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Abstract

We study all five-, six-, and one eight-vertex type two-state solutions of the Yang-
Baxter equations in the form A12B13C23 = C23B13A12, and analyze the interplay
of the ‘gauge’ and ‘inversion’ symmetries of these solution. Starting with algebraic
solutions, whose parameters have no specific interpretation, and then using these
symmetries we can construct a parametrization where we can identify global, color and
spectral parameters. We show in particular how the distribution of these parameters
may be changed by a change of gauge.

1 Introduction

The Yang-Baxter equations appeared in the study of two-dimensional integrable models of
statistical mechanics [1], and in the quantization of 1+1 dimensional integrable equations
(see [2, 3]). They are an over-determined system of equations on three matrices [A,B,C]
of size n2 × n2 (n is, e.g, the number of spin states), and read:

∑

α1,α2,α3

Ai1i2
α1α2

Bα1i3
j1α3

Cα2α3

j2j3
=

∑

β1,β2,β3

Ci2i3
β2β3

Bi1β3

β1j3
Aβ1β2

j1j2
, (1a)

∀i1, i2, i3, j1, j2, j3 = 1 . . . n, or in a shorthand notation

A12B13C23 = C23B13A12. (1b)

Here the matrices act on a direct product of three (identical) vector spaces V1 ⊗ V2 ⊗ V3,
and the subscripts tell on which spaces the matrix acts non-trivially, e.g., A12 means that
A acts as A12 ⊗ 1 etc. We choose to write the equations with three different matrices
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A,B,C to emphasize the possible dependence on parameters, but without prejudice on
the nature of these parameters.

The main issue of the present work is precisely to discuss, by examples, questions
related to the parametrization of the solutions of (1b). A natural objective is to write the
solution triplet [A,B,C] in the form of a parametrized family:

A = R(~u), B = R(~u⊕ ~v), C = R(~v), (2)

using some “universal” function R. Here a privileged set of parameters has been identified,
they are the so-called spectral parameters, and have some kind of addition rule ⊕. The
name of spectral parameter has its origin in the quantum inverse scattering theory [2], and
relies on its interpretation as eigenvalue of a spectral problem. The spectral parameters
play a crucial role in the quantum inverse scattering approach, and especially in the Bethe
Ansatz construction. This is the reason why they are singled out in the parametrization of
the solutions. In Baxter’s model [1] the operation ⊕ in (2) is the addition on some elliptic
curve, the uniformization of this curve brings forward elliptic functions and the moduli
of these functions are additional parameters of the solution: we will call them ‘moduli
parameters’. [It should be noted that (1b) has many solutions which cannot be given in
the form (2). Take for example A = B arbitrary and C = P , the permutation matrix. If
this were to be interpreted according to (2) we should take ~v = 0, R(0) = P , and then
R(~u) remains completely arbitrary.]

In this work we take a closer look on the process by which a good parametrization can
be given to a solution of (1b). We show how the inversion symmetries can be used for this
purpose. Of particular interest is the effect of gauge choice on the nature and distribution
of the parameters.

With reference to the parameter dependence it should be noted that there are also the
so-called ‘constant Yang–Baxter equations’, where A = B = C = R, i.e:

R12R13R23 = R23R13R12. (3)

[For n = 2 the complete solution of this equation was presented in [4].] Going from (1b)
with (2) to (3), although simple in terms of the parameters (it amounts to setting them to
some value for which ~u = ~v = ~u⊕~v), leads among other things to the successful notion of
the quantum group. The reverse move, that is to say obtaining solutions of (1b) starting
with solutions of (3), is sometimes called the ‘baxterization problem’ [5], and is naturally
more difficult. In some cases baxterization is obtained from group theory [6]: There exists
a discrete group of symmetries of equation (1b), the ‘group of inversions’, which we denote
by Aut. This group acts by non-linear transformations on the solution triplet and moves it
to another solution. This can be precisely interpreted as the effect of moving the spectral
parameters. The ‘baxterization’ is essentially the action of Aut, if it covers densely the
manifold of spectral parameters, but if Aut produces only a finite set of points we do not
yet have a true baxterization. The group Aut is the statistical mechanical equivalent of the
unitarity and crossing symmetries of S-matrix theory: the generators of these symmetries
form a group similar to Aut [7, 8, 9].

It is important to note that the symmetry Aut is not the gauge symmetry. The latter
is believed to bring in only inessential parameters. One of the results presented in this
paper is that gauge may also change the distribution of the true parameters (see section
4.2).
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The paper is organized as follows: In Sec. 2 we discuss in general the groups of gauge
and inversion transformations and their interplay. In Sec. 3 we give all the five- and
six-vertex solutions to equation (1b) and and show how the invariants of the inversion
group can be used to construct a meaningful parametrization for them. In Sec. 4 we
give a seven parameter symmetric eight-vertex solution to equation (1b) and discuss its
parametrization. By allowing some gauge freedom (for later fixing) we get the solution
first in a rational form. We then show that a choice of gauge does not change the nature
and number of parameters of the solution triple [A,B,C] but—by its interplay with Aut—
affects their distribution between A,B and C, and leads, for example, to Baxter’s elliptic
solution.

2 Two transformation groups

Suppose [A,B,C] is a triplet of matrices, not necessarily verifying (1b). We may define two
groups acting on such triplets, respectively the continuous group of gauge transformations
G = SL(n)⊗ SL(n)⊗ SL(n), and a discrete group denoted Aut.

2.1 The group of gauge transformations

Let g = (g1, g2, g3) be an element of G, acting linearly on the triplet [A,B,C] by similarity
transformations:

g : [A,B,C] 7→ [(g1⊗g2)
−1A (g1⊗g2), (g1⊗g3)

−1B (g1⊗g3), (g2⊗g3)
−1C (g2⊗g3)]. (4)

Here the subscript indicates the vector space where the similarity transformation takes
place, and in different spaces the g matrix can be different. The group G is known to take
solutions of (1b) into solutions of (1b), but its action is defined everywhere, even outside
the space of solutions.

2.2 The group of inversions Aut

Let us first define some elementary operations on a n2×n2 matrix R, with matrix elements
Rij

kl [6]:

1. the (projective) matrix inverse I:

∑

αβ

(IR)ijαβR
αβ
kl = µ δikδ

j
l , i, j, k, l = 1, . . . , n, (5)

with µ an arbitrary multiplicative factor.

2. the transposition t:

(tR)ijkl = Rkl
ij , i, j, k, l = 1, . . . , n, (6)

3. left and right partial transpositions tl and tr:

(tlR)ijkl = Rkj
il , (trR)ijkl = Ril

kj , i, j, k, l = 1, . . . , n. (7)
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Of course

t = tl tr = tr tl, I2 = t2 = t2l = t2r = 1, and I t = t I. (8)

However,

tl I 6= I tl, and tr I 6= I tr, (9)

i.e, the two partial transpositions do not commute with the inversion, while their product
t does. The transformations tlI and trI are generically of infinite order, we shall denote
by Γ the group generated by I, tl, tr. [Of course we must assume that all matrices we are
dealing with are nonsingular.]

We may now define the three generators of the ‘inversion group’ as follows:

Ka : [A,B,C] 7→ [tI A, tl B, tl C],

Kb : [A,B,C] 7→ [tl A, trItl B, tr C], (10)

Kc : [A,B,C] 7→ [tr A, tr B, tI C].

The three involutions Ka,Kb,Kc act non–linearly (by birational transformations). They
generate an infinite discrete group of transformations of triplets, which we denote by Aut.

Proposition 1. The groupAut generated by (10) is an invariance group of the nonsingular
solutions of (1b).

2.3 The compatibility of Aut with G
Clearly the action of the two groups Aut and G do not commute. However, their actions
are compatible, in the sense that Aut respects the equivalence classes of triplets [A,B,C]
modulo G. This can be seen as follows: Suppose that T = [A,B,C], and that T ′ is gauge
equivalent to T by T ′ = g(T ), where g acts as defined in (4) with g = (g1, g2, g3). Then
from (10) we get

Ka(T
′) = [(tg1⊗tg2)tIA(

tg−1

1
⊗tg−1

2
), (tg1⊗g−1

3
)tlB(tg−1

1
⊗g3), (

tg2⊗g−1

3
)tlC(tg−1

2
⊗g3)]

where tg1 denotes the transpose of g1. This can be written in the form

Ka · g = g′ ·Ka with g′ = (tg−1

1
, tg−1

2
, g3),

and there are similar relations for Kb and Kc. They show that

Proposition 2. If two triplets are gauge related, so are their images by any element of
Aut.
Note that the previous proposition applies even if the triplet [A,B,C] does not solve (1b).

2.4 The moduli space of solutions

Let S be any continuously parametrized family of solutions [A,B,C] of (1b). We will call
orbit space the quotient

η = S/G
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with G possibly replaced by some of its subgroups. By dividing out the gauge transfor-
mations we obtain the true solution space. Next we will define the moduli space of S by
the double quotient

M = (S/G)/Aut = η/Aut,

not caring about the differentiability nor regularity properties of this quotient. The action
of Aut moves the spectral parameters, so M is basically the space of non-spectral param-
eters. The second quotient might be extremely singular. The situation described in this
paper is particularly simple in that respect, since η is foliated by Aut-invariant algebraic
subvarieties.

Note that, if A,B,C have a definite form, as is the case for the five-, six- and eight-
vertex Ansatz, we may have to restrict ourselves to some subgroups of G and Aut in order
to preserve this form. We shall in particular need the diagonal subgroup Gd of G, with
elements

g =

([

t1 0

0 t−1

1

]

,

[

t2 0

0 t−1

2

]

,

[

t3 0

0 t−1

3

])

. (11)

3 The five- and six-vertex solutions

3.1 General considerations

The six vertex Ansatz for the matrices A, B and C is

X =









X11 0 0 0
0 X22 X23 0
0 X32 X33 0
0 0 0 X44









, (12)

For the five-vertex model we take X32 ≡ 0, with all other five entries nonzero, while for
the six-vertex model all the six entries are assumed to be nonzero in each matrix.

The form (12) is not strictly stable by Aut, since the partial transpositions exchange
the non-zero off-diagonal elements with the vanishing upper-right and lower-left entries.
However, the subgroup Aut2 of elements of Aut, which are products of squares, respects
the ansatz.

The action of Γ (defined in section (2.2)) on a generic 4×4 matrix was analyzed in [10],
where it was shown that the invariants of Aut2 are ratios of some quadratic polynomials in
the entries of the matrix. Out of the 18 polynomials pi of [10], only five are non-vanishing
when evaluated on a matrix of the form (12), they are

p1(X) = X11X22 +X33X44,

p2(X) = X11X22 −X33X44,

p5(X) = X11X33 +X22X44, (13)

p6(X) = X11X33 −X22X44,

p9(X) = X11X44 +X22X33 −X23X32.

Invariants of Aut2 can then be obtained by taking ratios of the form pi(A)/pj(A), resp.
(B), (C). One should notice that, in the case under study, all these polynomials are



]ocnmp[ Parametrization of solutions of the Yang–Baxter equations 159

independent of the gauge parameters, contrary to what happens for the general (16-vertex)
case.

The rank of the system of the four invariant ratios constructed from the generic matrix
(12) is only 3, the additional relation being

p21 − p22 = p25 − p26. (14)

A solution for which p9(X) ≡ 0 is called “free-fermion type” [11, 12, 13].

3.2 The five-vertex solutions

For the five-vertex solution we take the matrix elements A32 = B32 = C32 = 0. In addition
let us scale so that A11 = B11 = C11 = 1. Substituting this Ansatz into (1b) leads easily
to precisely two solutions.

3.2.1 The first solution

The first solution is given by

A =









1 0 0 0
0 x2 a 0
0 0 x3 0
0 0 0 x4









, B =









1 0 0 0
0 x2 b 0
0 0 y3 0
0 0 0 x4y3

x3









, C =









1 0 0 0
0 x2

x4
c 0

0 0 y3 0
0 0 0 y3

x3









, (15)

with the constraint

ac = b (1− x2x3/x4). (16)

Since now p9 6= 0 let us consider

∆ :=
p2
1
− p2

2

p2
9

, (17)

we find

∆(A) = ∆(B) = ∆(C) =
4x4/(x2x3)

[1 + x4/(x2x3)]2
, (18)

and thus we have found a global invariant, which we may exchange for d :=
√

x2x3/x4
[and in terms of d, the constraint becomes ac = b(1−d2)]. Note that d may be constructed
from the covariants K1, K2, K3 of [10], while the modular invariant J of [10] vanishes.

From the other ratios let us look at the following:

δ :=
p1 + p2
p1 − p2

, δ′ := p5 − p6p5 + p6. (19)

We find

q2
1

:= δ′(A) = δ′(B) = (x2/d)
2,

q2
2

:= δ(A) = δ′(C) = (d/x3)
2,

q2
3

:= δ(B) = δ(C) = (d/y3)
2.

(20)
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Since the common index between A and B is 1, between A and C is 2 and between B and
C is 3, we have also introduced new ‘color’ variables qi in (20). After this let us define

R5a(i, j) =









1 0 0 0

0 d qi (1− d2) gig
−1

j 0

0 0 d q−1

j 0

0 0 0 qi q
−1

j









, (21)

and then the solution (15) can be written as A = R5a(1, 2), B = R5a(1, 3), C = R5a(2, 3).
In this form gi are the variables that are changed by gauge, we could fix them by putting
gi = 1.

Thus, starting with the solution (15) without any particular structure we were able
to put it into a form in which the variables were either global (d) or associated with
the vector spaces (qi). [These latter ones are often called ‘color’ variables [14].] This
was accomplished by looking at what remains from the generic invariants of Aut2 for the
specific solution. The action of Aut2 on R5a is given as follows:

(KaKb)
2 : g1 7→ g1d

2, (KbKc)
2 : g3 7→ g3d

2, (KcKa)
2 : g2 7→ g2d

2 (22)

As a consequence the action of Aut2 cannot be distinguished from the one of the gauge
transformations, i.e. Aut2 acts as unity on the orbit space η.

At this point let us introduce a notation for the parameter content of a solution triple:
we say that the parameter content of (A,B,C) is (nA, nB , nC), if fixing A fixes nA pa-
rameters, then fixing B fixes nB of the remaining parameters and so on. The parameter
content of this solution is clearly (3, 1, 0), since from A we get q1, q2, d and from B the
remaining q3.

Finally we note that in the constant limit we must take all qi equal and obtain the well
know solution of (3)

R =









1 0 0 0
0 p 1− pq 0
0 0 q 0
0 0 0 1









, (23)

where p = dqi, q = d/qi.

3.2.2 The second solution (free fermion type)

By inspection we can write the second solution in terms of

R5b(i, j) =









1 0 0 0
0 pi gij 0
0 0 qj 0
0 0 0 −piqj









, (24)

as A = R5b(1, 2), B = R5b(1, 3), C = R5b(2, 3), together with the constraint

g12g23 = g13(1− p2q2). (25)
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The resolution of this last constraint is more problematic and the choice of gauge less
trivial than in the first solution. [Recall that under a gauge transformation g (see (11)),
gij → gijti/tj , thus we can fix two of gij ’s.]

For a uniform representation in which each R5b(i, j) depends only on two variables we
should have gij = g(pi, qj), but it is easy to see that (25) does not have solutions of this
type. We must then relax the condition, and if we instead allow gij = g(pi, pj , qi, qj) then
a family of solutions can be constructed:

gij = (1− piqi)
α(1− pjqj)

1−α. (26)

The total number of parameters of (24) is four, as in the previous case, but now they are
all ‘color’ parameters (p1, p2, q2, q3). If now we choose, for example, the non-uniform gauge
g12 = g13 = 1 the parameter content of the solution is (2, 1, 1). In the uniform gauge (26)
with α = 0 or 1 we must introduce extra parameters and get parameter content (3, 2, 0)
and (3, 1, 1), respectively, and in other cases (4, 2, 0). Thus the price we have to pay for
uniformity is the introduction of extra spurious parameters, that could in principle be
gauged away.

In this case the action of Aut2 is:

(KaKb)
2 : g12 7→ −g12, g13 7→ −g13, g23 7→ g23,

(KbKc)
2 : g12 7→ g12, g13 7→ −g13, g23 7→ −g23,

(KcKa)
2 : g12 7→ −g12, g13 7→ g13, g23 7→ −g23,

which again is indistinguishable from simple gauge transformations of square one.
The constant limit of this solution is obtained from (24) with pi = p, qi = q, gij =

1− pq, ∀i, j.

3.3 The six-vertex solutions

In this case all entries in (12) are nonzero. We use a gauge transformation with a diagonal
gi and overall scaling to make X23 = X32 = 1 for A and B, say. From equation (1b)
we then get C23 = C32, which can be scaled to 1. We will therefore only write down
the diagonal elements as dp(X) := [X11,X22,X33,X44], and simplify notation by using
xi := Xii, e.g., dp(A) = [a1, a2, a3, a4].

When the Ansatz (12) and X23 = X32 = 1 is used in (1b) we get 6 equations,

b2a1 − b1a2 − c2 = 0,
−b1 − c2a3 + c1a1 = 0,
−a3 − c3b1 + c1b3 = 0,
a2 − c4b2 + c2b4 = 0,
b4 − c4a4 + c3a2 = 0,
b4a3 − b3a4 + c3 = 0.

We solve a1 from the second equation, a2 from the fourth, a3 from the third and a4 from
the fifth, and then b4 from the first. Since the parameters are assumed to be nonzero there
is no ambiguity in doing this and what then remains is one equation which factors as (all
computations were done using REDUCE [15] and Maple [16]):

(b1b2b3+c3c4b
2

1b2−c2c3b1b2b3−c1c4b1b2b3−c1c2b3+c1c2b2b
2

3)(1−c2c3−c1c4) = 0. (27)

We thus recover the two known six-vertex-type solutions:
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3.3.1 The first solution: the asymmetric six-vertex

The first solution is obtained when we use the first factor of (27). After solving for b2 and
some simple parameter changes we can write the solution as follows:

dp(C) = [a, b, c, d],
dp(B) = [ae, bf/h, cf, de/h],
dp(A) = [e+ bc(f − e), bd(f − e))/h, ca(f − e), (e + bc(f − e))/h],

(28)

where

h := ef + (ade− bcf)(e− f). (29)

In this form the solution has a rational expression, but one cannot yet identify any spectral
(or color) parameters.

Before analyzing the solution in detail let us just note that the choice of C fixes four
parameters, and the further choice of B fixes the two remaining ones, so the parameter
content is (4,2,0).

The group of gauge transformations G consists of the diagonal transformations Gd as
above, and they only change the off-diagonal elements of the matrices. The orbit space η
is thus six dimensional and we may take a, b, c, d, e, f as the coordinates on η.

In order to construct a good parametrization we start with (17) and in this case get

∆(A) = ∆(B) = ∆(C) =
4abcd

(ad+ bc− 1)2
, (30)

which is a ‘global invariant’. Here again, the modular invariant J of [10] vanishes.
From (19) we find

q43 := δ(C) = δ(B) =
ab

cd
,

q42 := δ′(C) = δ(A) =
bd

ac
, (31)

q41 := δ′(B) = δ′(A) =
bd

ach2
,

which defines three new (color) parameters. Thus we have been able to identify four of
the six parameters. To study the remaining ones we note that any matrix of the form
(12) with X23 = X32 = 1 (solution or not) can be parametrized equally well with the four
parameters ∆, δ, δ′, λ, (where ∆, δ, δ′ were defined in (17, 19) and the nature of λ is left
open at the moment) and may be written as R(∆, δ′, δ, λ). For the present solution we
have

A = R(∆, q1, q2, λA), B = R(∆, q1, q3, λB), C = R(∆, q2, q3, λC) (32)

where λA, λB , λC must verify an additional relation, which will appear as we clarify the
λ dependence. For this purpose let us write the matrix elements of the solution matrix
R(∆, δ′, δ, λ) as

R11 = u

(

δ

δ′

)1/4

, R22 = v
(

δ′δ
)1/4

, R33 = v

(

1

δ′δ

)1/4

, R44 = u

(

δ′

δ

)1/4

. (33)
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This form is compatible with the previous assignments, and the λ dependence is entirely
inside the u’s and the v’s. What remains are the following relations:

√
∆ =

2uAvA
u2A + v2A − 1

=
2uBvB

u2B + v2B − 1
=

2uCvC
u2C + v2C − 1

, (34)

vA = vBuC − vCuB, uB = uAuC − vAvC , (35)

which are resolved by

uI =
sin(γ − λI)

sin(γ)
, vI =

sin(λI)

sin(γ)
, I = A,B,C (36)

λB = λA + λC ,
√
∆ = −1/ cos(γ). (37)

After changing from ∆ to γ we get

R(γ, q′, q, λ) :=

























q

q′
sin(γ − λ)

sin(γ)
0 0 0

0 qq′
sin(λ)

sin(γ)
1 0

0 1
1

qq′
sin(λ)

sin(γ)
0

0 0 0
q′

q

sin(γ − λ)

sin(γ)

























(38)

and the solution is given by

A = R(γ, q1, q2, λA), B = R(γ, q1, q3, λA + λC), C = R(γ, q2, q3, λC). (39)

Thus we have been able to introduce a good parametrization to the algebraic solution
(28). This is the asymmetric six-vertex solution of [11, 12, 13].

With this parametrization we see that the spectral parameters of A, B, and C are
points on the circle (34), with its simple addition law. It also clarifies the action of Aut2.
Since

tlItlI : R(γ, q, q′, λ) 7−→ R(γ, q, q′, λ+ 2γ), (40)

the action of Aut2 is just a shift of the spectral parameter. Moreover, among the moduli
parameters, only γ is global, while the qi’s are attached to the vector spaces on which the
matrix operates (‘color parameters’). It is interesting to note how the periodic orbits of
Aut appear: they correspond to the values of γ which are commensurate to π. The special
case γ = π/2 is included in the following.

The first known parametrized solution of (2), R(u) = P + uI, is obtained as a singular
limit of (38): take qk =

√
−1, λ = −γu and then let γ → 0. The case 6V(I) of [19] is

sub-case q = q′ of (38). For other special cases, see [20].

3.3.2 The second solution (free fermion type)

If we solve for c4 from the second factor of (27), we get C and B as follows:

dp(C) = [c1, c2, c3, (1 − c2c3)/c1],
dp(B) = [b1, b2, b3, (1 − b2b3)/b1],

(41)
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In this case it is natural to put the diagonal elements of (12) into a 2× 2 matrix as

X̂ =

(

X11 −X22

X33 X44

)

, (42)

and then (41) implies det B̂ = det Ĉ = 1. Furthermore, we find that the remaining matrix
Â is given by a matrix product (note the order)

Â = Ĉ−1B̂. (43)

Thus in this case the natural parametrization is through the group SL(2): For any SL(2)
matrix X̂ let R(X̂) be the 4 × 4 matrix of type (12) obtained by putting the elements of
X̂ on the diagonal as discussed above (X23 = X32 = 1). Then, according to the above,
we can write the result in the form A = R(Â), B = R(Â ⊕ Ĉ), C = R(Ĉ), where now
Â⊕ Ĉ = ĈÂ (in particular, here ⊕ is not Abelian). The parameter content of this solution
is clearly (3, 3, 0). This already shows the difference with the first solution. This solution
is the one of [17], see also [18]. Its constant limit is the permutation matrix.

There are no gauge parameters in our presentation of the solution. The action of Aut2
is

(KaKb)
2 : Â 7→ −Â, B̂ 7→ −B̂, Ĉ 7→ Ĉ (44)

and so on. It is equivalent to discrete gauge transformations of square one.

This solution allows many reductions with one-dimensional spectral parameters. For
example, we may take the solution (38), with γ = π/2. Consider the polynomials pi
introduced above. In this case p9 vanishes, and the rank of the remaining invariant ratios
is 2. Fixing the value of δ = q4 and δ′ = q′4 determines a curve on SL(2), leading to an
Euler type of parametrization:

X̂ =

[

q 0
0 q−1

] [

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

q ′−1 0
0 q ′

]

(45)

From (40), the action of (tlI)
2 is a shift of θ by π and is indeed of order 2. The parameters

q and q′ are free for two of the matrices [A,B,C], say B and C. If δ(B) = δ(C), then
δ(A) = δ′(C) and δ′(A) = δ′(B), and the composition law (43) coincides with the addition
on θ, and we have a special case of solution (39). The solution (3.1) of [14] corresponds
to a slightly different splitting:

X̂ =
1

2

[

e−q eq

−e−q eq

] [

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

eq
′ −eq

′

e−q′ e−q′

]

(46)

As a summary we can state that any six vertex solution is one of the two presented
here, depending on whether p9 vanishes or not.
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4 An eight-vertex Ansatz

We take next a particular eight-vertex Ansatz: the three matrices A,B,C are assumed to
be symmetric with respect to the secondary diagonal:

X =









X11 0 0 X14

0 X22 X23 0
0 X32 X22 0

X41 0 0 X11









(47)

There are many solutions of (1) having this form; here we will analyze the solution that
has the maximum number of parameters, which is seven after the scalings have been fixed
by putting X11 = 1.

4.1 General observations

The solution S := (A,B,C) can be given in terms of seven independent parameters a, b, c,
x, y, z, v:

A =



















1 0 0 a

0 x
b (v − x)

cy
0

0
c (v − xyz)

bz
x 0

(v − y) (v − z)

ayz
0 0 1



















(48)

B =

















1 0 0 b

0 y
a (v − x)

cx
0

0
c (v − z)

az
y 0

(v − y) (v − xyz)

bxz
0 0 1

















(49)

C =



















1 0 0 c

0 z
a (v − xyz)

bx
0

0
b (v − z)

ay
z 0

(v − y) (v − x)

cxy
0 0 1



















(50)

This solution is globally stable by the diagonal group Gd, and the action of g ∈ Gd (11)
moves only a, b, c as follows:

a 7→ a t−2

1
t−2

2
, b 7→ b t−2

1
t−2

3
, c 7→ c t−2

2
t−2

3
(51)

The remaining four parameters are gauge invariant and are therefore coordinates on the
orbit space η = S/Gd. The choice of a gauge amounts to the choice of three functions
a(x, y, z, v), b(x, y, z, v), c(x, y, z, v), and we will later see the effect of choosing a particular
form.
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The action of the generators of Aut is a birational transformation of the parameters
and reads:

Ka : [a, b, c] 7→ [−(v − y) (v − z)

ayz
,
c (v − z)

az
,
b (v − z)

ay
]

[x, y, z, v] 7→ [
(v − z − y) x

v − x− xyz
, y, z, z − v + y] (52)

Kb : [a, b, c] 7→ [
c (v − xyz)

bz
,−(v − z − x) (v − y) (v − xyz)

bxz (v − xyz − y)
,
a (v − xyz)

bx
]

[x, y, z, v] 7→ [x,
(v − z − x) y

v − xyz − y
, z, z − v + x] (53)

Kc : [a, b, c] 7→ [
b (v − x)

cy
,
a (v − x)

cx
,−(v − y) (v − x)

cxy
]

[x, y, z, v] 7→ [x, y,
(v − x− y) z

v − xyz − z
, x− v + y] (54)

One verifies here that Aut indeed acts on the orbit space η, since the transformation of x,
y, z and v does not depend on a, b, c.

There are two invariants of Aut on η:

∆1 =
v(2v − xyz − x− y − z)

xyz
(55)

∆2 =
(v − x)(v − y)(v − z)(v − xyz)

x2y2z2
(56)

There is a canonical way to find these invariants [21]. It consists of first calculating the
squares of the generators Ka,Kb,Kc in homogeneous coordinates. Such squares appear as
the multiplication by some polynomial (Φa,Φb,Φc). For example using the homogenizing
variable t:

Ka : t 7→ t
(

t2x− t2v + xyz
)

x 7→ xt2 (z − v + y)

y 7→ y
(

t2x− t2v + xyz
)

z 7→ z
(

t2x− t2v + xyz
)

v 7→ (z − v + y)
(

t2x− t2v + xyz
)

K2

a ≃ Φa = t4
(

t2x− t2v + xyz
)3

v (z − v + y)

Any rational invariant is the ratio of two polynomials which have the same covariance
properties under Ka (resp. Kb and Kc). The covariance factors are known to be the
factors appearing in Φa, (resp. Φb, Φc), and for a given degree, there are only a finite
number of possible covariance factors. It is thus possible to find all algebraic invariants
of a given degree. This algorithm is unfortunately unbounded, since we do not know any
bound on the degree of the invariant. However, it proves quite efficient in practice.
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The two invariants are ‘global’, as they can be calculated from any of the three matrices
A,B or C using the polynomials p5 and p9 as given in [10]:

∆1 = −2
p9
p5

, ∆2 =
product of anti-diagonal entries

product of diagonal entries
.

The surfaces ∆1 = constant, ∆2 = constant, in η are preserved by the induced action
of Aut. They are of generic dimension 2 and define the varieties where the spectral
parameters live. The invariants ∆1 and ∆2 are the coordinates on the moduli space of the
solution S. Note that they are invariant by any permutation of x, y, z. Note also that the
free fermion condition [11] is just ∆1 = 0.

For later discussions let us introduce the parameters qi by

q1 =
v − x√
xyz

, q2 =
v − xyz√

xyz
, q3 =

v − z√
xyz

, q4 =
v − y√
xyz

. (57)

For the inverse relations define first Λ by

4
∏

i=1

(Λ− qi) = 1, (58)

and then

x = (Λ− q1)(Λ− q2), y = (Λ− q4)(Λ− q2), z = (Λ− q3)(Λ− q2), v = Λ(Λ− q2), (59)

and for the ∆’s we get

∆2 = q1q2q3q4, (60)

∆1 = −2Λ2 + Λ(q1 + q2 + q3 + q4)

= q1q2 + q3q4 − x− 1

x
= q1q3 + q2q4 − y − 1

y
= q2q3 + q1q4 − z − 1

z
. (61)

With these definitions the anti-diagonal entries of our solution can be written as

ad(A) =

{

a,
b

c

√

xz

y
q1,

c

b

√

xy

z
q2,

x

a
q3q4

}

, (62)

ad(B) =

{

b,
a

c

√

yz

x
q1,

c

a

√

xy

z
q3,

y

b
q2q4

}

, (63)

ad(C) =

{

c,
a

b

√

yz

x
q2,

b

a

√

xz

y
q3,

z

c
q1q4

}

. (64)

Note that the qi behave almost like the color parameters.

4.2 Specific gauges and related parametrizations

We will show here how the gauge condition, i.e. the choice of a, b, c as functions of x, y, z, v
affects the distribution of the parameters among the three members of the solution triplet.
The solution we have is a four parameter solution, once the gauge is fixed, as is Baxter’s
solution [1, 22]. Note that for us, ‘fixing the gauge’ means preventing continuous residual
gauge freedom but leaves room for discrete transformations.
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As a possible simple gauge we could take a = 1, b = 1, c = 1. With this choice, choosing
C uses up all four parameters of the solution, and B and A are completely determined
once C is known, thus the parameter content in this case is (4,0,0). The solution is fully
rational but does not lead to a parametrized family of commuting transfer matrices. It
leads to another very interesting — although apparently less constrained — situation:
we have an infinite sequence of commuting transfer matrices with commutation between
successors. We shall not explore this possibility here.

An important question now is the following: How should we choose the gauge condition
in order to get a parametrized family of solutions? Clearly the minimum requirement is
to choose a, b, c in such a way that the knowledge of C, for example, uses only three of the
four available parameters on η, leading to the parameter content (3,1,0). In other words,
the gauge choice must lower the rank of the set of anti-diagonal elements

Σ :=

{

z, c,
a

b

√

yz

x
q2,

b

a

√

xz

y
q3,

z

c
q1q4

}

, (65)

from four to three. Instead of Σ we could consider the set Σ′ := {z, c, b
a

√

x
y q3, q2q3, q1q4},

or using (61), Σ′′ := {z, c, b
a

√

x
y q3, ∆1, ∆2}. In this last set, z, ∆1, and ∆2 are clearly

functionally independent, so in order to have no more than these three parameters we
must impose the condition

c = f(z,∆1,∆2),
a

b
=

√

x

y
q3 g(z,∆1,∆2), (66)

where f and g are some arbitrary functions.

It was argued earlier that for many applications C and B, say, should have a similar
structure, and in particular the same number of free parameters. If we therefore apply the
above argument to B we get in a similar way the conditions

b = h(y,∆1,∆2),
a

c
=

√

x

z
q3 k(y,∆1,∆2), (67)

where h and k are free functions. The compatibility of (66, 67) (solving for a in two ways)
implies

k = ω(∆1,∆2)h(y,∆1,∆2)/
√
y, g = ω(∆1,∆2)f(z,∆1,∆2)/

√
z, (68)

where ω is an arbitrary function, so that

a =

√

x

yz
q3 h(y) f(z) ω =

v − z

yz
h(y) f(z) ω. (69)

[From now on we do not write out the ∆1,∆2 dependence.]

In order to get a true one parameter family of commuting transfer matrices we want
the matrices B and C to be in the same parametrized family, i.e: B = R(y,∆1,∆2) and
C = R(z,∆1,∆2) for some R(τ,∆1,∆2). This can be done, the condition is h = f and
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yields:

R(τ,∆1,∆2) =

















1 0 0 f(τ)

0 τ ω f(τ)Q 0

0
τ

ω f(τ)
τ 0

τ∆2

f(τ)Q
0 0 1

















(70)

with Q a root of

τQ2 − τ2Q− τQ∆1 −Q+ τ∆2 = 0. (71)

This result shows that the elliptic curve (71) must be introduced even if we just want
to write two entries of the solution as a parametrized family. This still leaves considerable
freedom in choosing the gauge. Simple-looking results are obtained e.g. if we take ω = 1
and f = 1 or τ , but these are no longer rational in τ since Q(τ) will involve square roots.

The above expressions for a, b, c, were obtained by the condition that B and C depend
only on three of the four parameters. If we now continue and require the same on A we
obtain the additional conditions

a = m(x,∆1,∆2),
c

b
=

√

z

y
q1 n(x,∆1,∆2). (72)

The compatibility of these with (66,67) leads eventually to the symmetric solution

a =

√

x

q1q2
φ1φ2, b =

√

y

q1q3
φ1φ3, c =

√

z

q2q3
φ2φ3, (73)

where φi = φi(∆1,∆2) is the residual freedom in the choice of gauge and the previously
used function ω is related to φ3 by ωφ2

3
= 1.

The gauge choice (73) leads to the following parameter counting: each matrix of the
triplet contains three independent entries, and the choice of C, say, fixes three of the four
parameters of the solution. One free parameter is left for B and finally A is determined
once B is chosen.

4.3 Elliptic parametrization

Baxter solution [22] is actually contained in (48, 49, 50) if we choose the gauge (73) with

φi = ∆
1/4
2

, in other words f(τ) = h(τ) = m(τ) =
√

τ∆2/Q(τ) and ω = 1/
√
∆2. This

gauge is also uniquely defined by the requirement that the matrices are symmetric under
the usual transposition.

But fixing the gauge is not the end of the story. For a good spectral parameter we
need also a good composition rule, in this case it is obtained as follows. Fixing C fixes the
values of the invariants ∆1(C) and ∆2(C), and therefore the elliptic curve (71). C, B, and
A will then be given by three points on this same curve. There is a natural addition rule
on elliptic curves, and to verify that our parameters satisfy it we have to use the usual
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uniformization with elliptic functions Baxter [22]. The result is as follows: Let us define
γ and k by

∆1 = −2cn(γ)dn(γ), ∆2 = sn4(γ)k2 (74)

where sn, cn, dn are the Jacobi elliptic functions of modulus k, and σ, ρ, χ by

z =
sn(σ)

sn(γ − σ)
, y =

sn(ρ)

sn(γ − ρ)
, x =

sn(χ)

sn(γ − χ)
, (75)

then the relations (55,56) are satisfied when we take

v =
sn(ρ)[sn(σ)sn(χ) + sn(γ)sn(γ − ρ)]

sn(γ − χ)sn(γ − ρ)sn(γ − σ)
(76)

and use the addition rule

ρ = σ + χ. (77)

To complete the parametrization we note that

q1 = sn(γ)

√

sn(σ)sn(γ − σ)

sn(ρ)sn(γ − ρ)sn(χ)sn(γ − χ)
, (78)

q2 = sn(γ)

√

sn(ρ)sn(γ − ρ)

sn(σ)sn(γ − σ)sn(χ)sn(γ − χ)
, (79)

q3 = sn(γ)

√

sn(χ)sn(γ − χ)

sn(σ)sn(γ − σ)sn(ρ)sn(γ − ρ)
, (80)

q4 = sn(γ)k2
√

sn(χ)sn(γ − χ)sn(ρ)sn(γ − ρ)sn(σ)sn(γ − σ) , (81)

Q(x) =
sn(γ)2

sn(χ)sn(γ − χ)
, (82)

and similarly for y, z.
If we now define (note the overall scaling)

R(α, γ, k) =









sn(γ − α) 0 0 sn(α) sn(γ) k
0 sn(α) sn(γ) 0
0 sn(γ) sn(α) 0

sn(α) sn(γ) k 0 0 sn(γ − α)









(83)

then A = R(χ, γ, k), B = R(ρ, γ, k), C = R(σ, γ, k) solve (1b), and this is exactly Baxter’s
solution. [If k = 0 we get a special case of the six-vertex solution.]

What (74), (75), (76), together with (77) show is that the two dimensional surface in η
given by fixing the values of ∆1 and ∆2 is a product of two elliptic curves (or two points
on the same elliptic curve). Baxter’s parametrization makes it explicit. Furthermore it
also allows to visualize the action of Aut, since

KaKb : ρ 7→ ρ+ γ, σ 7→ σ
KbKc : ρ 7→ ρ, σ 7→ σ + γ

(84)
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5 Conclusion

We have analyzed several two-state solutions of the Yang-Baxter equations, and shown
how starting from a rational solution without recognizable structure one can construct
spectral and moduli parameters using the symmetries of the equations. For five- and
six-vertex ansatze our results are complete.

The effect of gauge transformation on the parametrization is particularly interesting.
One of the lessons of the present work is that it can be much easier to solve the YBE when
a gauge has not been fixed. Finding a good parametrization is a separate problem, which
can be done at leisure, after a solution has been found.

The present method can be used for any solution of the Yang-Baxter equations, when-
ever they are found. Unfortunately we do not yet have a thorough analysis of these
equations with absolutely no a priori assumptions on their form (i.e. no Ansatz at all), in
the spirit of the complete resolution of the ‘constant’ equations obtained earlier by one of
the authors [4].
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