

j
i

2P j
i − ρji

,

(k)

f5,i =


(k)
ωi +

ν

h

(k)
ρi

(
(k)
ui+1 −

(k)
ui

)
− µ

h

(k)
ρi

(
(k)
ui+1 −

(k)
ui

)2

, if
(k)
ui+1 <

(k)
ui

(k)
ωi , otherwise;

(k)

f6,i =
(k)

Θi −
(k)
ωi −


4

ρji
(k)
ρi

− 2
(k)

Pi

 1
(k)
ρi

+
1

ρji

+
1(

(k)

Pi

)2


−1

+
α2

(k)

Pi

.

Notice that in case µ2 + ν2 ̸= 0 conservation law (18) cannot be preserved. Therefore,
when verifying the conservation law of energy, one should take the results of calculations
obtained without pseudo-viscosity or with very small values of ν and µ.

Introducing variables

(k+1)

δu =
(k+1)
u −

(k)
u ,

(k+1)

δρ =
(k+1)
ρ −

(k)
ρ ,

(k+1)

δx =
(k+1)
x −

(k)
x , · · · ,

one derives the three-point equation

Ai

(k+1)

δui−1 − Ci

(k+1)

δui +Di

(k+1)

δui+1 = −Fi,

where Ai, Bi, Di, and Fi depend on the values obtained on the previous iterations. The
latter equation can be solved using tridiagonal matrix algorithm [45, 50]. Then, provided
(k+1)

δu , one can calculate the values of
(k+1)

δρ ,
(k+1)

δx , etc. In particular,

(k+1)

δρi = − τ
(k)
ρi ρ̌i (δui+1 − δui) + 2h

(k)

f1,i

τ ρ̌i

(
(k)
u i+1 −

(k)
u i + ǔi+1 − ǔi

)
+ 2h

.

Further we consider only problems in which velocity of the flow at the boundaries is
held constant. Such problems correspond to the simplest left (L) and right (R) boundary
conditions of the form [45] δuL = δuR = 0.
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6.3 Numerical calculations

First, we consider the dam break problem over horizontal, parabolic and logarithmic bot-
toms. At the initial moment of time, the liquid is divided in the middle of the computa-
tional domain 0 ⩽ s ⩽ S into two regions with heights ρL and ρR < ρL, and the liquid
height profile is slightly smoothed near the initial discontinuity. We chose the following
calculation parameters.

τ = 0.05h, S = 4.0, ρL = 1.0, ρR = 0.5, α2 = 1.6,

ν = ν0h, µ =
3

2π2
µ2
0h

2.

The viscosity coefficients ν0 = 1 ÷ 2, µ0 = 3 ÷ 4, and the step h = 0.04 ÷ 0.1 are vary
depending on the problem and the bottom topography under consideration.

By means of equations (8b) and (8e), one can approximately write

û ∼ u+ τα2∂H
x

∂s
+ · · · .

This means that the change in the velocity of the flow depends linearly on the slope of
the profile of the longitudinal component Hx of the magnetic field. Further, we are only
interested in the shape of this profile, therefore, to visualize the profile, we introduce the
quantity

B = κ

(
1

h

)
s

= κHx
s , (19)

where the coefficient κ is selected for each problem so that B changes within close to the
area of change in the liquid height ρ.

The obtained solutions are depicted in Figure 1, Figure 3 and Figure 4 for the time
t = 0.92. The parabolic bottom profile is given by the function

b(x) = 0.5kp(x− 0.5S)2, kp = 0.05,

and the logarithmic bottom profile is described by

b(x) = k1l ln(x+ k2l ), k1l = 0.1, k2l = 2.0.

Figure 1. Dam break problem for the horizontal bottom. ‘SW’ (black) is the solution for the

standard shallow water equations (α = 0), ‘Gilman’ is the solution for the case α2 > 0 (SMHD).

Initial profile is given by the dotted line, and the magnetic field gradient B is denoted by the

dashed line.
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Figure 2. Dam break problem for the horizontal bottom. Trajectories x(t, s) for the case α > 0

(gray) and α = 0 (black). The characteristics of the flow are outlined with thick dashed lines.

Figure 3. Dam break problem for the parabolic bottom.

Figure 4. Dam break problem for the logarithmic bottom.

The second problem is related to the calculation of the collapse of a liquid column over
the inclined bottom (Figure 5) given by the function

b(x) = kincl x, kincl = −0.1.

In Figure 4, the initial column profile is shown as a dotted gray line. One sees that in the
presence of a magnetic field the column collapses faster (gray solid line) than in the case
of standard shallow water model (black solid line). Notice that the same result is obtained
by calculating for a horizontal bottom followed by applying transformation (13).
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In all the experiments, an acceleration of fluid motion in the areas of growth of the gra-
dient of Hx is observed (see also trajectories of motion depicted in Figure 2), as predicted
by formula (19). In case b′ = 0, the shock wave velocity

D =
√
(α/h0)2 + g1h0

is obtained using the Rankine–Hugoniot conditions (see, e.g., [5] for details). Here h0 is
the height of the liquid column in front of the wave. Accordingly, the characteristics of
the flow are given in Figure 2.

Notice that the difference analogue (15) of (5),

x̌s + xs
2

− 1

2
√
p̌
− 1

2
√
p
= 0,

which has the series expansion xs(t, s)−
1

ρ(t, s)
= O(h+τ), remains correct, since according

to Figures 1 and 3—5 the density ρ satisfies the inequality 0 < ρ < ∞ in the computational
domain.

Figure 5. Collapse of the liquid column over the inclined bottom.

Finally, we estimate the change in the total energy with time for the first problem using
the following error estimations

errA(n) = |H(n)−H(0)|, errR(n) =
|H(n)−H(0)|

|H(0)|
,

where, according to the conservation law (18),

H(n) = h

⌊S/h⌋∑
k=0

(
(unk)

2

2
+

pnk
2
√

pnk − ρnk
+

α2(2
√
pnk − ρnk)

2pnkρ
n
k

− b(xnk)

)
,

and the index notation is used: fn
k = f(t+nτ, s+ kh). H(n) gives the total energy in the

computational domain, and its value should tend to constant in the continuous limit [29].
The result for the time interval 0 ⩽ t ⩽ 10 is given in Figure 6. The figure demonstrates

that the total energy practically does not change with time.



18 ]ocnmp[ E I Kaptsov and V A Dorodnitsyn

Figure 6. Total energy preservation estimations errA(n(t)) and errR(n(t)), n(t) = ⌊t/τ⌋ for

t ∈ [0, 10]. The calculation is performed without pseudo-viscosity. Machine precision is 10−16.

7 Conclusion

In the present paper, finite-difference schemes have been constructed for one-dimensional
shallow water equations in the presence of a magnetic field (the Gilman model) in La-
grangian coordinates for various bottom topographies. According to the recent group
classification [9], the cases of an arbitrary, horizontal, inclined, parabolic, and logarithmic
bottom are distinguished, while the case of an inclined bottom is reduced to the case of
a horizontal bottom by a simple point change of variables. The constructed schemes pos-
sess finite-difference analogues of the conservation laws of the original differential model
for all the listed cases of bottom topography, and are also invariant, i.e. preserve the
symmetries of the original model. The schemes are constructed on uniform orthogonal
meshes. In Lagrangian coordinates, they are given on three time layers, and in mass La-
grangian coordinates, they can be given on two time layers by means of a specially selected
finite-difference equation of state.

In mass Lagrangian coordinates, the schemes are implemented numerically. Typical
one-dimensional problems of dam break and liquid column collapse above an inclined
bottom are considered. To demonstrate the effect of a magnetic field on the motion of fluid
particles, the Gilman model is compared to the standard shallow water model. Numerical
experiments show that the magnetic field accelerates the movement of compression waves
along the various bottom topographies, and the destruction of the liquid column above the
inclined bottom. For one of the problems calculated with no pseudo-viscosity, the control
of the conservation law of energy was carried out, from which it is seen that the invariant
conservative scheme preserves the total energy almost with no loss.
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