
ar
X

iv
:2

21
1.

06
93

7v
2 

 [
nl

in
.S

I]
  1

2 
D

ec
 2

02
2

Open Communications in Nonlinear Mathematical Physics ]ocnmp[ Vol.2 (2022) pp 216–228 Letter

Letter to the Editors

On fully-nonlinear symmetry-integrable equations

with rational functions in their highest derivative:

Recursion operators

Marianna Euler and Norbert Euler ∗

Centro Internacional de Ciencias, Av. Universidad s/n, Colonia Chamilpa,
62210 Cuernavaca, Morelos, Mexico
∗ Corresponding author: Dr.Norbert.Euler@gmail.com

Abstract: We report a class of symmetry-intergable third-order evolution equations in
1+1 dimensions under the condition that the equations admit a second-order recursion
operator that contains an adjoint symmetry (integrating factor) of order six. The recursion
operators are given explicitly.

1 Introduction

We recently reported four fully-nonlinear Möbius-invariant and symmetry-integrable third-
order evolution equations, namely [2]

ut =
ux

(b− S)2
, b 6= 0 (1.1a)

ut =
ux

S2
(1.1b)

ut = −2
ux√
S

(1.1c)

ut =
ux(a1 − S)

(a21 + 3a2)(S2 − 2a1S − 3a2)1/2
, a21 + 3a2 6= 0, (1.1d)

where S denotes the Schwarzian Derivative

S :=
uxxx

ux
− 3

2

(

uxx

ux

)2

. (1.2)
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This classification was achieved by matching quasi-linear auxiliary symmetry-integrable
evolution equations in S for each equation (1.1a) – (1.1d). In [3] we propose a method to
compute the higher members of the hierarchies of (1.1a) – (1.1d) without the knowledge
of the equations’ recursion operators. In particular, the proposed method makes use of
the recursion operators of the auxiliary quasi-linear evolution equations in the variable S.
This is an essential point since it is in general rather complicated and tedious to compute
recursion operators, especially for fully-nonlinear equations. It is important to point out
that the method to compute the higher-order members of the hierarchies as proposed in [3],
only applies to evolution equations that are Möbius-invariant and symmetry-integrable.
Furthermore we point out that it is not possible to extend the idea of Möbius-invariant
evolution equation to systems of evolution equations in a direct sense. This has been
investigated in [4].

Inspired by the above mentioned results, we address here the problem of identifying
fully-nonlinear symmetry-integrable evolution equations beyond the Möbius-invariant class
and we do so by requiring the equations to admit a recursion operator of a certain form.
In particular, we restrict ourselves to evolution equations that contain rational functions
in uxxx. Moreover, we assume a recursion operator of order two with an integrating factor
of maximum order six. This of course restricts us to a special class of equations, namely
equations that admit those type of recursion operators. Nevertheless, we believe that our
findings are of interest and that the results reported here are new.

We would like to point out that Hernández Heredero [6] classified a type of third-order
integrable fully-nonlinear evolution equations that does not include equations with rational
functions in uxxx.

2 Notations and conditions

To fix the notation and to recall the conditions that are needed in this paper, we consider
the general nth-order autonomous evolution equation in 1+1 dimensions

E := ut − F (u, ux, uxx, uxxx, . . . , unx) = 0. (2.1)

The subscripts of u denote partial derivatives, where partial derivatives of order 4 and
higher are indicated by unx, n ≥ 4.

Equation (2.1) is said to be symmetry-integrable if it admits a recursion operator R[u]
that generates an infinite number of local Lie-Bäcklund (or generalized) symmetries for
the equation. In this paper we consider recursion operators of the following form

R[u] :=

m
∑

k=1

Gk[u]D
k
x +G0[u] +

p
∑

j=1

Ij[u]D
−1
x ◦ Λj[u]. (2.2)

The notation R[u] and Gj [u] indicates that the operator R and functions Gj depend
on u, ux, uxx, . . . up to an order that is ab initio not fixed. Here Ij are Lie-Bäcklund
symmetry coefficients for (2.1), i.e. the coefficients of a symmetry generator

Z = Ij [u]
∂

∂u
(2.3)
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which satisfies the condition

LE [u]Ij [u]

∣

∣

∣

∣

E=0

= 0, (2.4)

where LE[u] denoted the linear operator

LE [u] :=
∂E

∂u
+

∂E

∂ut
Dt +

∂E

∂ux
Dx +

∂E

∂uxx
D2

x + · · ·+ ∂E

∂unx
Dn

x . (2.5)

Λj [u] are integrating factors for conservation laws

DtΦ
t[u] +DxΦ

x[u]

∣

∣

∣

∣

E=0

= 0, (2.6)

of (2.1), where

Λ[u] = Ê[u]Φt[u] (2.7)

and Λ must satisfy the condition

Ê[u] (Λ[u]E)

∣

∣

∣

∣

E=0

= 0. (2.8)

Here Ê[u] is the Euler operator

Ê[u] :=
∂

∂u
−Dt ◦

∂

∂ut
−Dx ◦

∂

∂ux
+D2

x ◦
∂

∂uxx
−D3

x ◦
∂

∂u3x
+ · · · . (2.9)

Note that condition (2.8) is equivalent to

L∗

E [u]Λ[u]

∣

∣

∣

∣

E=0

= 0 (2.10a)

and LΛ[u]E = L∗

Λ[u]E. (2.10b)

The first condition (2.10a) requires Λ to be an adjoint symmetry for (2.1), whereas the
second condition (2.10b) requires Λ to be a self-adjoint function (for scalar evolution
equations this means even-order). Here L∗

E[u] denotes the adjoint operator of LE [u],
namely

L∗

E [u] :=
∂E

∂u
−Dt ◦

∂E

∂ut
−Dx ◦

∂E

∂ux
+D2

x ◦
∂E

∂uxx
−D3

x ◦
∂E

∂u3x
+ · · · . (2.11)

The condition on the recursion operator R[u] for (2.1) is

[LF [u], R[u]]ϕ = (DtR[u])ϕ, (2.12)

where [ , ] denotes the commutator (or Lie bracket). Condition (2.12) is evaluated on the
equation (2.1). Moreover, the recursion operator of (2.1) should generate a hierarchy of
symmetries coefficients η for (2.1), i.e. symmetry generators of the form

Z = η[u]
∂

∂u
, (2.13)
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by acting R[u] repeatedly on η. That is

Rk[u]η1[u] = ηk+1[u], k = 1, 2, . . . . (2.14)

For a symmetry-integrable evolution equation we require that all symmetries coefficients
η generated by R are local, so a recursion operator for that equation would generate a
hierarchy of local evolution equations

utk = Rk[u]F [u], k = 1, 2, . . . . (2.15)

Each evolution equation in the hierarchy (2.15) should share the same set of symmetries
that are generated by acting the recursion operator on the first (or seed) member for the
hierarchy of (2.1). Those symmetries then span an Abelian Lie algebra and the recursion
operator is hereditary for each member of the hierarchy (see [5] and [7] for more details).

3 Recursion operators for a class of third-order symmetry-
integrable equations

Our starting point is the general class of third-order autonomous evolution equations of
the form

E := ut − F (ux, uxx, uxxx) = 0. (3.1)

For the symmetry-integrability of (3.1) we need to establish a recursion operator for the
equation. In this paper we consider second-order recursion operators R[u] of the form

R[u] = G2[u]D
2
x +G1[u]Dx +G0[u] + I1[u]D

−1
x ◦ Λ1[u] + I2[u]D

−1
x ◦ Λ2[u]. (3.2)

The explicit conditions on Gj , Ij , Λj and F for (3.1) are given in Appendix A.

In order to find equations of the form (3.1) that may admit a recursion operator of the
form (3.2), we first establish the most general form of F in terms of it highest derivative
uxxx. This is achieved by solving the first three equations in the split commutator condition
(2.12), namely those conditions on Gj , and F that do not involve the conditions on the
integrating factors Λj or the symmetries Ij. These are the conditions (A.2a), (A.2b) and
(A.2c) given in Appendix A.

Proposition 1. In terms of the variable uxxx, the most general form of F (ux, uxx, uxxx)
for which (3.1) admits a recursion operator of the form (3.2) is given by the following four
cases:

F =
Q3(ux, uxx)

[

uxxx +Q2(ux, uxx)
]

Q1(ux, uxx)
[

Q1(ux, uxx) + (uxxx +Q2(ux, uxx))2
]1/2

+Q4(ux, uxx) (3.3a)

F = Q1(ux, uxx)uxxx +Q2(ux, uxx) (3.3b)

F =
Q1(ux, uxx)

[

uxxx +Q2(ux, uxx)
]2 +Q3(ux, uxx) (3.3c)
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F =
Q1(ux, uxx)(uxxx +Q2(ux, uxx))

Q2
2(ux, uxx)

[

u2xxx + 2Q2(ux, uxx)uxxx
]1/2

+Q3(ux, uxx). (3.3d)

The functions Q1, Q2, Q3 and Q4 are arbitrary in their indicated arguments.

Proof: Solving (A.2a), (A.2b) and (A.2c) we obtain the following condition on F (ux, uxx,
uxxx):

F ′

[

9(F ′)2F (4) − 45F ′F ′′F ′′′ + 40(F ′′)3
]

= 0, (3.4)

where the primes denote partial derivatives with repect to uxxx and F (4) the fourth partial
derivative with repect to uxxx. The general solution of (3.4) is given by (3.3a), whereby
(3.3b), (3.3c) and (3.3d) are singular solutions. ✷

Remark 1. We remark that the conditions given in Proposition 1 are consistent with the
conditions (2.3), (2.4) and (2.5) reported in [6].

The functions Q1, Q2, Q3 and Q4 should now be determined to gain recursion operators of
the form (2.2) for the equation (3.1) for each case F listed in Proposition 1. This identifies
the exact form of F for the symmetry-integrability of (3.1), which is achieved by solving
the remaining conditions (A.2d), (A.2e), (A.2f) and (A.2g) given in Appendix A.

In the current paper we restrict ourselves to the case where F (ux, uxx, uxxx) is a rational
functions in uxxx, namely case (3.3c). This leads to the following

Proposition 2. The following equations, in the class ut = F (ux, uxx, uxxx) with F a
rational function in uxxx, are symmetry-integrable:

• Case I

ut =
u6xx

(αux + β)3u2xxx
+Q(ux), (3.5a)

where {α, β} are arbitrary constants, not simultaneously zero, and Q(ux) needs to
satisfy

(αux + β)
d5Q

du5x
+ 5α

d4Q

du4x
= 0, (3.5b)

which admits for α 6= 0 the general solution

Q(ux) = c5

(

ux +
β

α

)3

+ c4

(

ux +
β

α

)2

+ c3

(

ux +
β

α

)

+c2

(

ux +
β

α

)

−1

+ c1. (3.5c)

For α = 0, the general solution of (3.5b) is

Q(ux) = c5u
4
x + c4u

3
x + c3u

2
x + c2ux + c1. (3.5d)

Here cj are constants of integration.
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• Case II

ut =
u3xx (λ1 + λ2uxx)

3

u2xxx
, (3.6)

where {λ1, λ2} are arbitrary constants but not simultaneously zero.

• Case III

ut =
(αux + β)11

[

(αux + β)uxxx − 3αu2xx
]2 , (3.7)

where {α, β} are arbitrary constants but not simultaneously zero.

• Case IV

ut =
4u5x

(2b u2x − 2uxuxxx + 3u2xx)
2
≡ ux

(b− S)2
, (3.8)

where b is an arbitrary constant and S is the Schwarzian derivative (1.2).

The recursion operators for each equation listed in Proposition 2 have been computed and
are given in Appendix B. Note that equation (3.8) is identical to the Möbius-invariant
equation (1.1a). This recursion operator for equation (1.1b) is obtained by setting b = 0
in the recursion operator (B.7) of (3.8).

For each equation listed in Proposition 2 one can easily remove the nonlinearity in the
third derivative by a simple substitution ux = W (x, t) which, in a sense, “unpotentialises”
the equations of Proposition 2. For completeness, we list the so obtained equations here:

• Case I: With ux = W (x, t), (3.5a) takes the form

Wt = − 2W 6
xWxxx

(αW + β)3W 3
xx

− 3αW 7
x

(αW + β)4W 2
xx

+
6W 5

x

(αW + β)3Wxx

+Q′(W )Wx, (3.9a)

where

(αW + β)Q(5) + 5αQ(4) = 0, Q = Q(W ). (3.9b)

• Case II: With ux = W1(x, t), we obtain for (3.6) the following equation:

W1,t = −
2W 3

1,x(λ1 + λ2W1,x)
3W1,xxx

W 3
1,xx

+
3λ2W

3
1,x(λ1 + λ2W1,x)

2

W1,xx

+
3W 2

1,x(λ1 + λ2W1,x)
3

W1,xx
. (3.10)
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With W1,x = W2(x, t), we obtain for (3) the following equation:

W2,t = −2W 2
2 (λ1 + λ2W2)

3W2,xxx

W 3
2,x

+
6W 3

2 (λ1 + λ2W2)
3W 2

2,xx

W 4
2,x

−9W 2
2 (λ1 + λ2W2)

3(W2 + 1)W2,xx

W 2
2,x

+
9λ2W

2
2 (λ1 + λ2W2)

2(W2,x + 1)

W2,x

−6λ2
2W

3
2 (λ1 + λ2W2) + 6W2(λ1 + λ2W2)

3. (3.11)

• Case III: With ux = W (x, t), we obtain for (3.7) the following equation:

Wt = − (αW + β)10
[

(αv + β)Wxx − 3αW 2
x

]3

[

2αWWxxx (αW + 2β) + 2β2Wxxx

− 21αWxWxx (αW + β) + 33α2W 3
x

]

. (3.12)

• Case IV: With ux = W (x, t), we obtain for (3.8) the following equation:

Wt =
4W 4

(

2bW 2 − 2WWxx + 3W 2
x

)3

(

4W 2Wxxx − 18WWxWxx

+ 15W 3
x + 2bW 2Wx

)

. (3.13)

4 Concluding remarks

Our aim has been to construct fully-nonlinear third-order evolution equations in the class
ut = F (ux, uxx, uxxx), namely to identify those equations in this class that admit a second-
order recursion operator with a sixth-order integrating factor, which are then symmetry-
integrable equations. Note that that exists no fully-nonlinear evolution equation in this
class that admits a recursion operator of order two where both integrating factors, Λ1 and
Λ2, are of order less than six.

We report here four equations, listed in Proposition 2, namely (3.5a), (3.6), (3.7) and
(3.8). Due to the mentioned restrictions on the form of the recursion operator, this is
certainly not a complete classification of all fully-nonlinear third-order evolution equations
of this form that admit a recursion operator. Nevertheless, we do consider the equations
that we have obtained here to be of some interest and worthy of further study. It would, for
example, be interesting to find all the potentialisations of the four fully-nonlinear equations
(3.5a) to (3.8), as well as the equations (3.9a) to (3.13). This can be investigated by using
the adjoint symmetries structure of the equations. Some preliminary calculations have
revealed a rich adjoint symmetry structure for these equations, so one can expect to obtain
interesting results. Furthermore, one could apply the multi-potentialisation method which
may lead to nonlocal symmetries for the equations (see [1] for details regarding multi-
potentialisations). One could also extend this study further, namely to include evolution
equations of third order that explicitly depend on u and allow algebraic functions in uxxx.
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A Appendix: The general conditions for R[u] of (3.1)

For the equation ut = F (ux, uxx, uxxx) we provide here the explicit general conditions on
the functions F , Gj , Ij and Λj for the existence of a recursion operator R[u] of the form

R[u] = G2[u]D
2
x +G1[u]Dx +G0[u] + I1[u]D

−1
x ◦ Λ1[u] + I2[u]D

−1
x ◦ Λ2[u]. (A.1)

This is obtained from the commutator condition (2.12) by equating to zero all the deriva-
tives of the free function ϕ. For convenience we introduce the following notation:

A1 :=
∂F

∂ux
, A2 :=

∂F

∂uxx
, A3 :=

∂F

∂uxxx
.

The conditions are as follows:

∂4ϕ

∂x4
: −2G2DxA3 + 3A3DxG2 = 0 (A.2a)

∂3ϕ

∂x3
: 2A2DxG2 − 2G2DxA2 −G2D

2
xA3 −G1DxA3 + 3A3D

2
xG2

+3A3DxG1 = 0 (A.2b)

∂2ϕ

∂x2
: 3A3D

2
xG1 +A3D

3
xG2 + 2A2DxG1 +A2D

2
xG2 +A1DxG2 + 3A3DxG0

− 2G2DxA1 −G2D
2
xA2 −G1DxA2 −DtG2

∣

∣

∣

∣

E=0

= 0 (A.2c)

∂ϕ

∂x
: A3D

3
xG1 + 3A3D

2
xG0 +A2D

2
xG1 + 2A2DxG0 +A1DxG1

+
2

∑

j=1

(

3A3ΛjDxIj + 3A3IjDxΛj + IjΛjDxA3

)

−G2D
2
xA1 −G1DxA1 −DtG1

∣

∣

∣

∣

E=0

= 0 (A.2d)

ϕ : A3D
3
xG0 +A2D

2
xG0 +A1DxG0 +

2
∑

j=1

(

− 2Ij(DxΛj)(DxA3)− IjΛjD
2
xA3

+IjΛjDxA2 − IjD
4
xΛj + 3A3(DxIj)(DxΛj) + 3A3ΛjD

2
xIj
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+ 2A2ΛjDxIj + 2A2IjDxΛj

)

−DtG0

∣

∣

∣

∣

E=0

= 0, (A.2e)

as well as the symmetry condition

LE [u] Ij

∣

∣

∣

∣

E=0

= 0, j = 1, 2 (A.2f)

and the adjoint symmetry condition

L∗

E [u] Λj

∣

∣

∣

∣

E=0

= 0, j = 1, 2. (A.2g)

B Appendix: The recursion operators for the symmetry-
integrable equations of Proposition 2

Recursion operator for Case I: Equation (3.5a) of Proposition 2 viz.

ut =
u6xx

(αux + β)3u2xxx
+Q(ux),

admits the recursion operator

R[u] = G2[u]D
2
x +G1[u]Dx +G0[u] + (αux + β)D−1

x ◦ Λ1[u], (B.1)

where

G2[u] =
uxx

(αux + β)2 u2xxx
(B.2a)

G1[u] =
u4xxu4x

(αux + β)2 u3xxx
− 4u3xx

(αux + β)2 uxxx
+

αu5xx
(αux + β)3 u2xxx

(B.2b)

G0[u] = − u4xxu5x

(αux + β)2 u3xxx
+

3u4xxu
2
4x

(αux + β)2 u4xxx

+

(

− 8u3xx
(αux + β)2u2xxx

+
6αu5xx

(αux + β)3 u3xxx

)

u4x +
6α2u6xx

(αux + β)4 u2xxx

− 18αu4xx
(αux + β)3 uxxx

+
12αu2xx

(αux + β)2
+

1

3
(αux + β)

d2Q

du2x
− α

3

dQ

dux
(B.2c)

Λ1 =
u4xxu6x

(αux + β)3 u3xxx
+

(

12u3xx
(αux + β)3 u2xxx

− 9αu5xx
(αux + β)4 u3xxx

)

u5x

+

(

24αu2xx
(αux + β)3 uxxx

− 72αu4xx
(αux + β)4 u2xxx

+
36α2u6xx

(αux + β)5 u3xxx

)

u4x

− 9u4xxu4xu5x
(αux + β)3 u4xxx

+

(

27αu5xx
(αux + β)4 u4xxx

− 28u3xx
(αux + β)3 u3xxx

)

u24x
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+
12u4xxu

3
4x

(αux + β)3 u5xxx
− 24uxxuxxx

(αux + β)3
+

30α3u7xx
(αux + β)6 u2xxx

+
108αu3xx

(αux + β)4

− 108α2u5xx
(αux + β)5 uxxx

− 1

2

d3Q

du3x
uxx. (B.2d)

Here Q(ux) needs to satisfy the 5th-order ordinary differential equation (3.5b), viz.

(αux + β)
d5Q

du5x
+ 5α

d4Q

du4x
= 0.

Recursion operator for Case II: Equation (3.6) of Proposition 2 viz.

ut =
u3xx (λ1 + λ2uxx)

3

u2xxx

admits the recursion operator

R[u] = G2[u]D
2
x +G1[u]Dx +G0[u] +D−1

x ◦ Λ1[u], (B.3)

where

G2[u] =
u2xx(λ1 + λ2uxx)

2

u2xxx
(B.4a)

G1[u] =
u2xx(λ1 + λ2uxx)

2u4x

u3xxx
− 4λ2u

2
xx(λ1 + λ2uxx)

uxxx
(B.4b)

G0[u] =
u2xx(λ1 + λ2uxx)

2u5x

u3xxx
+

3u2xx(λ1 + λ2uxx)
2u24x

u4xxx

−2uxxu
2
xxx(λ1 + λ2uxx)(λ1 + 4λ2uxx)u4x

u4xxx
+ 12λ2

2u
2
xx + 6λ1λ2uxx (B.4c)

Λ1[u] =
u2xx(λ1 + λ2uxx)

2u6x

u3xxx
+

4uxx(λ1 + λ2uxx)(λ1 + 3λ2uxx)u5x
u2xxx

−9u2xx(λ1 + λ2uxx)
2u4xu5x

u4xxx
+

12u2xx(λ1 + λ2uxx)
2u34x

u5xxx

−2uxxu
3
xxx(λ1 + λ2uxx)(5λ1 + 14λ2uxx)u

2
4x

u5xxx

+
2(12λ2

2u
2
xx + 10λ1λ2uxx + λ2

1)u4x
uxxx

− 6λ2(λ1 + 4λ2uxx)uxxx. (B.4d)
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Recursion operator for Case III: Equation (3.7) of Proposition 2 viz.

ut =
(αux + β)11

[

(αux + β)uxxx − 3αu2xx
]2

admits the recursion operator

R[u] = G2[u]D
2
x +G1[u]Dx +G0[u] + (αux + β)D−1

x ◦ Λ1[u] (B.5)

where

G2[u] =
(αux + β)8

[

(αux + β)uxxx − 3αu2xx
]2 (B.6a)

G1[u] =
(αux + β)7 u4x

[

(αux + β)uxxx − 3αu2xx
]3

[

(αux + β)2u4x − 13α(αux + β)uxxuxxx

+ 24α2u3xx

]

(B.6b)

G0[u] = − (αux + β)9u5x
[

(αux + β)uxxx − 3αu2xx
]3

+
3(αux + β)6

[

(αux + β)uxxx − 3αu2xx
]4

[

(αux + β)4u24x −
46

3
α(αux + β)3uxxuxxxu4x

+3α(αux + β)3u3xxx +
184

3
α2(αux + β)2u2xxu

2
xxx

− 184α3(αux + β)u4xxuxxx + 144α4u6xx

]

(B.6c)

Λ1[u] =
(αux + β)8 u6x

[

(αux + β)uxxx − 3αu2xx
]3 − 9(αux + β)9 u4xu5x

[

(αux + β)uxxx − 3αu2xx
]4

− 72α2(αux + β)7 u3xxu5x
[

(αux + β)uxxx − 3αu2xx
]4 +

81α(αux + β)8 uxxuxxxu5x
[

(αux + β)uxxx − 3αu2xx
]4

+
12(αux + β)10 u34x

[

(αux + β)uxxx − 3αu2xx
]5

− 45α(αux + β)8 uxxu
2
4x

[

(αux + β)uxxx − 3αu2xx
]5

(

5αuxuxxx + 5βuxxx − 3αu2xx
)

+
5α(αux + β)6 u4x

[

(αux + β)uxxx − 3αu2xx
]5

[

11(αux + β)3u3xxx + 291α(αux + β)2u2xxu
2
xxx
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− 504α2(αux + β)u4xxuxxx + 216α3u6xx

]

− 20α2(αux + β)4 uxx
[

(αux + β)uxxx − 3αu2xx
]7

[

− 67α2

3
(αux + β)4u4xxu

4
xxx

+148α3(αux + β)3u6xxu
3
xxx + 288α5(αux + β)u10xxuxxx

−306α4(αux + β)2u8xxu
2
xxx +

31

27
(αux + β)6u6xxx

− 38α

9
(αux + β)5u2xxu

5
xxx − 108α6u12xx

]

. (B.6d)

Recursion operator for Case VI: Equation (3.8) of Proposition 2 viz.

ut =
4u5x

(2b u2x − 2uxuxxx + 3u2xx)
2
≡ ux

(b− S)2
,

admits the recursion operator

R[u] = G2[u]D
2
x +G1[u]Dx +G0[u] + uxD

−1
x ◦ Λ1[u] + utD

−1
x ◦ Λ2[u] (B.7)

where

G2[u] =
1

4(b− S)2
(B.8a)

G1[u] = − uxx

2ux(b− S)2
− Sx

4(b− S)3
(B.8b)

G0[u] =
u2xx

8u2x(b− S)2
+

uxxSx

4ux(b− S)3
+

Sxx

4(b− S)3
− 2bS2 − b2S − 3S2

x − S3

4(b− S)4
(B.8c)

Λ1[u] = − Sxxx

4ux(b− S)3
− 9SxSxx

4ux(b− S)4
− Sx(b+ 3S)

8ux(b− S)3
− 3S3

x

ux(b− S)5
(B.8d)

Λ2[u] = − Sx

8ux
. (B.8e)

Here S is the Schwarzian derivative (1.2).
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